TSUKUBA J. MATH.
Vol. 34 No. 1 (2010), 31-46

ON THE CARTIER DUALITY OF CERTAIN FINITE
GROUP SCHEMES OF TYPE (p”, p")

By
Nobuhiro Akl and Michio AMANO

Abstract. In this paper we show that the finite subgroup scheme
Spec A[X, Y]/(X?', ¥?') of &% D) eExt'(9W ¢W) is a Cartier
dual of a certain finite subgroup scheme of the fiber product
Wi 4 Xspec 4 Wi, 4 of Witt vectors of length / in positive characteristic
p. After this, we treat the kernel of the type F? + [a]F + [b] : W) 4 —
W, 4, where F is the Frobenius endomorphism and [q] is the Teich-
miiller lifting of a € A, respectively.

1. Introduction

Throughout this paper, we denote by p a prime number. Let A4 be a
commutative ring with unit and /1 a suitable arbitrary element of 4. T.
Sekiguchi, F. Oort and N. Suwa [SOS] have introduced a group scheme ¥ @) =
Spec A[T,1/(1 + AT)] which is a deformation of the additive group scheme G, to
the multiplicative group scheme G,, determined by A. (for the group structure see
section 3.1.) Let / be a positive integer. If 4 is of characteristic p, the following
morphism  is a surjective homomorphism:

y g — g(ﬂl); x X,
Put Ny, =Kery. Let W, 4 be the Witt ring scheme of length / over A. Let

F:W;4— W4 be the Frobenius endomorphism of W; 4 and [4] the Teich-
miiller lifting of 1€ 4. Set F® = F — [A77!]. Then we have the following:

THEOREM 1 ([A]). Assume that A is of characteristic p. Then the Cartier dual
of Ny is canonically isomorphic to Ker[FW : W, 4 — W, 4].

First Y. Tsuno [T] proved the case / =1 of Theorem 1 by skillful calculations.
Next M. Amano [A] proved Theorem 1 for any / by using the deformations of
Artin-Hasse exponential series.
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Our main purpose in this paper is to more generally treat the above argument
as follows. Let A, u be elements of A. T. Sekiguchi and N. Suwa [SS1] have
introduced a group scheme &#P) = Spec A[X,Y,1/(1+1X),1/(D(X)+ uY)]
which is an extension of ¥¥ by %¥ where D(X) denotes a deformation of
Artin-Hasse exponential series. (for the group structure of &“#?) and the
definition of D(X), see section 3.3.) For a group scheme G, let G be the formal
completion along the zero section. We consider an endomorphism ¢ of (A}f@ 4=
(A}m, A XSpec 4 (A}m, 4 defined by

~ N 1 !
@ Grzn,A - G;AA? (t,u) = (7, ul”).

We determine a morphism ! : £(-n.0) WD) 5o that the following

diagram is commutative:

gA(/lnuvD) L N (32

1 1
WPt b
G oy o
m, A’

where a morphism o»# is the following homomorphism:
oA D) (A},f“,; (x, ) — (1 + Ax, D(x) + up).
By the commutativity of this diagram, wg’) should be given by
xﬁéb . HUmD) gA(HI-,ﬂ"[7D/); (x,y) = (x2', "),

Then the morphism WE” is a surjective homomorphism. Put N,; = Ker wé’).
The formal group scheme N,; is nothing but the finite subgroup scheme
Spec A[X, Y]/(X?', Y?') of &%#P) ie. we have the following short exact se-
quence:

0— Ny — &HrP) (E”WI’”FI’D’) — 0.
i 1
(x, 3) = (>, p7)

This fact is important in the proof of the following theorem. Set

U FW  —Ty
"\ o FW
the definition of 7 see section 2.) Put U; = Uly, , which is an endomorphism

) which is an endomorphism of W3 = W, Xspec a4 Wa. (for
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W,? 1= Wi 4 Xspecua Wi 4. Then the one of the results of this paper is the fol-
lowing:

THEOREM 2. Assume that A is of characteristic p. Then the Cartier dual of
Ny is canonically isomorphic to Ker[U;: W2, — WI?A}.

