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CIRCULAR BILLIARDS AND PARALLEL AXIOM

IN CONVEX BILLIARDS

By

Shinetsu Tamura and Nobuhiro Innami

Abstract. Circles will be characterized by some properties of billiard

ball trajectories. The theory of parallels and the parallel axiom play

important roles in the geometry of the configuration space. Those

characterizations are concerned with Bialy’s theorem which is a

partial answer to Birkho¤ ’s conjecture.

1. Introduction

Let C be a smooth simple closed and strictly convex curve with length L in

the Euclidean plane E and let c : R ! E be its representation by arclength,

namely j _ccðtÞj ¼ 1 for any t A R where R is the set of all real numbers. The

orientation of C is assumed to be anti-clockwise. Let x ¼ ðxjÞj AZ be a sequence of

points in C where Z is the set of all integers. Let TðxÞ ¼ 6y
j¼�y Tðxj; xjþ1Þ where

Tðxj; xjþ1Þ is the oriented segment from xj to xjþ1 for each j A Z. We say that x

(and TðxÞ) is a billiard ball trajectory if the angle between the tangent vector A to

C at xi and the oriented segment Tðxi�1; xiÞ from xi�1 to xi is equal to the one

between A and Tðxi; xiþ1Þ for any i A Z. The convex billiard has been investigated

in its phase space and its configuration space.

We call W ¼ C � ð�1; 1Þ the phase space which is the set of all pairs ðx; uÞ for
x A C and u A ð�1; 1Þ. Let x0; x1 A C and ðx0; x1; x2Þ the billiard ball trajectory.

Let y0 (resp., y1) be the angle between the segment Tðx0; x1Þ from x0 to x1 (resp.,

Tðx1; x2Þ) and the tangent vector to C at x0 (resp., x1). Set u0 ¼ cos y0 and

u1 ¼ cos y1. Define a billiard ball map j : W ! W as jðx0; u0Þ ¼ ðx1; u1Þ. The

billiard ball map is an example of a monotone twist map (see [10]). If x ¼
ðx0; u0Þ A W and ðxj; ujÞ ¼ j jðxÞ for all j A Z, then the sequence x ¼ ðxjÞj AZ is a

billiard ball trajectory. Any billiard ball trajectory is given in this way.

The billiard is said to be integrable if a subset of full measure of the phase

Received September 22, 2008.



space W is foliated by closed curves invariant under the billiard ball map j. The

billiards in circles and ellipses are integrable. Birkho¤ ’s conjecture is stated in [3]

as follows. The only examples of integrable billiards are circular and elliptic

billiards. Bialy ([3]) has given a partial answer to the conjecture, proving that C

is a circle if W is foliated by j-invariant continuous closed curves not null-

homotopic in W. Wojtkowski ([11]) proved that C is a circle if the domain

bounded by C is foliated by smooth caustics to which almost every billiard ball

trajectories are tangent. As was stated in [3] Bialy’s theorem corresponds to a

theorem of Hopf ([7]) concerning Riemannian metrics on tori without conjugate

points. Innami ([8]) extended Bialy’s theorem to the higher dimensional case and

the nonpositive curvature case as Green ([5]) did.

A sequence of points x ¼ ðxjÞj AZ in C is represented by a sequence

s ¼ ðsjÞj AZ of real numbers such that xj ¼ cðsjÞ and sj < sjþ1 < sj þ L for all j A Z

and the sequence s ¼ ðsjÞj AZ will be considered to be a configuration fð j; sjÞgj AZ
in the configuration space X ¼ Z� RHR2. A configuration s ¼ ðsjÞj AZ for x is

uniquely determined up to the di¤erence pL ðp A ZÞ. The theory of parallels for

billiard trajectories in the configuration space has been developed in [1], [2] and

[9]. We define the slope aðxÞ of x as

aðxÞ ¼ lim inf
n!y

sn

n

where s ¼ ðsjÞj AZ is a configuration for x. Let aðxÞ denote the slope of the billiard

ball trajectory determined by x for x A W. It is known that all points x which are

in a j-invariant closed curve f not null-homotopic in W have the same slopes

([1], [9]). We define the slope að f Þ of any j-invariant closed curve f not null-

homotopic in W as að f Þ ¼ aðxÞ for any x.

In the present paper we prove the following theorem which improves Biary’s

theorem.

Theorem 1.1. Let C be a strictly convex closed curve of class C1 with length

L and with constant width. Suppose there exists a sequence of j-invariant closed

curves fn not null-homotopic in W whose slopes an ¼ að fnÞ converge to L=2. Then,

C is a circle.

