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Abstract. Kernel distribution estimators are not consistent near the boundary of its sup-
port. Several solutions to this problem have already been proposed. In this paper, we propose
a new kernel estimation of the cumulative distribution function for heavy tailed distribu-
tions based on the method of the transformation of the data set with a modification of the
Champernowne distribution and the generalized reflection method of boundary correction
for kernel distribution estimation. The asymptotic bias, variance and mean squared error of
the proposed estimator are given. Simulations are drawn to show that the proposed method
perform quite well when compared with other existing methods.

Résumé. Les estimateurs à noyau de la fonction de distribution ne sont pas consistants aux
bords de son support. Plusieurs solutions à ce problème ont déjà été proposées. Dans cet arti-
cle nous proposons un nouveau estimateur à noyau de la fonction de distribution pour les dis-
tributions à queue lourde basé sur la méthode de la transformation de l’ensemble de donneés
avec la distribution de Champernowne modifiée et la méthode de reflexion généralisée de
correction de l’effet de bord pour l’estimation à noyau de la distribution. Le biais asympto-
tique, la variance et l’erreur quadratique moyenne de l’estimateur proposé sont donnés. Des
simulations sont effectuées pour montrer que la méthode proposée se comporte assez bien
par rapport à d’autres méthodes existantes.
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1. Introduction

Let X be a real random variable (rv) with unknown continuous distribution function (cdf)
F and density function f . Estimating the cdf is a fundamental goal in many fields in which
analysts are interested in estimating the risk of occurrence of a particular event, for example,
risk quantification concentrates in the highest values of the domain of the distribution, where
sample information is scarce and it is, therefore, necessary to extrapolate the behaviour of the
cdf, even above the maximum observed. The most commonly used nonparametric estimate
of a cdf is the empirical distribution function. It is known that the empirical distribution
is an unbiased estimator of cdf. A nonparametric alternative for estimating the cdf is the
kernel estimator. This is more efficient than the empirical distribution but it is, nevertheless,
a biased estimator. Furthermore, both the empirical distribution and the kernel estimator
of the cdf are not consistent near the boundary of its support. Although there is a vast
literature on boundary correction in density estimation context, boundary effects problem
in distribution function context has been less studied, in particularly for heavy tailed dis-
tributions. In this paper, we develop a new kernel type estimator of the cdf that removes
boundary effects near the end points of the support.
Kernel smoothing has received a lot of attention in density estimation contex (see, e.g.,
Silverman, 1986, Wand and Jones, 1995). Specifically, let X1, ..., Xn be a sample of size
n ≥ 1 from the rv X. The popular nonparametric kernel estimator of f which is introduced
by Rosenblatt (1956) and Parzen (1962) and has the form

f̂n(x) =
1

nb

n∑
i=1

k

(
x−Xi

b

)
,

where b := bn is the bandwidth or the smoothing parameter (b −→ 0, as n −→ ∞) and k
is a nonnegative symmetric kernel function such that it is bounded and has finite support.
The kernel distribution function estimator F̂n(x) was proposed by Nadaraya (1964). Such an
estimator arises as an integral of the Parzen-Rosenblatt kernel density estimator (see Reiss,
1981 and Tenreiro, 2013) and is defined for x ∈ R, by

F̂n(x) =

∫ x

−∞
f̂n(t)dt =

1

n

n∑
i=1

K

(
x−Xi

b

)
, (1)

where

K(x) :=

∫ x

−∞
k(t)dt,

is the integrated kernel. However, several properties of F̂n(x) have been investigated, Az-

zalini (1981) have derived an asymptotic expression for the mean squared error of F̂n(x),
and determined also the asymptotically optimal smoothing parameter. Winter (1979) and

Yamato (1973) proved the uniform convergence of F̂n(x) to F (x) with probability one, the

asymptotic normality of F̂n(x) is established by Watson and Leadbetter (1964).

The problems of boundary effect for kernel estimators with compact supports is well-known
in regression and density function estimation and several modified estimators have been pro-
posed in the literature (see Gasser and Müller, 1979, Karunamuni and Alberts, 2005, Zhang
et al., 1999, and references therein). A similar correction would be made for improve the
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theoretical performance of the usual kernel distribution function estimator (1), at boundary.