The proof of Theorem 2 is almost similar to the previous paper [A]. To
prove Theorem 2, we make use of the deformations of Artin-Hasse exponential
series introduced by T. Sekiguchi and N. Suwa [SS2] and a duality between
Ker[U : W(A)? — W(A)?] with §%##D) proved by them [Ibid.].

Let K be a perfect field of characteristic p. We set Dieudonné ring as follows:

Dy = W(K)[F,V]/(FV — p,VF — p,Fa—a'"’F, Va'?) — aV, for any a € W(K)),

where a'?) = (af,a?,...) (a= (ao,ai,...) € W(A)). Then there are the isomor-
phism Dg/Dg V' ~Hom(W, g, W, k). (cf. [DG, p. 550]) From this point of
view, we are interested in that which element of Dieudonné ring is Cartier dual
of the subgroup scheme N, ; of &*#P) We have already seen that the type of
F — [a"7'] € Dk /Dg V" was Cartier dual of the subgroup scheme N ; of 4@ In
Section 5 we consider the kernel of the type F? + [a]F + [b] : W) 4 — W, 4. If the

morphism 7T} is invertible, we have the following isomorphism:
Ker[Uy: W2, — Wi, = Ket[FWT, FO 2 Wi g — W)
This together with some further arguments will prove the following:
THEOREM 3. Assume that the base ring is of characteristic p.

(1) If Ty can be chosen to be the identity map we have the following iso-
morphism:

Ker[U; : W,%A — W,?A]
~ Ker[F? — ([w~"] + PPN + ()] s Wig — W4,
(2) After a suitable faithful base extension A — A', Ty can be chosen to be the

identity map over A’'.

The contents of the paper is as follows. The next two sections are devoted to
recalling the definitions and the some basic properties of the Witt schemes and of
the deformed Artin-Hasse exponential series. In Section 4 and Section 5 we give
our proofs of Theorem 2 and Theorem 3.
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NOTATION

G,, 4 : additive group scheme over A
G,,, 4 : multiplicative group scheme over A4
W, 4 : group scheme of Witt vectors of length n over A

W4 : group scheme of Witt vectors over A
G,,, 4 : multiplicative formal group scheme over 4
F : Frobenius endomorphism of W,
V' : Verschiebung endomorphism of W,
R, : restriction homomorphism of W, to W, 4
[4] : Teichmiiller lifting (4,0,0,...)e W(A4) of Ae 4
a'?) = (ab,al,..)) (a=(a,ai,...)e W(A))
FW .= F - Y
W)™ = Ker[F?) : W(4) — W(A)]

W(A)/F% := Coker[F") : W(A4) — W(A4)]
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2. Witt Vectors

In this short section we recall necessary facts on Witt vectors for this paper.
For details, see [DG, Chap. V] or [HZ, Chap. III].

2.1 Let X=(Xp,Xj,...) be a sequence of variables. For each n >0, we
denote by ®@,(X) = ®,(Xo, X1,...,X,) the Witt polynomial

@,(X) = X +p)(11’”" Yt "X,
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in Z[X]=Z[Xy,Xy,...]. Let W,z =SpecZ[Xo,X1,...,Xs—1] be the n-
dimensional affine space over Z. We define a morphism ®" by

O W,z — AL x> (Dg(x), Di(x),..., D, 1(x)),

where AJ is the usual n-dimensional affine space over Z. We call @ the
phantom map. The scheme Aj has a natural ring scheme structure. It is well-
known that W, z has a unique commutative ring scheme structure over Z so that
the phantom map ® is a homomorphism of commutative ring schemes over Z.
Then the points of W, z are called Witt vectors of length n over Z.
2.2 The Verschiebung homomorphism V is defined by
V:W(A) — W(A); x=(xo,x1,...)— V(x)=(0,x0,x1,...).
The restriction homomorphism R, is defined by
Ry, : W(A) = W,(A); x=(x0,X1,...) = X = (X0, X1, .., Xp_1).
We define a morphism F : W,(A4) — W,_1(4) by
Q;(Fx) = @i (x)

for x e W,(A). If A is of characteristic p, F is nothing but the usual Frobenius
endomorphism. For /e A4, [A] and F“ denote the Teichmiiller lifting [i] =
(2,0,0,...) € W(A) and the endomorphism F — [A7~'] of W(A), respectively.