Let f be a j-invariant closed curve not null-homotopic in W and f � the

curve consisting of the points x� which correspond to the reversed billiard ball

trajectories to x A f . Then f � is also a j-invariant closed curve not null-

homotopic in W with slope að f �Þ ¼ L� að f Þ (see Section 5).
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Corollary 1.2. Let C be a strictly convex closed curve of class C1. Suppose

there exists a sequence of j-invariant closed curves fn not null-homotopic in W such

that limn!y fn ¼ limn!y f �n as n ! y. Then, C is a circle.

The corollary shows that our theorem betters Biary’s theorem.

Corollary 1.3. Let C be a strictly convex closed curve of class C 1 with

length L. Suppose the slope function a is continuous in W and a�1ðL=2Þ has no

interior points. Then C is a circle.

We define poles for convex billiards as follows. Let s0 ¼ t0 and x0 ¼ cðs0Þ.
Let s ¼ ðsjÞj AZ and t ¼ ðtjÞj AZ be configurations for billiard ball trajectories with

t1 > s1. We say that the point x0 A C is a pole if t and s do not cross at any other

point than s0, namely, tj > sj for j > 0 and tj < sj for j < 0. All points in circles

are poles. The endpoints of long axis in an ellipse are poles and other points are

not poles.

Corollary 1.4. Let C be a strictly convex closed curve of class C 1 with

constant width. Suppose there exists a pole in C. Then C is a circle.

2. Preliminaries

Details of theorems introduced in this section can be seen in [9]. Let C be a

smooth strictly convex simple closed curve in the Euclidean plane E with length

L. Let X ¼ Z� RHR2 where Z is the set of all integers and R is the set of

all real numbers. We denote ði; siÞ A X by si for simplicity. A configuration

s ¼ ðsjÞiajak makes a broken segment TðsÞ ¼ 6k�1

j¼i
Tðsj ; sjþ1Þ in R2 where

Tðsj ; sjþ1Þ is the segment from ð j; sjÞ to ð j þ 1; sjþ1Þ in R2. For q; p A Z let Uðq; pÞ
be the translation in X which is given by

Uðq; pÞðsiÞ ¼ Uðq; pÞði; siÞ ¼ ði þ q; si þ pLÞ

for any ði; siÞ A X. Let x ¼ ðxjÞiajak be a sequence of points in C with xj 0 xjþ1

for any j. We define a configuration s ¼ ðsjÞiajak for x as xj ¼ cðsjÞ and

sj < sjþ1 < sj þ L for ia ja k � 1. We call such a configuration s and a broken

segment T ¼ TðsÞ made of such a configuration s a C-curve. We define the

negative length of a C-curve T ¼ TðsÞ as

Hðs; i; kÞ ¼ Hðsi; siþ1; . . . ; skÞ ¼ �
Xk�1

j¼i

jcðsjþ1Þ � cðsjÞj
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where j � j is the natural norm in E and c : R ! E is the representation of C by

arclength. Let Hði; k; u; vÞ denote the minimum of Hðs; i; kÞ in the set of all

C-curves s ¼ ðsjÞiajak from si ¼ ði; uÞ to sk ¼ ðk; vÞ.
A C-curve s ¼ ðsjÞiajak (and T ¼ TðsÞ) is called a billiard curve or simply a

b-curve if x ¼ ðxjÞiajak given by xj ¼ cðsjÞ for ia ja k is a billiard ball tra-

jectory. The b-curves are the critical points of the function H in the set of all

C-curves connecting given endpoints. A b-curve s ¼ ðsjÞiajak (and T ¼ TðsÞ) is

called a billiard geodesic or simply a b-geodesic if Hðs; j; j þ 2Þ is the minimum in

the set of all C-curves from sj to sjþ2 for ia ja k � 2, namely Hðs; j; j þ 2Þ ¼
Hð j; j þ 2; sj; sjþ2Þ. A C-curve s ¼ ðsjÞia jak (and T ¼ TðsÞ) is called a billiard

segment or simply a b-segment if Hðs; i; kÞ is the minimum in the set of all

C-curves from si to sk, namely Hðs; i; kÞ ¼ Hði; k; si; skÞ. A b-geodesic s ¼ ðsjÞjbi

(resp., s ¼ ðsjÞjai) (and T ¼ TðsÞ) is called a billiard ray from si or simply a b-ray

from si if all sub-b-geodesics are b-segments, namely Hðs; j; kÞ ¼ Hð j; k; sj ; skÞ for

any k > jb i (resp., j < ka i). A b-geodesic s ¼ ðsjÞj AZ (and T ¼ TðsÞ) is called

a billiard straight line or simply a b-straight line if all sub-b-geodesics are b-

segments, namely Hðs; j; kÞ ¼ Hð j; k; sj; skÞ for any k > j.