More specifically the performance of F̂n(x) at boundary points, for x ∈ [0, b] ∪ (a − b, a],
0 < a ≤ ∞, however differs from the interior points due to so-called “boundary effects” that
occur in nonparametric curve estimation problems. The bias of F̂n(x) is of order o(b) instead

of o(b2) at boundary, while the variance of F̂n(x) is of order o(
b

n
). This fact can be clearly

seen by examining the behavior of F̂n inside the left boundary region [0, b]. Let x be a point

in the left boundary region, x ∈ [0, b]. The bias and variance of F̂n(x) at x = sb, 0 ≤ s ≤ 1
are

Bias
(
F̂n(x)

)
= bf (0)

∫ −s
−1

K(t)dt

+ b2f ′ (0)

{
s2

2
+ s

∫ −s
−1

K(t)dt−
∫ s

−1
tK(t)dt

}
+ o

(
b2
)
, (2)

and

V ar
(
F̂n(x)

)
=
F (x) (1− F (x))

n
+
b

n
f (0)

{∫ s

−1
K2(t)dt− s

}
+ o

(
b

n

)
. (3)

To remove those boundary effects in kernel distribution estimator, a variety of methods have
been developed in the literature. We briefly mention reflection of data (see, e.g., Silverman,
1986), transform of data (see, Marron and Ruppert (1994)), pseudo-data method (see Cowl-
ing and Hall, 1996) and also the boundary kernel method (Gasser et al., 1985 , Zhang and
Karunamuni, 2000). For more details about this techniques one refers to Karunamuni and
Alberts (2005), Karunamuni and Alberts (2005).

In this paper, we develop a new kernel type estimator for heavy tailed distributions functions
that improved boundary effects near the points at left boundary region, i.e., for x ∈ [0, b].
This estimator is based on a new transformation on boundary corrected kernel estimator
ideas of Koláček and Karunamuni (2009), Buch-Larsen et al. (2005), developed for boundary
correction in kernel density estimation. The basic technique of construction of the proposed
estimator is a kind of a generalized reflection method involving reflecting a transformation of
the observed data, using two transformations. First, a transformation g which is selected from
a parametric family, is applied to the data. Next, a transformation T is used. Specifically, our
transformation T is based the little-known Champernowne distribution function, produces
good results in all the studied situations and is easy to implement.

Theoretical properties of boundary kernel distribution estimator are introduced in Section
2. In Section 3 the proposed estimator is given and its bias and variance are computed. In
Section 4, simulation studies are done to see the performance of the proposed estimator, and
compare it with the ”usual” and ”boundary” distribution function estimators. The proofs
are postponed in Section 5.

2. Boundary kernel distribution estimator

In order to deal with the boundary effects that occur in nonparametric regression and density
function estimation, the use of boundary kernels is proposed and studied by authors such as
Gasser and Müller (1979), Karunamuni and Alberts (2005). Next we extend this approach
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to a distribution function estimator framework. This method of estimating combines the
transformation and the reflection methods, consisting of three steps:

Step 1. Transform the initial data X1, ..., Xn to g(X1), ..., g(Xn), where g is a nonnegative, con-
tinuous, and monotonically increasing function from [0,∞) to [0,∞).

Step 2. Reflect g(X1), ..., g(Xn) around the origin, so we get −g(X1), ...,−g(Xn).
Step 3. The estimator of F is based on the enlarged data sample −g(X1), ...,−g(Xn),

g(X1), ..., g(Xn). Then the boundary kernel distribution estimator of the distribution
function for x ∈ [0, b], is given by

Fn(x) =
1

n

n∑
i=1

{
K

(
x− g(Xi)

b

)
−K

(
−x+ g(Xi)

b

)}
, (4)

where K is a distribution of the kernel function k as in (1). This estimator generates a
class of boundary corrected estimators.