For a = (ap,a1,...) € W(A), we also define a morphism 7, : W(A4) — W(A)
by

n n—1
O, (T,x) = af ©y(x)+ pal @p_1(x) + -+ p"a,Do(x)

for x e W(A). Then it is known that this morphism has the equality T, =
Siso VF - lak]. (cf. [SS2, Chap. 4, p. 20))

3. Deformed Artin-Hasse Exponential Series

In this short section we recall necessary facts on the deformed Artin-Hasse
exponential series for this paper.

3.1 Let A be a ring and / an element of 4. Put ¥¥) = Spec 4[X,1/(1 + 1X)].
We define a morphism «® by

P gl Gy 4; x— 14 Ax
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It is well-known that ¥ has a unique group scheme structure so that the
morphism «*) is a homomorphism over A. Then the group scheme structure
of ¥ is given by x-y=x+ y+Axy. If 1 is invertible in 4, «¥) is an A4-
isomorphism. On the other hand, if 1 =0, ¥*) is nothing but the additive group
scheme G, 4.

3.2 The Artin-Hasse exponential series E,(X) is given by
e

E,(X) = exp (Z o ) € Z(,[[X]]-

r=0

We define a formal power series E,(U,A;X) in Q[U,A][[X]] by

1

E,(U,A; X) = (1+AX)"" ﬁ(l + AP xRN =),
k=1

As in [SS1, Corollary 2.5.] or [SS2, Lemma 4.8.], we see that this formal power
series E,(U,A; X) is integral over Z,). Note that E,(1,0;X) = E,(X).
Let 4 be a Z,-algebra. Let A€ 4 and v = (vo,v1,...) € W(A4). We define a
formal power series E,(v,4; X) in A[[X]] by
o0
Ey(0.7:X) = [] By (w27 X7")
k=0

=(1+ /IX)”O“ ﬁ(l + /117"ka)<1/p").1”‘><1>,c,1(F<z>u).
k=1

Moreover we define a formal power series F,(v,4;X,Y) as follows:

0 pk pk pk pk
Fo,1sX, ¥) = ((1“ X714 27" yr"y

(1/p " 1 (v)
1+ (X + Y +2x7)"" )

k=1

As in [SS1, Lemma 2.16.] or [SS2, Lemma 4.9.], we see that the formal
power series F,(v,4; X, Y) is integral over Z,. For the formal power series
F,(FWv,2;X,Y), we have the following equalities:

: E (L xr (" v
FP(F<’”)v,i;X, Y) — H ( +/Lk )( + k)
i\ 1+ (X + Y +XY)"
_ E (0, X)Ey(v,4; Y)
CE(0,A; X+ Y +AXY)’

>(1/pwk)¢“w<z>v)
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33 Let 4, u be elements of 4. Put &#P) = Spec A[X, Y, 1/(1+ 21X),
1/(D(X)+nY)], where D(X) = E,(a,A;X) (ae W(A,‘)Fm). We define a mor-
phism o»# by

al) s B G s (x, ) = (14 Ax, D(x) + uy).

It is known that &#*?) has a unique group scheme structure so that the
morphism o*# is a homomorphism over 4. Then the group structure of & #P)
is

(X1, 1) - (X2, 32) = (xl + X2 +lx]x2»zl),

where Y7, = y1D(x2) + y2D(x1) + uy1y2 4 - (D(x1)D(x2) — D(x1 + X2+ 2x1x2)).
We define formal power series E,((v1,v2), (4, 4); X, ¥), Hi(x, y) and G,(v,u; F)
as follows:

Ep((vl’vz)a (;{a /u);x7 y) = Ep(l)], )”; X)EP (Uz,ﬂ; D'(VX)> )

1 «
Hl(xvy) :;(FP(F(/‘)D,A;X, y) - 1),

(1/p'u" )1y (v)
1+ (F—1)"
Gp(v,u;F)=H<7( ) > :

I>1 (] 'F

Moreover we define a formal power series F,((vi,v2), (4, 1); (x1, y1), (X2, ¥2)) as
follows:

FP((vlvvz)v (lvﬂ); (x17y1)7 (Xz, y2))