Let s ¼ ðsjÞiajak and s 0 ¼ ðs 0j Þiajak be b-segments such that TðsÞVTðs 0Þ ¼
q. Suppose sj < s 0j for all j with ia ja k. Then, we have a strip ½TðsÞ;Tðs 0Þ� in
R2 whose lower boundary broken segment is TðsÞ and upper one is Tðs 0Þ. We

also denote ½TðsÞ;Tðs 0Þ�VX as ½TðsÞ;Tðs 0Þ�.

Proposition 2.1. If W is a foliation of the strip ½TðsÞ;Tðs 0Þ� by b-curves,

then all b-curves t ¼ ðtjÞiajak in the foliation W are b-segments in the strip

½TðsÞ;Tðs 0Þ�. Moreover, if tk and tm are in a b-curve t ¼ ðtjÞiajak A W , then the

sub-b-curve t ¼ ðtjÞhajam of t ¼ ðtjÞiajak is the unique b-curve connecting th and tm

in the strip ½TðsÞ;Tðs 0Þ�.

Let f be a j-invariant closed curve which is not null-homotopic in W. Then,

the set of all configurations for all points x A f makes a foliation of X which is

invariant under all translations. Proposition 2.1 implies that those configurations

are b-straight lines in X.

Proposition 2.2. Let t ¼ ðtjÞhajam and u ¼ ðujÞkajam be b-segments with

t0 u. Then, TðtÞVTðuÞ contains at most two points. If TðtÞVTðuÞ ¼ fa; bg, then
a and b are common endpoints of t and u. Furthermore, there exists the unique

b-segment from ti to tj which is a sub-b-segment of t if at least one of ti and tj is

not an endpoint of the segment t.
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Let q; p A Z with 0 < jp=qj < 1. The displacement function D ¼ Dðq; pÞ : X !
R is given by

DðsiÞ ¼ Dðq; pÞðsiÞ ¼ Hði; i þ q; si; si þ pLÞ

for any si ¼ ði; siÞ A X. This is equivalent to that DðsiÞ ¼ Hði; i þ q; si;Uðq; pÞðsiÞÞ
for any si A X.

We say that a b-curve s ¼ ðsjÞj AZ is with period ðq; pÞ if sjþq ¼ sj þ pL for

any j A Z. The periodic b-geodesic s ¼ ðsjÞj AZ is said to be minimal if DðsjÞ ¼
minfDðsÞ j s A f jg � Rg.

Proposition 2.3. Suppose Dðq; pÞ assumes its minimum at si. Then, there

exists a unique minimal periodic b-geodesic through si with period ðq; pÞ. The

minimal periodic b-geodesic is a b-straight line whose slope is pL=q.

The diameter d of C is by definition d ¼ maxfjcðsÞ � cðtÞj j s; t A Rg. The

diameter is characterized by a billiard ball trajectory as follows.

Lemma 2.4. A b-straight line s ¼ ðsjÞj AZ is with period ð2; 1Þ if and only if

jcðsjþ1Þ � cðsjÞj is the diameter of C for all j A Z.

The following proposition helps us improve the assumption in Bialy’s the-

orem, combined with Theorem 4.1.

Proposition 2.5. C is with constant width if and only if X is foliated by

periodic b-straight lines with period ð2; 1Þ.

Let s ¼ ðsjÞjbi0
be a b-ray. We define the Busemann function of a b-ray s in

the configuration space as

Bsði; tiÞ ¼ BsðtiÞ ¼ lim
n!y

fHði; n; ti; snÞ �Hðs; i0; nÞg

for any ði; tiÞ A X (see [2], [4], [9]). In the same way we define the Busemann

function of a b-ray s ¼ ðsjÞjai0
by using n ! �y instead of ‘‘n ! y’’. We states

the properties and proofs for only the case s ¼ ðsjÞjbi0
. However, the same

properties are true under the suitable change of the expression unless otherwise

stated.

Let t ¼ ðtjÞjbi1
be a C-curve. We say that t is a co-b-ray to a b-ray s ¼ ðsjÞjbi0

if
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Bsði; tiÞ ¼ Hði; i þm; ti; tiþmÞ þ Bsði þm; tiþmÞ

for any ib i1 and m > 0. We say that a C-curve t ¼ ðtjÞj AZ is a b-asymptote to a

b-ray s ¼ ðsjÞjbi0
if any sub-b-curve t ¼ ðtjÞjbi of t is a co-b-ray to s. We say that

a C-curve t ¼ ðtjÞj AZ is a b-parallel to a b-straight line s ¼ ðsjÞj AZ if sub-b-curves

ðtjÞjbi and ðtjÞjai are co-b-rays to b-rays ðsjÞjb0 and ðsjÞja0 respectively for each

i A Z.