The bias and the variance of Fn are given by (Koláček and Karunamuni, 2009, page 22)
under some assumptions on f and g. For x = sb, 0 ≤ s ≤ 1, we have

Bias
(
Fn(x)

)
= b2

{
f ′ (0)

(
s2

2
+ 2s

∫ −s
−1

K(t)dt−
∫ s

−s
tK(t)dt

)
− f (0) g′′(0)

(∫ s

−1
(s− t)K(t)dt+

∫ −s
−1

(s+ t)K(t)dt

)}
+ o

(
b2
)
, (5)

and

V ar
(
Fn(x)

)
=
F (x) (1− F (x))

n
+
b

n
f (0)

{
2

∫ −s
−1

K2(t)dt− s

+

∫ s

−s
K2(t)dt− 2

∫ s

−1
K(t)K(t− 2s)dt

}
+ o

(
b

n

)
. (6)

Accordingly, the asymptotic mean squared error (AMSE) is

AMSE
(
Fn(x)

)
= b4

{
f ′ (0)

(
s2

2
+ 2s

∫ −s
−1

K(t)dt−
∫ s

−s
tK(t)dt

)
− f (0) g′′(0)

(∫ s

−1
(s− t)K(t)dt+

∫ −s
−1

(s+ t)K(t)dt

)}2

+
F (x) (1− F (x))

n
+
b

n
f (0)

{
2

∫ −s
−1

K2(t)dt− s

+

∫ s

−s
K2(t)dt− 2

∫ s

−1
K(t)K(t− 2s)dt

}
. (7)

Remark 1. Some discussion on the above choice of g and other various improvements
that can be made would be appropriate here. It is possible to construct functions g that
improve the bias under some additional conditions. For instance, if one examines the right
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hand side of bias expansion, then it is not difficult to see that the coefficient of b2 can
be made equal to zero if g is appropriately chosen, (see Koláček and Karunamuni, 2009).
Furthermore, functions satisfying conditions g−1(0) = 1 and g′(0) = 0 are easy to construct.
The trivial choice is g(y) = y, which represents the “classical” reflection method estimator.
The following transformation adapts well to various shapes of distributions:

g(y) = y +
1

2
Isy

2,

for y ≥ 0 and 0 ≤ s ≤ 1, where Is =
∫ −s
−1 K (t) dt.

Remark 2. It is easy to see that for x > b, the estimator (4) reduces to (1) , which is the
usual kernel distribution estimator. So (4) is a natural boundary continuation of the usual
estimator.

3. The proposed estimator

We now have all the necessary tools to introduce our estimator for heavy tailed cdf F , based
on ideas of Koláček and Karunamuni (2009), Buch-Larsen et al. (2005) and we insert a new
transformation. We shall assume that the unknown cdf F has support [0,∞). The transfor-
mation idea is based on transforming the original data by a new parametric transformation
T , chosen by modified Champernowne distribution function. The modified Champernowne
distribution is defined on x ≥ 0, and formulated as

T (x) =
(x+ c)

α − cα

(x+ c)
α

+ (M + c)− 2cα
, x ≥ 0,

with parameter α > 0, M > 0 and c ≥ 0, and its density is

t(x) =
α (x+ c)

α−1
((M + c)

α − cα)

((x+ c)
α

+ (M + c)− 2cα)
2 , x ≥ 0.

The modified Champernowne distribution converges to a Pareto distribution in the tail:

tα,M,c(x)→ α ((M + c)
α − cα)

xα+1
as x −→∞.

For more details about the modified Champernowne distribution see for instance Buch-
Larsen et al. (2005), Champernowne (1952).
The following steps describes the techniques using for obtain the proposed estimator of F.

Step 1. Estimate the parameters (α̂, M̂ , ĉ) of the modified Champernowne distribution to obtain
the transformation function. In the modified Champernowne distribution, we notice that
Tα,M,0(M) = 0.5. This suggests that M can be estimated as the empirical median of
the data set Lehmann (1991). Then to estimate the pair (α, c) which maximizes the log
likelihood function :

l(α, c) = n log(α) + n log((M + c)
α − cα) + (α− 1)

n∑
i=1

log(Xi + c)

− 2

n∑
i=1

log ((Xi + c) + (M + c)
α − 2cα) .
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Step 2. Transform the initial data X1, ..., Xn, with the transformation function,

Yi = T (Xi), i = 1, ..., n,

Y is a rv uniformly distributed in the interval (0, 1).
Step 3. Calculate the boundary kernel distribution estimator of the transformed data, Y1, ..., Yn :

H̃n (y) =
1

n

n∑
i=1

{
K

(
y − g(Yi)

b

)
−K

(
−y + g(Yi)

b

)}
, (8)

where g is the same transformation as in (4).
Step 4. The final form of our estimator of the original data set, X1, ..., Xn is defined as, for

x = sb, 0 ≤ s ≤ 1,
F̃n (x) := H̃n (T (x)) . (9)

Remark 3. The estimator F̃n (x) is a natural boundary continuation of the usual kernel
distribution estimator (1). Furthermore, it is important to remark here that the transform
kernel distribution estimator (9) is nonnegative (provided K is nonnegative).