_Fp(vlai;xhyl)'F[’<v27,u;L7 )2 )

D(x1) " D(x2)
i o »n -1
Fy (02, Hy, =2 =22} Gy (02, 11 F (01,
X p<027)u7 I’D(Xl)—’_D(Xz)) p(1]27:u7 p(vla 7x17)’2)) )

where the symbol + denotes the multiplication of the group scheme %,

4. Proof of the Theorem

In this section we give the proof of Theorem 2.
Suppose A is a ring of characteristic p. Let A, u be elements of 4. Let
&%#D) be a group scheme defined in Section 3.3 and &*#P) be the formal
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(4,15D)

completion of & along the zero section. We consider the following homo-

morphism:
R A I CR I YO

where D'(X) = Ep(a(Pl), /V’I;X) forae W(Aﬂ)FW. Note that a?) e W (4

For the kernel of the homomorphism lpél), we have

Ny = Ker y) = Spf A[[X, Y])/(X”', ¥?'") = Spec A[X, Y]/(X"', ¥?").

Note that the formal scheme N, is nothing but the finite group scheme of order
p¥, since the classes X and Y are nilpotents in the coordinate ring of N, ;. The
following exact sequence is induced by the homomorphism lpél):

1 5 (2, ;D) l/’él) A(;I?I I’1~D’)
(1) 0—)N2$]—>éo“u’ _>éa.”u, —>07
where 1 is a canonical inclusion. This exact sequence (1) deduces the following
long exact sequence:

~ Dy ~ ~
2) 0 —— Hom(&" #"?) G, 1) " Hom(é%#2) G, ,)

N A 0 ot ol pny 4
O Hom(Ns 1, G i) —— Ext! (0 4P G, 1)

(D)y R
(‘l’z) (é?:)/zD Gm,A)

Since we can directly check that the base schemes of the images of the boundary
map 0 an,d the map (1//2 )" are given by direct products of schemes we can replace
Ext! (0 #P) G, 1) and Ext!(§44D), G,y 4) with HA(EW #':2) G, 4) and
HZ(W1D) G, 4), respectively. Here HZ(G,H) denotes the Hochschild coho-
mology group consisting of symmetric 2-cocycles of G with coefficients in H
for formal group schemes G and H. (cf. [DG, Chap. II.3 and Chap. I11.6])
Therefore we have the following exact sequence:

PP

(3) 00— Hom(é"w HD )7 Gm‘A)
(dzé”) S D) ¢ 0" A
— ((5‘7 1 Gm7A) — Hom(NZA,l;Gm?A)

Wy

3 N ! [ AN ;o N
¢ H()Z((gi(i‘” i "D)7Gm, ) =5 Hz(g’(A;ﬂ«,D)?Gm’A).
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On the other hand, as in the case n = 2 of [SS2, Theorem 5.1.], the following
morphisms are isomorphic:
(4) Ker[U : W(A)* — W(4)?] — Hom(é%#D) G, 4);
(01,02) = Ep((v1,02), (4, 1); X, )
(5)  Coker[U: W(A)> — W(A4)Y] — HHEWHD) G, 4);
(w1, w2) = Fp((w1, w2), (4, 10); (x1, y1), (X2, 12))-

» _ @
F T”) and U' =T T',a , where b=y 'FWa
0 F(ﬂ) 0 F('“p )

We put U = (
1
and B = 7' F* )a(r), We consider the following diagram:

0 W(A) Vixyl W( ) R,><R, (A

of ] l
0 —— wA)? 25w B wia)?

where U, is the restriction morphism of U to W;(A4)®. The exactness of the
horizontal sequences are obvious. The commutativity of the second square of this
diagram rather obvious, and the one of the first square is given as follows. For

v= (vl) e W(A)?, we have

2

FOVy, — TyViv, VIFG Dy — VI Tp
Uo (V! x V(v :( = ! BY2
( ) Fyiy, V/F(u”l)v2

=(V'xVoU'(v).

Here we must show the equality 7V’ = V/Tg. This equality is proved as follows.