Lemma 2.6. Let s ¼ ðsjÞjbi0
and t ¼ ðtjÞjbi1

be b-rays. If limj!yjsj � tjj ¼ 0,

then Bsði; uÞ ¼ Btði; uÞ � Btði0; si0Þ for any ði; uÞ A X and they are co-b-rays to each

other.

If tn ¼ ðtnj Þi1ajan be a b-segment from tni1 to sn and a sequence tni1 is bounded,

then there exists a subsequence tm which converges to a b-ray.

Lemma 2.7. Let tn ¼ ðtnj Þi1ajan be a b-segment from tni1 to sn. If a sequence tn

converges to a b-ray t ¼ ðtjÞjbi1
, then t is a co-b-ray to s.

The following shows that sub-b-rays of a co-b-ray t are the unique co-b-rays

if the starting point is not the terminal point of t.

Proposition 2.8. Let t ¼ ðtjÞjbi1
be a co-b-ray to s and let i2 > i1. If

u ¼ ðujÞjbi2
is a co-b-ray to s with ui2 ¼ ti2 , then u is a sub-b-ray of t, namely,

uj ¼ tj for jb i2.

Proposition 2.9. Let s ¼ ðsjÞj AZ and s 0 ¼ ðs 0j Þj AZ be periodic b-curves with

period ðq; pÞ. If s and s 0 are b-straight lines, then one is a b-parallel to the other.

Proposition 2.10. Let s ¼ ðsjÞj AZ be a periodic b-straight line with period

ðq; pÞ and t ¼ ðtjÞj AZ a b-straight line with slope aðtÞ ¼ pL=q and TðtÞVTðsÞ0q.

Then, t coincides with s.

Lemma 2.11. Suppose there exists a pole x A C. Then, for any ðq; pÞ,
q; p A Zþ, p=q < 1, and any s0 corresponding to a pole, there passes a minimal

periodic b-straight line s ¼ ðsjÞj AZ with period ðq; pÞ such that the strip ½TðsÞ;TðsÞ�
is foliated by b-straight lines and the foliation W corresponds to a j-invariant

closed curve not null-homotopic in the phase space W, where sj ¼ sj þ L for all

j A Z.
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3. Convex Parts of Caustics

Let x; y A C. The orientation of C is assumed to be anti-clockwise. Let

Tðx; yÞ be the oriented segment from x to y and Sðx; yÞ the oriented straight line

through x and y. Let Hðx; yÞ be the closed half plane which is in the left side of

Sðx; yÞ in Euclid plane. Let Ma be the set of all b-straight lines with slope aL.

Suppose Ma is a foliation of X in this section. Let ðs0Þ1 is a function defined on

½0;L� which is given by ðs0Þ1 ¼ s1 where s ¼ ðsjÞj AZ is the unique b-straight line in

Ma through s0. Let

CaðrÞ ¼ 7
0as0ar

Hðcðs0Þ; cððs0Þ1ÞÞ

where 0a raL. Obviously CaðrÞHCaðr 0Þ if 0 < r 0 < r < L. We call Ca ¼ CaðLÞ
the convex part of caustic with slope aL.

Lemma 3.1. Assume that Ma is a foliation of X. Then, Ca is a nonempty

convex set and all billiard ball trajectories x intersecting Ca are with slopes aðxÞ
greater than or equal to aL if aðxÞ < L=2.

In the following proof it is important that the tangent line of C at cðs0Þ
intersect Tðcðs0Þ; cððs0Þ1ÞÞ with an angle less than p=2, and that ðs0Þ1 is monotone

and continuous in s0 A ½0;LÞ ([9]).