The next theorem establishes the bias and variance of the proposed estimator (9) .

Theorem 1. Assume that f ′ (.) and g′′ (.) exist and are continuous. Further assume that
g−1 (0) = 1 and g′ (0) = 0, where g−1 is the inverse function of g, f ′ and g′′ are the first
and the second derivatives of f and g respectively. Then for x = sb, 0 ≤ s ≤ 1 the bias and
variance of F̃n(x) are respectively

Bias
(
F̃n (x)

)
= b2

{(
f

T ′

)′
(0)

1

T ′ (0)

(
s2

2
+ 2s

∫ −s
−1

K(t)dt−
∫ s

−s
tK(t)dt

)
− f (0)

T ′ (0)
g′′(0)

(∫ s

−1
(s− t)K(t)dt+

∫ −s
−1

(s+ t)K(t)dt

)}
+ o

(
b2
)
, (10)

and

V ar
(
F̃n (x)

)
=
F (x) (1− F (x))

n
+
b

n

f (0)

T ′ (0)

{
2

∫ −s
−1

K2(t)dt− s

+

∫ s

−s
K2(t)dt− 2

∫ s

−1
K(t)K(t− 2s)dt

}
+ o

(
b

n

)
. (11)

The asymptotic mean squared error is

AMSE
(
F̃n(x)

)
= b4

{(
f

T ′

)′
(0)

1

T ′ (x)

(
s2

2
+ 2s

∫ −s
−1

K(t)dt−
∫ s

−s
tK(t)dt

)

− f (0)

T ′ (0)
g′′(0)

(∫ s

−1
(s− t)K(t)dt+

∫ −s
−1

(s+ t)K(t)dt

)}2

+
F (x) (1− F (x))

n
+
b

n

f (0)

T ′ (0)

{
2

∫ −s
−1

K2(t)dt− s

+

∫ s

−s
K2(t)dt− 2

∫ s

−1
K(t)K(t− 2s)dt

}
. (12)
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Remark 4. By comparing expressions (2), (3), (10), and (11) we can see that both bias
and variance are of the same order at boundary points. So the proposed estimator improved
boundary effects in kernel distribution estimator since the bias at boundary points is of the
same order as the bias at the interior points.

4. Simulation Studies

To compare the performance of our proposed estimator F̃n against the boundary kernel
estimator Fn and the usual F̂n estimator described by Nadaraya (1964), we made some
simulation studies. We simulate data from three different heavy tailed distributions : Pareto
type I, Pareto type II and Pareto type III. The distributions and the chosen parameters are
listed in table 1.

Distribution F (x) for x ≥ 0 Parameters

Pareto type I 1− (1 + x/σ)−α (σ, α) = (1, 1)

Pareto type II 1−
(

1 +
x

σ

)−α
(σ, α) = (1, 2)

Pareto type III 1−
(

1 +
(x
σ

) 1
γ

)−1

(σ, γ) = (0.7, 1)

Table 1. Distributions used in the simulation studies.

We measure the performance of the estimators by the error measures AMSE and AMISE.
The simulation is based on 1000 replications. In each replication the sample sizes: n = 50,
n = 200 and n = 400 was used. For the kernel, we choosing the Epanechnikov kernel
k(t) = 3/4(1 − t2)I(|t| ≤ 1), where I(.) denotes the indicator function, has been observed
in Silverman (1986), that this kernel possesses the maximum efficiency, in the sense that
it produces the minimal AMISE. The choice of bandwidth is very important for the good
performance of any kernel estimator. In all cases, we select the asymptotic optimal global
bandwidth of the estimator Fn by minimizing the AMISE, because this is much more likely
to be used in application and gave reliably good results. We have

bopt =

(
2f (0)A(s)