Since B =y~ 7' F* Nalr) = (1 FPa)?) = p?) | we have
TV =Y VibloV' = V1<Z e ) = ’(Z Vk[Bk]> = V'Tg.
k=0 k>0 k=0
Thus, by the snake lemma for this diagram, we have the following exact se-
quence:
N
(6) 0 —— Ker U' 72 Ker U 2R Ker U

%, Coker U’ Vi Coker U X% Coker U ——0.
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Now, by combining the exact sequences (3), (6) and the isomorphisms (4), (5),
we have the following diagram consisting of exact horizontal lines and vertical
isomorphisms except for ¢:

(7) )y +
~oapl noA W, ~ ~ )" ~
Hom( @@ #'2) G o) 200 Hom(64#2), 6, 1) — Hom(Nos, G )

¢1T ¢zI 4
I 1!
VixVv RiXR; Ker U]

Ker U’ REEALEN Ker U

;?) Hoz(gAULI’I’ﬂI?I;D’)’ Gm.,A) EE— H()z(és()"'ﬂ;l)% ém,A)

| |

0 NS 74
N Coker U’ e Coker U,

where ¢ is the following homomorphism induced from the short exact sequence
(1) and the isomorphism (4):

¢ : Ker[U : WH(A) — WE(A)] — Hom(Na, 1, Gy 4);
(v1,02) = E,((v1,02), (4, 1); X, ).

If the diagram (7) is proved to commute, then the five lemma shows that ¢
is isomorphism, i.e., Ker[U; : W,(A)2 — W;(A)z] ~ Hom(NzJ,(A},,LA). Hence we
obtain the Theorem 2. Therefore it is sufficient to prove that the diagram (7) is
commutative.

Lemva 1. (W) 0 gy = gy0 (V! x V7).

Proor. By the definition and (10) of Sublemma 1 (see the end of this

section.), we have the following equalities for <v1 ) e Ker U’”:

2

!
ﬂpl I\, li N pl. ol l, y1’
Ep((vlav2)a(/b 7:up )7xp ?yp ) _Ep(vl7)\, 7x1 )Ep (vZMUp 7D,(xp[)

= Ep(Vlvl,/l;x)Ep (V’vz,u; %)

= E((V'o,, V'v2), (A, p);x, ). O
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LemMA 2. (1)"o¢y, =¢do (R X R)).
Proor. This follows from the definitions of ¢ and (z)". O

LEMMA 3. do¢g=¢;y00.

Ry
Proor. For ( jé) € Ker Uj, we can calculate 0E,((Rv1, Rjv2), (4, 1); X, y)
Jal ~apl rt. ! . . .
on the direct product G, 4 X & (') so that the following diagram is
commutative:
(8) 0 D
0 N gunn) Y gurwoy g
EI’((RIUI«,RWZ)s(}L«,ﬂ)i,x-,y}l ‘I’J(
0 G G g x 070 L gurweipy .

)

By the commutativity of the diagram (8), ® should be given by:
~ N ~copl Y]
®: 8P — Gpg x BT (x, y) o (Bp((01,0), (2 1) X, ), 05 (%, 9)

(Note that Ep((vl,vlz),l(/l,u);x, y): E4#D) G, 4 is not a homomorphism.) We
endow G, 4 x &*"#":P") with a group scheme structure so that @ : &#40) —
Goa X W'D s g homomorphism. i.e., the following equality should be
satisfied:

O((x1, y1) - (%2, 32)) = @(x1, 31) - P(x2, ¥2)  ((x1, 1), (X2, 12) € éw”MD))?

where

O((x1, y1) - (x2,2))

= (Ep((v1,02), (2 )3 (x1, 91) - (x2, 92)), 903 ((x1, w1) - (32, 12))),

D(x1, y1) - P(x2, y2)
= (Ep((01,02), (2 ); X1, 1), 903” (x1, 11))
(Ep((01,02), (2 )3 X2, 92), 3 (32, 12)).