Proof. We will prove that CaðLÞ is not empty. Let a0 A ½0;LÞ be the

number such that ða0Þ1 aL. Then, cðða0Þ1Þ A Caða0Þ, since ðs0Þ1 is monotone

increasing in s0 A ½0;LÞ. Let y0 A Tðcð0Þ; cð01ÞÞ be the nearest point from 0 in the

set of all points Tðcð0Þ; cð01ÞÞVTðcðs0Þ; cððs0Þ1ÞÞ for 0 < s0 a 01. Let

b0 ¼ 0�1 þ L, namely, ðb0Þ1 ¼ L. The boundary qCaðb0Þ of Caðb0Þ is a convex

curve which consists of Tðcð0Þ; y0Þ, a convex curve K from y0 to a point w0 in

Tðcðb0Þ; cðLÞÞ and Tðw0; cðLÞÞ. Let u A C be the point at which the oriented

tangent line to K with right derivative at y0 intersects C and let d0 be the

parameter such that 01 < d0 < L and u ¼ cðd0Þ.
We have two cases; d0 a b0 and d0 > b0. If d0 a b0, then there exists the

smallest parameter b1 > b0 such that Tðcðb1Þ; cððb1Þ1ÞÞ passes through y0.

More precisely, cððs0Þ1Þ is between cðb0Þ and cð0Þ ¼ cðLÞ for s0 A ½d0; b0� and

Tðcðs0Þ; cððs0Þ1ÞÞ intersects Tðcð0Þ; cð01ÞÞ at a point between cð0Þ and y0 for

s0 A ½b0; b1�. Hence, it follows that y0 A Caðb1Þ. If d0 > b0, then La ðs0Þ1 a ðd0Þ1
for s0 A ½b0; d0�, and, hence, y0 is in the left side of Tðcðs0Þ; cððs0Þ1ÞÞ. Therefore,
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there exists a parameter b1 with b1 > d0 > b0 such that Tðcðb1Þ; cððb1Þ1ÞÞ passes

through y0. It follows that y0 A Caðb1Þ. The convex curve qCaðb1Þ consists of

a convex curve from y0 to a point w1 in the segment Tðcðb1Þ; cððb1Þ1ÞÞ and

Tðw1; y0Þ. Let Uðb1Þ be the supporting line to Caðb1Þ through cðb1Þ which is not

the segment Tðcðb1Þ; cððb1Þ1ÞÞ and let p1 be a point Uðb1ÞVCaðb1Þ. Then, p1 is in

the left side of Sðcðb1Þ; cððb1Þ1ÞÞ. If the supporting line Uðb1Þ does not intersect

the segment Tðcð0Þ; cð01ÞÞ, then p1 is in the left side of Sðcðs0Þ; cððs0Þ1ÞÞ for

any s0 A ðb1;L�, and, hence, p1 A CaðLÞ. If the supporting line Uðb1Þ intersect

Tðcð0Þ; cð01ÞÞ at a point y1, then we can find b2 with b1 < b2 aL such that

Tðcðs0Þ; cððs0Þ1ÞÞ intersects Tðcð0Þ; y1Þ for any s0 A ½b1; b2�. Thus, p1 is in the left

side of Sðcðs0Þ; cððs0Þ1ÞÞ for any s0 A ½b1; b2�, and, hence, p1 A Caðb2Þ. By using

cðb2Þ and the supporting line Uðb2Þ to Caðb2Þ through cðb2Þ instead of cðb1Þ and

Uðb1Þ, we find a point p2 A Caðb2Þ such that p2 A CaðLÞ or there exist a pa-

rameter b3 with b2 < b3 aL and y2 A Tðcð0Þ; cð01ÞÞ such that p2 is in the left

side of Sðcðs0Þ; cðs0Þ1ÞÞ for any s0 A ½b2; b3� and Tðcðs0Þ; cððs0Þ1ÞÞ intersect

Tðcð0Þ; cð01ÞÞ at some point between cð0Þ and y2 on Tðcð0Þ; cð01ÞÞ, and, hence,
p2 A Caðb3Þ. This is a process of making b1 < b2 < � � � < bn < L and a sequence

of points p1; p2; . . . ; pn in CaðbnÞ. Since p1; p2; . . . ; pn are in this order on CaðbnÞ,
the sequence bi is a finite sequence. Thus, we have Ca ¼ CaðLÞ which is not

empty.

By construction of Ca, we easily see that all billiard ball trajectories x

intersecting Ca have slopes aðxÞ greater than or equal to aL if aðxÞ < L=2. r

The following lemma is obvious from the proof of Lemma 3.1.

Lemma 3.2. Assume that Ma and Ma 0 are foliations of X with a < a 0 < L=2.

Then, Ca 0 HCa.

4. Parallel Axiom and Periodic Trajectory

Let Ma be the set of all points x A W whose configuration is a b-straight line

in X with slope aðxÞ ¼ aL where 0 < a < 1. We also denoted the set of those

b-straight lines in X as Ma for convenience. We say that Ma satisfies the parallel

axiom if given two b-straight lines in Ma are b-parallel to each other.