5 [f ′(0)B(s)− f (0) g′′ (0)C(s)]
2

)1/3

n−1/3,

where

A(s) :=

(
2

∫ s

−1
K (t)K (t− 2s) dt+ s− 2

∫ −s
−1

K2 (t) dt−
∫ s

−s
K2 (t) dt

)
, 0 ≤ s ≤ 1,

B(s) :=

(
s2

2
+ 2s

∫ −s
−1

K(t)dt−
∫ s

−s
tK(t)dt

)
, 0 ≤ s ≤ 1,

and

C(s) :=

(∫ s

−1
(s− t)K(t)dt+

∫ −s
−1

(s+ t)K(t)dt

)
, 0 ≤ s ≤ 1.

The comparison is based on data simulated from the three distributions described in table 1.
Firstly, for each value of s ∈ {0.35, 0.45, 0.55} we have calculated the absolute bias, variance
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and the AMSE values of the three estimators and have displayed the results in tables 2, 3
and 4. Secondly, for different values of s we calculated the AMISE values for each estimator
over the whole boundary region [0, b]. The values of AMISE are tabulated in table 5. The
comparison show that the values of the AMSE and the AMISE were smallest in case of the
proposed estimator, this is due to the fact that the proposed estimator is locally adaptive.

Pareto type I Pareto type II Pareto type III

Est s .35 .45 .55 .35 .45 .55 .35 .45 .55

F̃n 6.3049 6.3733 6.6385 14.830 16.289 17.605 4.1028 4.3000 4.5112

|Bias| Fn 26.904 28.668 31.311 28.840 31.802 34.524 26.783 28.780 31.482

F̂n 38.987 48.741 54.245 38.659 45.524 53.794 39.962 48.336 48.841

F̃n 0.1042 0.2428 0.1299 0.2403 0.2759 0.1587 0.1183 0.3229 0.2383

V ar Fn 0.3714 0.5461 0.4918 0.4391 0.5249 0.4619 0.3802 0.5384 0.4985

F̂n 0.9980 1.1071 1.3112 1.0359 1.3299 1.5280 0.9695 1.1331 1.3767

F̃n 0.1439 0.2834 0.1740 0.4602 0.5412 0.4686 0.1352 0.3414 0.2587

AMSE Fn 1.0952 1.3679 1.4722 1.2709 1.5363 1.6539 1.0976 1.3667 1.4896

F̂n 2.5180 3.4828 4.2537 2.5305 3.4023 4.4219 2.5665 3.4695 3.7622

Table 2. Bias, Var and AMSE Values Over the Boundary Region for sample size n=50.
Results are re-scaled by the factor 0.001.

Pareto type I Pareto type II Pareto type III

Est s .35 .45 .55 .35 .45 .55 .35 .45 .55

F̃n 2.0016 2.0856 2.1298 5.0417 5.3146 5.8175 0.8145 0.8062 0.8240

|Bias| Fn 10.489 11.443 12.596 11.811 12.531 13.786 10.623 11.250 12.468

F̂n 13.168 18.879 24.637 13.276 19.884 32.944 15.899 21.445 23.283

F̃n 0.0611 0.0929 0.1029 0.0533 0.0879 0.0935 0.0593 0.1022 0.1247

V ar Fn 0.0931 0.1309 0.1490 0.1025 0.1452 0.1647 0.0961 0.1344 0.1489

F̂n 0.1719 0.2346 0.2498 0.2329 0.2664 0.2778 0.1932 0.2092 0.2640

F̃n 0.0651 0.0972 0.1075 0.0787 0.1161 0.1273 0.0600 0.1028 0.1253

AMSE Fn 0.2031 0.2618 0.3077 0.2420 0.3022 0.3547 0.2089 0.2609 0.3043

F̂n 0.3453 0.5910 0.8568 0.4091 0.6617 1.3631 0.4459 0.6691 0.8061

Table 3. Bias, Var and AMSE Values Over the Boundary Region for sample size n=200.
Results are re-scaled by the factor 0.001.