N O N
For elements (t1,(z1,w1)) and (t2,(z2,w2)) of Gy 4 x &V #"3P) we choose
(x1,y1) and (xz,y2) in the inverse images of (zj,w;) and (zp,w;) for the
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~ S ! pt. !
homomorphism wé’), respectively. Then the group structure of G, 4 X & @' )

should be given by

(l‘l, (21, Wl>> . (Zz, (22, Wz))

Ep((v1,02), (4 0); (X1, 1) - (%2, 02)) >
=\ hty- ,(Z1,wy) - (22, W .
(4 o e Ry B T Gy ) )
Hence, by the above argument and Theorem 4.16 of [SS2], the boundary map 0
should be given by the following formal power series;
Ep((v1,02), (4, )5 (x1, 31) - (32, 12))
E,((v1,02), (4, 1) (x1, 1)) - Ep((01,02), (4, )5 (x2, 32))

= F,(U(v1,02), (4, 0); (x1, ¥1), (X2, ¥2))-

To prove the equality of Lemma 3, we must show the following equality of
the formal power series:

1

! ! !
FP(U(vl’vz)v ()u,ﬂ); (xlayl)’ (Xz, yz)) = FP((zlvz2)a (;{plaﬂpl); (Xf 7y{ )a (xg ’yg ))a

. . v
where z; and z; are elements of inverse images of the boundary (3( 1> for
2

W (A4)* — Coker U'. This equality is proved by (11) and (12) of Sublemma 1 (see
the end of this section.) as follows:

Fy(U(v1,02), (4, 10); (x1, y1), (X2, 12))

— F(FWDp, — Tyvr. A F(FWy e P 2
p( V] b2, A5 X1, J/1) P vzuu,D(X]) 7D(X2)

F. [ F® s AN &
X p< V2, 15 17D(X1)+D(X2)

) Gl W g )
=F (Vg i Fvig g2t Y2
p( zl’ 7x17y1) p( zz“u’D(X]) 7D(x2)

XFlj(Vlzznu;Hl»L—i_ )2

I -l
D(xy) D(xz)) GV 22 i F)

1

P P!
=F i[’l. o . F p'. Y1 Y2
p(zlv X1 X ) p| 22, 1 D(X]) ) D(Xz)

[71
! ! yro . ! Hy—1
o <Zz,/x1’ S (D(X1) +D(xz)> ) Gl

1

ol / I ! !
:FP((Z17z2)7(APaﬂp );(vaylp ),(xf,yg )) O
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Lemva 4. (W) o0 gy = g0 (V! x V).

U1

Proor. For ( >eCoker U’, we can calculate the direct image

L]
N !
(lpél)> FP((vh v2>7 (}“p “upl); (Zl7 M}I)7 (227 WZ))
on the direct product G, 4 x &»#P) so that the following diagram is com-
mutative:
6 (2 pt: D)

()
. |

~ A~ ~ 1 1 ~ ! 1
P N/ 4 .
0 Gi. G?. Xéa(). ,u? ;D" éa(/l ,ul D

.0

N —— 0.
By the commutativity of the diagram (9), ¥ should be given by
~ ~ A A~ / pt. !
W G s x 6D Gy x B (2, (3, 9) v (69 (v, ).

We endow Gm, 4 X &W1D) with a group scheme structure so that ¥ is a homo-
morphism. For local sections (z1,(x1, y1)) and (f2, (x2, y2)) in Gy, 4 x EH#P),
suppose that the product (z1,(x1, y1)) - (f2, (x2, y2)) is written as

(11, (x1, 31)) - (t2, (x2, 32)) = (12G((x1, y1), (%2, 12)), (X1, 11) - (%2, 2)),

A ;D

where G((x1, 1), (x2, ¥2)) is a cocycle on G,, 4 x &*#P) Then we have

Y((t1, (x1, 1)) - (2, (x2, 32))) = W(12G((x1, 1), (32, 12)), (X1, 1) - (X2, 32))
= (102G((x1, 1), (2, y2)) 03 Gty 1) 0y (2, 32),
on the other hand, we have
W(tr, (1, 1)) - o2, (2, 92)) = (01,05 (o, ) - (22,05 (2, 32)
= (102Fy((or,02), 7 1 )0y (1, ),
U (2, 2)) 0 (e, 1) ) (32, 12)).
Hence, for ¥ being a homomorphism, the following equality is necessary:

G((x1, 1) (2, 92)) = Fy((01,02), (2, 1 )90 (e, y0)s 0l (2, 32).
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To prove the equality of Lemma 4, we must show the following equality:

Fp((vl,vz),(ipl,ﬂpl)ﬂﬂg)(xl,yl)a é”(xz,yz))
= FP((Vlvl’ V]v2)7 (}'7 /l), (xla yl)? (Xz, yZ))a

but this equality has been already proved in Lemma 3. O

If we prove the following Sublemma 1 which was used above (see the proofs
of Lemmas 1 and 3), the proof of Theorem 2 will complete.