Theorem 4.1. Let a ¼ p=q be a rational number with 0 < a < 1. Assume that

Ma is a totally ordered set and satisfies the parallel axiom. Then, all b-straight lines

in Ma are with period ðq; pÞ.
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We need two lemmas to prove the theorem. Let u ¼ ðujÞj AZ be a periodic

b-straight line with period ðq; pÞ and let s ¼ ðsjÞi0ajai0þmq be a b-segment. Let

fsðiÞ ¼ si0þiq � ui0þiq for any i A I ½0;m� where I ½a; b� is the set fa; aþ 1; . . . ; bg of

integers. We say that I ½a; b� is a maximal monotone interval for fs in I ½0;m� if

fsðiÞ is a monotone sequence in i A I ½a; b� and is not a monotone sequence in any

interval of integers containing I ½a; b� as a proper subset.

Lemma 4.2. Let I ½a1; b1� and I ½a2; b2� be maximal monotone intervals. If

I ½a1; b1�V I ½a2; b2� contains at least three numbers, then s is a sub-b-segment of a

periodic b-geodesic with period ðq; pÞ.

Proof. Let I ½a1; b1�V I ½a2; b2� C i1 � 1; i1; i1 þ 1. Then, fsði1 � 1Þ ¼ fsði1Þ ¼
fsði1 þ 1Þ, namely,

si0þði1�1Þq � ui0þði1�1Þq ¼ si0þi1q � ui0þi1q

¼ si0þði1þ1Þq � ui0þði1þ1Þq:

Since

ui0þði1�1Þq þ pL ¼ ui0þi1q ¼ ui0þði1þ1Þq � pL;

we have

si0þði1�1Þq þ pL ¼ si0þi1q ¼ si0þði1þ1Þq � pL;

Hence, Uðq; pÞðsi0þði1�1ÞqÞ ¼ si0þi1q, Uðq; pÞðsi0þi1qÞ ¼ si0þði1þ1Þq. This implies that s

is a sub-b-segment of a periodic b-geodesic with period ðq; pÞ. r

Lemma 4.3. Let I ½a1; b1�; . . . ; I ½an; bn� be maximal monotone intervals with

a1 < � � � < an and I ½ak; bk�V I ½akþ1; bkþ1�0q for k ¼ 1; . . . ; n� 1. Then, n is less

than or equal to 2.

Proof. Suppose without loss of generality that fsðiÞ is monotone non-

increasing in i A I ½a1; b1�, monotone nondecreasing in i A I ½a2; b2�, monotone

nonincreasing in i A I ½a3; b3�, and so on. Suppose nb 3. It follows from Lemma

4.2 that we find a; b A I ½1; n� 1� such that a < b and

fsða� 1Þb fsðaÞ; fsðaÞ < fsðaþ 1Þ

and

fsðb� 1Þa fsðbÞ; fsðbÞ > fsðbþ 1Þ;
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namely,

si0þða�1Þq b si0þaq � pL; si0þaq < si0þðaþ1Þq � pL

and

si0þðb�1Þq a si0þbq � pL; si0þbq > si0þðbþ1Þq � pL:

Let s ¼ Uðq; pÞðsÞ, namely, sj ¼ sj�q þ pL for all j A I ½i0 þ q; i0 þ ðmþ 1Þq�.
Then, we have

si0þaq ¼ si0þða�1Þq þ pLb si0þaq

si0þðaþ1Þq ¼ si0þaq þ pL < si0þðaþ1Þq;

and

si0þbq ¼ si0þðb�1Þq þ pLa si0þbq

si0þðbþ1Þq ¼ si0þbq þ pL > si0þðbþ1Þq:

This implies that TðsÞ crosses TðsÞ at least two times and one of their intersection

is not any endpoint of TðsÞ and TðsÞ. It contradicts to Proposition 2.2, so we

have na 2. r

Proof of Theorem 4.1. Suppose s ¼ ðsjÞj AZ in Ma is not with period ðq; pÞ.
Let u ¼ ðujÞj AZ, t ¼ ðtjÞj AZ in Ma such that u0 < s0 < t0, u and t are with period

ðq; pÞ and any b-straight line v ¼ ðvjÞj AZ in Ma with u0 < v0 < t0 is not with

period ðq; pÞ (see Proposition 2.3). Then, it follows that either limj!yjsj � ujj ¼ 0

and limj!�yjsj � tjj ¼ 0 or limj!yjsj � tjj ¼ 0 and limj!�yjsj � ujj ¼ 0. In fact,

if limj!yjsj � uj j0 0, for example, then s ¼ limn!�yUðq; pÞnðsÞ is a periodic

b-straight line with period ðq; pÞ which is between u and t, contradicting to the

choice of u and t. We assume without loss of generality that the former case

occurs. Let snnq ¼ s0 þ npL for each n and let sn ¼ ðsnj Þ0ajamq be a b-segment with

sn0 ¼ s0 and snnq ¼ s0 þ npL. Then, there exists a subsequence sm of sn which

converges to a b-ray w ¼ ðwjÞ0aj from w0 ¼ s0. It follows from the property of

the strip ½TðuÞ;TðtÞ� that either limj!yjwj � ujj ¼ 0 or limj!yjtj � wjj ¼ 0.