4.1. Discussion and conclusion

For Pareto type I distribution, close examination of tables of AMSE clear by shows that,
the proposed estimator F̃n and the boundary kernel distribution estimator Fn show the best
performance, but the estimator F̃n out performs the estimator Fn for all n. Also, in terms of
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Pareto type I Pareto type II Pareto type III

Est s .35 .45 .55 .35 .45 .55 .35 .45 .55

F̃n 0.9937 1.0213 1.0449 2.5560 2.7109 2.9718 0.7311 0.7523 0.7888

|Bias| Fn 6.5212 7.2401 7.9143 7.2751 7.7788 8.5954 6.6332 7.1435 7.9339

F̂n 8.7913 10.2731 16.296 11.057 17.428 20.437 7.4034 12.070 14.831

F̃n 0.0336 0.0450 0.0629 0.0255 0.0401 0.0407 0.0281 0.0422 0.0357

V ar Fn 0.0424 0.0559 0.0759 0.0512 0.0705 0.0790 0.0448 0.0630 0.0644

F̂n 0.0719 0.1025 0.1113 0.0926 0.1066 0.1420 0.0768 0.0956 0.1193

F̃n 0.0345 0.0461 0.0640 0.0320 0.0474 0.0496 0.0286 0.0428 0.0363

AMSE Fn 0.0849 0.1084 0.1386 0.1042 0.1310 0.1529 0.0888 0.1141 0.1274

F̂n 0.1492 0.2081 0.3769 0.2149 0.4103 0.5597 0.1316 0.2413 0.3393

Table 4. Bais, Var and AMSE Values Over the Boundary Region for sample size n=400.
Results are re-scaled by the factor 0.001.

Pareto type I Pareto type II Pareto type III

Est s .35 .45 .55 .35 .45 .55 .35 .45 .55

F̃n 0.2015 0.1062 0.1014 0.2353 0.1148 0.0317 0.3175 0.2504 0.1805

n = 50 Fn 0.5882 0.5437 0.4142 0.4024 0.3262 0.2826 0.3998 0.3456 0.2947

F̂n 1.3379 1.2503 1.3200 0.7429 0.7232 0.6875 0.8923 0.7979 0.8473

F̃n 0.0405 0.0241 0.0101 0.0262 0.0178 0.0065 0.0450 0.0396 0.0337

n = 200 Fn 0.0748 0.0657 0.0619 0.0523 0.0468 0.0432 0.0495 0.0444 0.0398

F̂n 0.2028 0.1927 0.1799 0.1281 0.1045 0.0995 0.1542 0.1249 0.1216

F̃n 0.0160 0.0103 0.0072 0.0088 0.0036 0.0078 0.0157 0.0133 0.0108

n = 400 Fn 0.0258 0.0225 0.0229 0.0195 0.0157 0.0135 0.0177 0.0156 0.0133

F̂n 0.0806 0.0729 0.0639 0.0512 0.0374 0.0383 0.0509 0.0469 0.0453

Table 5. AIMSE Values Over the Boundary Region. Results are re-scaled by the factor
0.001.

AMISE for each sample size, the AMISE of the estimator F̃n is smaller than that of Fn.
the performance of usual kernel distribution estimator F̂n is worse than the performance
of the estimator F̃n. For the Pareto type II distribution, much the best, in terms of both
AMSE and AMISE, is the proposed estimator F̃n. Next much the worst, although with
performance, is the usual kernel distribution estimator F̂n. For Pareto type III distribution,
the estimator F̂n also is overall clearly the worst. The proposed estimator and boundary
kernel distribution estimator have rather different performances in this case. Clearly best in
terms of AMSE and AMISE terms is the estimator F̃n.

The main results of our simulation studies is that the proposed estimator is recommended to
improved boundary effect for heavy tailed distributions. We see that overall F̃n is the best
choice among the three estimators considered. Indeed, the performance of boundary kernel
distribution estimator Fn is very disappointing, and this estimator can not be recommended
for use. The usual kernel distribution estimator F̂n is clearly the worst estimator for the three
heavy tailed distribution considered. This is clearly due to the boundary effect. In conclusion,
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the proposed method for estimating the cdf that is suitable for heavy-tailed distribution and
improves the classical kernel estimator and boundary corrected kernel estimator of cdf.