SUBLEMMA 1.
(10) E,(V'v,25x) = Ey(0, 27 x""),
(11) Ey(Vv,25x1,52) = Fy(0, 23] x}) (mod p),
(12) G,(V'v, 16, F) = Gy(v,p” s F?))  (mod p).

Proor. The equality (11) has been proved as Lemma 3 in the previous
paper [A]. The proof of the equality (12) is similar to the proof of the equality
(11). Therefore we prove only the equality (10). Since ®;_;(F* V'p) = &;(V'v) —
@, ([47"|Vv) = p'vy, we have the following equalities:

oo

E,(V!v, 25x) = (1 + )"/ T (1 + A2 1P R (F OV
k=1

=1+ TJa+ Mxp")<1/pki.”")<1>k71<V’F<"~”'>v>
k=1

(Here we put r =k —1.)

0 r ol
= (14 Ay | (T R (P )
r=1

:Ep(v,/lpl;xpl). O

5. The Kernel of the Type F? + [a|F + [b]

In this section we consider the case that the morphism 7} is invertible. And
we give the proof of Theorem 3.
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For <01> € Ker U;, we have the following equalities:
L)
F(A)Ul — T[,l)z = 0, F('u)l)z =0.
If T, ! exists, we have v = T ' FWv,. Since 0 = FWvy = FW T, FPp;, we have

the following isomorphism:

N v
Ker[FWT, ' FY - Wiy — Wy 4] = Ker[Up: Wi, — W2l v <T—1F(A)v)’
b

where the inverse morphism is (:1) — v;. By Proposition 4.4 of [SS2], if
2

b=(1,0,0,...), Ty is the identity map. At this point we have the following
equalities:

FOTAF® = p) o FO) = (F — [P~ o (F — [2771])
= P2 () )E + ()

Here we must construct a base ring which the morphism 7} is the identity
map, i.e., we make a ring extension of the base ring A that there exist a vector
a = (ag,ai,...) such that FPa=a’ for a vector @’ = (a},aj,...) of W(A). We
construct this ring extension inductively as follows. First we have the equality
al — " 'ay = aj by ®y(FPa) = Dy(a’), where ®;’s are the Witt polynomials.
We put 4, = A[X]/(X? — "' X —a}). Note that the ring 4; is a faithful ring
extension of A because of the polynomial X7 — 27~'x — a), is monic. Then, as
ay = X, we can take an element ay of A; such that aO’7 — 71a0 = a). We assume
that @;,_; is an element of 4; and A; is a faithful ring extension of A4, ; for each
i (< n). By the following equality:

®,(F(a)) - (Dn([;“p_l})q)n(a) = @,(a’),

we have the following equality:
" 1
al =al — )" Vg, 4 i (@, 1(a?)) =@, ([ ])D, 1 (a?) — D, (a’?)}.

By the assumption of the induction,
q,n_l(am) _ (Dn_l(up—l])q)n_l(a<p)) _ q)n_l(a'(p))
is the polynomial of variables «ay,ay,...,a,—;. Hence we have the following:

a) =al — g 4 (the terms of ap,aj,...,a,-1).
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Here we put
Apyy = A, [X]/(XP —3P" P~V X 4 (the terms of ag,ai,...,an_1)).

Then, since XP—}v”'l(”_l)XJr(the terms of ag,ay,...,a,—1) is a monic poly-
nomial, A4, is a faithful ring extension of 4, and, as a, = X, we can take an
element a, of A,,;. Therefore we have following ring extensions:

Ay=Ac A c Ay <--- < Ay

For the above sequence of ring extensions, we take inductive limit 4., = lim 4;.
Then we can take a vecter a € W(A,,) such that FYa=a’' for a vector a’ =

. 1
(11,0,0,...) € W(Ay). Since b=—a’ = (1,0,0,...), we have Ty = 1. Hence we
obtain the Theorem 3. O #
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