If limj!yjtj � wjj ¼ 0, then it follows from Lemma 2.6 that w is a co-b-ray

from s0 to t. Since s is the asymptote through s0 to t, this contradicts that the

unique co-b-ray from s0 to t is a sub-b-ray of s (see Proposition 2.8). So we

assume that limj!yjuj � wjj ¼ 0. Let fsnðiÞ ¼ sniq � uiq for i A I ½0; n�. Let I ½0; an�
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and I ½bn; n� be maximal monotone intervals in I ½0; n� for fsn . It follows from

Lemma 4.3 that fsnðiÞ is monotone nonincreasing in i A I ½0; an� and mono-

tone nondecreasing in i A I ½bn; n�, and, fsnðbnÞ ! 0 as n ! y. Set sn ¼
Uð�nq;�npÞðsnÞ. Then, sn0 ¼ s0 and sn�nq ¼ s0 � npL. Let w 0 be a b-ray which is a

limit of converging subsequence of sn. Then, w 0 is a co-b-ray to �u, since

fsnðbn � nÞ ! 0 as n ! y. However, this is impossible, since �s is the unique

co-b-ray to �u through s0 where �u ¼ ðujÞja0. This contradiction comes from the

original assumption in the way of our proof. r

5. Examples

In this section we show some examples of foliations of X by b-straight lines

which satisfy the parallel axiom.

Example 5.1. Let a be an arbitrary irrational number with 0 < a < 1.

Suppose there exists a j-invariant closed curve f not null-homotopic in W such that

aðxÞ ¼ aL for all x A f . Then, Ma ¼ f and it satisfies the parallel axiom.

This example was stated in [9], although the parallel axiom was not proved.

We give a proof here.

Proof. We have only to prove that any b-ray s ¼ ðsjÞjbi0
from si0 with slope

aðsÞ ¼ aL is a sub-b-ray of the unique b-straight line s 0 ¼ ðs 0j Þj AZ passing through

s 0i0 ¼ si0 in Ma. In order to prove this we assume without loss of generality that

0a si0 < L and s 0i0þ1 < si0þ1. Let q; p A Zþ with p=q > a. Let Dðq; pÞðti0Þ ¼
min Dðq; pÞ with 0a ti0 < L and t ¼ ðtjÞj AZ the minimal periodic b-straight line

with period ðq; pÞ. Then, the set fcðtjÞ j j A Zg consists of q points. Let u0 <

u1 < � � � < uq�1 with 0a ui < L for any i ¼ 0; . . . ; q� 1 be the parameters of such

points with respect to the boundary curve c. Let a number k be such that

uk a si0 < ukþ1 and let v ¼ ðvjÞj AZ and v 0 ¼ ðv 0j Þj AZ be minimal periodic b-straight

lines with period ðq; pÞ and with vi0 ¼ uk, v 0i0 ¼ ukþ1. Since p=q > a, the b-ray

TðsÞ is under Tðv 0Þ and intersects TðvÞ just once. There exists a subsequence

of v (resp., v 0) such that it converges to a b-straight line w ¼ ðwjÞj AZ (resp.,

w 0 ¼ ðw 0
j Þj AZ) with slope aL as p=q ! a. From the construction of w and w 0 it

follows that s and s 0 are in the strip ½TðwÞ;Tðw 0Þ�, and jw 0
j � wjj ! 0 as j ! y.

In particular, we see that sj � s 0j ! 0. Lemma 2.6 shows that s is a co-b-ray to s 0,

contradicting to Proposition 2.8. r
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Example 5.2. Let f be a j-invariant closed curve not null-homotopic in W

with slope aL ð0 < a < 1Þ. Let gn and hn be sequences of closed curves not null-

homotopic in W with slope aðgnÞ < aL and aðhnÞ > aL. If they converges to the

closed curve f , then Ma satisfies the parallel axiom.