5. Proofs

Proof (of (2)). For x = sb, 0 ≤ s ≤ 1, using the property K(t) = 1 −K(−t), −s ≤ t ≤ s,
and a Taylor expansion of order 1. First note that

Bias
(
F̂n(x)

)
= EF̂n(x)− F (x),

then,

EF̂n(x) = EK

(
x−Xi

b

)
=

∫ ∞
0

K

(
x− z
b

)
f(z)dz.

To calculate the mean of F̂n, we used the change of variable t = (x− z)/b, we have

EF̂n(x) = b

∫ s

−1
K (t) f((s− t)b)dt

= b

∫ −s
−1

K (t) f((s− t)b)dt+ b

∫ s

−s
(1−K (−t)) f((s− t)b)dt

= b

∫ −s
−1

K (t) f((s− t)b)dt+ F (2sb)− b
∫ s

−s
K (t) f((s+ t)b)dt.

Using a Taylor expansion of order 2 on the function F (.) we have

F (2sb) = F (0) + f(0)2sb+ f ′(0)2s2b2 + o
(
b2
)
.

By the existence and continuity of f ′(.) near 0, we obtain for x = sb

F (0) = F (x)− f(x)sb+
1

2
f ′ (x) s2b2 + o(b2)

f(x) = f(0) + f ′ (0) sb+ o(b)
f ′ (x) = f ′ (0) + o(1).

Therefore,

F (2sb) = F (x) + f(0)sb+
3

2
f ′ (0) s2b2 + o

(
b2
)
.

We obtain

Bias
(
F̂n(x)

)
= b

∫ −s
−1

K (t) {f(0) + f ′ (0) (s− t)b+ o(b)} dt+ f(0)sb+
3

2
f ′ (0) s2b2 + o

(
b2
)

−b
∫ s

−s
K (t) {f(0) + f ′ (0) (s+ t)b+ o (b)} dt

= b

{
f(0)s+ f(0)

∫ −s
−1

K (t) dt− f(0)

∫ s

−s
K (t) dt

}
+ b2

{
3

2
f ′ (0) s2

+f ′ (0)

∫ −s
−1

(s− t)K (t) dt− f ′ (0)

∫ s

−s
(s+ t)K (t) dt

}
+ o

(
b2
)
.
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From the symmetry of k, one can write K(x) = 1/2 + r(x), where r(x) = −r(−x) for all x
such that |x| ≤ 1. Thus

∫ s
−sK(t)dt = s and after some algebra we obtain the bias expression

as

Bias
(
F̂n(x)

)
= bf(0)

∫ −s
−1

K (t) dt

+ b2f ′(0)

{
s2

2
+ s

∫ −s
−1

K(t)dt−
∫ s

−1
tK(t)dt

}
+ o

(
b2
)
.

This completes the proof of expression (2).

Proof (of (3)). Observe that for x = sb, 0 ≤ s ≤ 1, we have

V ar
(
F̂n(x)

)
=

1

n2
V ar

{
n∑
i=1

K

(
x−Xi

b

)}

=
1

n
E

{
K

(
x−Xi

b

)}2

− 1

n

{
E

{
K

(
x−Xi

b

)}}2

=: I1 − I2,

where

I1 =
1

n
E

{
K

(
x−Xi

b

)}2

=
1

n

∫ ∞
0

K2

(
x− z
b

)
f(z)dz

=
b

n

∫ s

−1
K2 (t) f((s− t)b)dt

=
b

n

∫ −s
−1

K2 (t) f((s− t)b)dt+
b

n

∫ s

−s
K2 (t) f((s− t)b)dt.

=: I11 + I12.

It can be shown that

I11 =
b

n

∫ −s
−1

K2 (t) f((s− t)b)dt

=
b

n

∫ −s
−1

K2 (t) {f(0) + o(1)} dt.
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We use the identity K(t) = 1−K(−t) and similarly as in the last proof we obtain I12

I12 =
b

n

∫ s

−s
K2 (t) f((s− t)b)dt

=
b

n

∫ s

−s

(
1− 2K(−t) +K2 (−t)

)
f((s− t)b)dt

=
b

n

∫ s

−s
f((s− t)b)dt− 2

b

n

∫ s

−s
K (t) f((s+ t)b)dt+

b

n

∫ s

−s
K2 (t) f((s+ t)b)dt

=
F (2sb)

n
− 2

b

n

∫ s

−s
K (t) {f(0) + o(1)} dt+

b

n

∫ s

−s
K2 (t) {f(0) + o(1)} dt

=
F (x)

n
− f(0)s

b

n
+
b

n
f(0)

∫ s

−s
K2 (t) dt+ o(

b

n
),

and now combine I11 and I12 to obtain I1. With the expression obtained for the bias we get
the expression for I2 as

I2 =
1

n

{
E

{
K

(
x−Xi

b

)}}2

=
1

n

{
EF̂n(x)

}2

=
1

n
F 2(x) + o(

b

n
).