Proof. We first prove that Ma ¼ f . Suppose for indirect proof that

Ma 0 f , namely, there exists a point x ¼ ðcðs0Þ; u0Þ A Ma with x B f . Then, there

exist b-straight lines v ¼ ðvjÞj AZ and w ¼ ðwjÞj AZ with v0 ¼ w0 ¼ s0 and slope

aL. Assume without loss of generality that v1 < w1. Let vn ¼ ðvnj Þj AZ (resp.,

wn ¼ ðwn
j Þj AZ) be the b-straight line corresponding to the unique point in gn

(resp., hn) with vn0 ¼ s0 (resp., wn
0 ¼ s0). Then, v

n
j < vj and wj < wn

j for all j > 0.

This means that limn!y vn 0 limn!y wn, contradicting to gn; hn ! f as n ! y.

We will prove that Ma satisfies the parallel axiom. As was seen in the above

Ma gives a foliation of X. Let s ¼ ðsjÞj AZ and t ¼ ðtjÞj AZ be in Ma with s0 < t0.

Let s and t correspond to points x and y in W, respectively. Let xn A hn (resp.,

yn A gn) be such that the first coordinates of xn (resp., yn) and x (resp., y) are

equal. Let sn ¼ ðsnj Þj AZ (resp., tn ¼ ðtnj Þj AZ) be configurations of xn (resp., yn) with

sn0 ¼ s0 (resp., tn0 ¼ t0). Then, s and t are b-straight lines in X. Since aðsnÞ > aL

(resp., aðtnÞ < aL), we see that sn intersects t (resp., tn intersects s), and sn ! s

(resp., tn ! t) as n ! y. It follows from Lemma 2.7 that s and t are b-

asymptotes to each other. The same argument is valid for the reversed b-straight

lines �x and �y. This completes the proof. r

Example 5.3. Suppose the slope function a in W is continuous. Let a be a

number with 0 < a < 1. If a�1ðaLÞ has no interior points, then, Ma satisfies the

parallel axiom. In particular, Ma satisfies the parallel axiom if a is an irrational

number.

Proof. Since the set Kn (resp., Nn) of all points x in W with aðxÞ < aL�
1=n (resp., aðxÞ > aLþ 1=n) is a j-invariant open set in W, it follows from

Birkho¤ ’s theorem (see [10]) that the boundary qKn (resp., Nn) is a j-invariant

closed curve gn (resp., hn) not null-homotopic in W with slope aðgnÞ ¼ aL� 1=n

(resp., aðhnÞ ¼ aLþ 1=n). Since a�1ðaLÞ has no interior points, we have

limn!y gn ¼ limn!y hn ¼: f . Example 5.2 shows that Ma ¼ f and it satisfies the

parallel axiom. r

Example 5.4. Suppose there exists a pole x A C. Then, Ma satisfies the

parallel axiom for any irrational number a with 0 < a < 1.
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Proof. Let q; p A Zþ with p=q < 1. Then, it follows from Lemma 2.11 that

there exists a foliation W of X whose b-straight lines are with slope pL=q. For

any irrational number a with 0 < a < 1 we have the foliation of X with slope aL

as the limit set of W as p=q ! a. Example 5.1 shows that Ma satisfies the parallel

axiom. r

6. Proofs

Proof of Theorem 1.1. Let Can be the sequence of convex sets as in Lemma

3.1 and let CL=2 be its limit set. Since CL=2 is contained in every diameter of C,

the set CL=2 consists of only one point O. Thus C is a circle with center O.

r

Let x ¼ ðxjÞj AZ be a billiard ball trajectory whose configuration is a b-straight

line s ¼ ðsjÞj AZ. Let x� ¼ ðx�j Þj AZ be its reversed billiard trajectory whose

configuration is a b-straight line s� ¼ ðs�j Þj AZ with s�0 ¼ s0. Then, it follows that

s�j ¼ jLþ s�j for all j A Z. Therefore, we have that aðx�Þ ¼ L� aðxÞ.

Proof of Corollary 1.2. Since limn!y fn ¼ limn!y f �n ¼: f , it follows

from að f �Þ ¼ L� að f Þ and Example 5.2 that að f Þ ¼ L=2 and ML=2 satisfies the

parallel axiom. Theorem 4.1, Proposition 2.5 and Theorem 1.1 prove Corollary

1.2. r

Proof of Corollary 1.3. Since the slope function a is continuous in W and

a�1ðL=2Þ has no interior points, we can find a sequence of closed curves in W as

in the assumption of Corollary 1.2. r

Proof of Corollary 1.4. It follows from Lemma 2.11 that there exists

a sequence of j-invariant closed curves not null-homotopic in W with slope

ðn� 2ÞL=2n. Theorem 1.1 proves Corollary 1.4. r
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