Finally, we obtain the variance of the estimator F̂n(x) as

V ar
(
F̂n(x)

)
= I1 − I2

=
F (x)

n
+
b

n
f(0)

{∫ s

−1
K2 (t) dt− s

}
− 1

n
F 2(x) + o(

b

n
)

=
F (x) (1− F (x))

n
+
b

n
f(0)

{∫ s

−1
K2 (t) dt− s

}
+ o(

b

n
).

This completes the proof of expression (3).

Proof (of Theorem 1). We have X1, ..., Xn are independent identically distributed rv’s
with density f and cdf F . the Transform kernel distribution estimator of F (x) is

F̃n (x) =
1

n

n∑
i=1

{
K

(
T (x)− g(T (Xi))

b

)
−K

(
−T (x) + g(T (Xi))

b

)}
,

where T (·) is the transformation function. Let the transformed variable Yi = T (Xi), have
distribution H:

H (y) = F
(
T−1 (T (x))

)
= F (x) ,

and the density of H (y) as

h (y) =
f
(
T−1 (y)

)
T ′ (T−1 (y))

,
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so the boundary kernel distribution estimator of H (y) is

H̃n (y) =
1

n

n∑
i=1

{
K

(
y − g(Yi)

b

)
−K

(
−y + g(Yi)

b

)}
.

The transform kernel distribution estimator can be expressed by :

F̃n (x) = F̃n
(
T−1 (T (x))

)
= H̃n (y) ,

implying the bias of the transform kernel distribution estimator is

Bias
(
F̃n (x)

)
= Bias

(
F̃n
(
T−1 (T (x))

))
= Bias

(
H̃n (T (x))

)
= b2

{
h′(T (0))

(
s2

2
+ 2s

∫ −s
−1

K(t)dt−
∫ s

−s
tK(t)dt

)
− h(T (0))g′′(0)

(∫ s

−1
(s− t)K(t)dt+

∫ −s
−1

(s+ t)K(t)dt

)}
+ o

(
b2
)
,

note that

h (T (x)) =
f (x)

T ′ (x)
, h′(T (x)) =

(
f (x)

T ′ (x)

)′
1

T ′ (x)
,

then

h (T (0)) =
f (0)

T ′ (0)
, h′(T (0)) =

(
f

T ′

)′
(0)

1

T ′ (0)
,

which are used to find the mean of the transform kernel distribution estimator

Bias
(
F̃n (x)

)
= b2

{(
f

T ′

)′
(0)

1

T ′ (0)

(
s2

2
+ 2s

∫ −s
−1

K(t)dt−
∫ s

−s
tK(t)dt

)
− f (0)

T ′ (0)
g′′(0)

(∫ s

−1
(s− t)K(t)dt+

∫ −s
−1

(s+ t)K(t)dt

)}
+ o

(
b2
)
.

By the same idea we calculated the variance

V ar
(
F̃n (x)

)
= V ar

(
F̃n
(
T−1 (T (x))

))
= V ar

(
H̃n (T (x))

)
=
H (y) (1−H (y))

n
+
b

n
h(T (0))

{
2

∫ −s
−1

K2(t)dt− s

+

∫ s

−s
K2(t)dt− 2

∫ s

−1
K(t)K(t− 2s)dt

}
+ o

(
b

n

)
.

=
F (x) (1− F (x))

n
+
b

n

f (0)

T ′ (0)

{
2

∫ −s
−1

K2(t)dt− s

+

∫ s

−s
K2(t)dt− 2

∫ s

−1
K(t)K(t− 2s)dt

}
+ o

(
b

n

)
.

This completes the proof of Theorem 1.
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