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Abstract. We study the theoretical misclassification probability of linear and quadratic
classifiers and examine the performance of these classifiers under distributional variations
in theory and using simulation. We derive expression for Bayes errors for some competing
distributions from the same family under location shift.

Résumé. Nous étudions les probabilités théoriques de malclassification de méthodes de clas-
sification linéaires et quadratiques. Ensuite, nous examinons les performance de ces méthodes
de classifications selon différentes distributions, sur le plan théorique en les étayant avec des
études de simulations. Nous exprimons l’erreur de Bayes pour des distributions de même
famille en compétition selon le changement du paramètre de centralisation.
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1. Introduction

Classification is aimed at getting maximum information about separability or distinction
among classes or populations and then assigns each observation to one of these populations
on the basis of a vector of measurements or features. It has many important applications in
different fields, such as disease diagnosis in medical sciences, risk identification in finance,
admission of prospective students into university based on a battery of tests among others.
Anderson (1984) described classification problem as the problem of statistical decision mak-
ing. A good classification procedure is the one that classifies observations from unknown
populations correctly. Suppose competing populations have well defined distributions which
are characterised by some location and scale parameters. Classification of observations to
any of these populations can be viewed from this characterisation in terms of shift in location
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and scale of each of the population distributions. Competing populations may have either lo-
cation shift, scale shift or both (location-scale shift). Consider populations πj , j = 1, 2, . . . , J
from multivariate distributions, Fj having probability density functions fj with prior proba-
bilities pj . Bayes rule, proposed in Welch (1939), is to assign each observation x to population
πj , whose posterior probability P (πj |x) is the highest. It assigns x to population π1, in a
two class problem, if

f1(x)p1
f2(x)p2

> 1

and to π2 otherwise. Wald (1944) argued that if each population has a cost, C(i|j) associated
with misclassifying x whose true population is πj into πi, then assign observations to the class
or population that has the highest expected cost of misclassification. Welch (1939) showed
that for any two normally distributed populations, the ratio of log likelihood functions of
the two populations is the theoretical basis for building discriminant function that best
classifies new individuals to any of the two populations given that the prior probabilities of
the populations are known.

For two competing populations whose principal difference is in location, Fisher (1936) de-
scribed the separation between these two populations to be ratio of variance between the
populations to variance within the populations. This postulation leads to discriminant anal-
ysis, called Fisher’s discriminant analysis. Suppose there are two populations from the same
family of multivariate distributions to which observations can be classified. If these pop-
ulations are normally distributed and have the same covariance matrix, the discriminant
analysis is referred to as linear discriminant analysis (LDA). Similarly, if these populations
are normally distributed but have different covariance matrices, the optimal rule is non-
linear and referred to as quadratic discriminant analysis (QDA). Welch (1939) and Wald
(1944) showed that linear discriminant function has optimal properties for two group classifi-
cation if the populations are multivariate normally distributed. Krzanowski (1977) reviewed
the performance of Fisher’s linear discriminant function when underlying assumptions are
violated. Many classification methods, both parametric and non-parametric, have been com-
pared with LDA and QDA under normality and non-normality which include Ghosh and
Chaudhuri (2005), Kim et al. (2011) and Li et al. (2012) among others.

One way of evaluating the performance of a classification rule is to calculate its misclassifi-
cation probabilities. One can define the total probability of misclassification (∆) as

∆ = p1

∫
R2

f1(x)dx + p2

∫
R1

f2(x)dx,

where

R1 =

{
x ∈ Rd :

f1(x)

f2(x)
≥ c(1|2)p2
c(2|1)p1

}
and R2 =

{
x ∈ Rd :

f1(x)

f2(x)
<
c(1|2)p2
c(2|1)p1

}
.

The classification regions R1 and R2 can be constructed only when the distributions F and
G are fully known (Makinde and Chakraborty, 2015). This will rarely be the case, we have
to work with the empirical versions of the classification regions and calculate the error rates.
In this paper, we study the misclassification probabilities of linear and quadratic classifiers
with emphasis to multivariate normal distributions and deduce the mathematical expression
for Bayes error for some multivariate distributions under suitable conditions.
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2. Classification Rules Based on Normality

We consider J populations having density function of the form

fj(x) = g((x− µj)
>Σ−1j (x− µj)), x ∈ Rd,

j = 1, . . . , J , for some strictly decreasing, continuous, non-negative scalar function g, where
µj and Σj are mean vector and covariance matrix of jth population respectively. Assuming
normality, equal prior probabilities and equal cost of misclassification for the J populations,
Bayes rule can be defined as

assign x to πk if Dk(x,µk,Σk) = min
1≤j≤J

Dj(x,µj ,Σj) (1)

where Dj(x,µj ,Σj) = (x−µj)
>Σ−1j (x−µj) + log |Σj |. This classification rule is known as

quadratic discriminant analysis(QDA). It is linear if Σ1 = Σ2 = . . . = ΣJ . Define Rk, the
region of classification into kth population, as

Rk = {X : Dk(X,µk,Σk) = min
1≤j≤J

Dj(X,µj ,Σj}

Then the probability of misclassification of the optimal rule in (1) is

∆ =

J∑
j=1

pjP (x /∈ Rj |x ∈ πj) . (2)

A good classification method is the one that minimises ∆.
Let us consider two classes for simplicity. Suppose πi ∼ N(µi,Σi), i = 1, 2. The classification
in (1) can be expressed as

assign x to π1 if (µ1 − µ2)>Σ−1(µ1 + µ2 − 2x) > 0 (3)

if For Σ1 = Σ2 = Σ. Observe that if Σ is a constant multiple of identity matrix, (3) is
the generalisation of component-wise centroid classifier in (see, Hall et al., 2009, page 1598).
Then, the probability of misclassification of x into either π1 or π2 is ∆ = Φ

(−c0
2

)
, where

c20 = (µ1−µ2)>Σ−1(µ1−µ2) and Φ is the cumulative distribution function of the standard
normal distribution. See Johnson and Wichern (2007) for further discussion.

To illustrate the probability of misclassification, let π1 and π2 be two d-variate normal
populations with mean vector and covariance matrix, (µ1,Σ1) and (µ2,Σ2) respectively.
Assume that the prior probabilities of π1 and π2 are equal. Consider µ>1 =

(
0, 0
)
, µ>2 =

(
δ, 0
)

and Σ1 = Σ2 = I2. The total probability of misclassification associated with LDA is a
function of non-centrality parameter δ and is obtained as

∆ = Φ

(
−δ

2

)
.

When covariance matrix of a population is a scalar multiple of the other. The following
results hold:

Theorem 1. Let F and G be two competing distributions with prior probabilities p1 and

p2 respectively. Suppose F ≡ N(µ1,Σ1) and G ≡ N(µ2,Σ2). Take µ1 = µ2 =
(
0, 0
)>

,
Σ1 = I2,Σ2 = σ2I2 for σ 6= 1 and p1 = p2 = 0.5. Then
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1. for σ2 > 1

∆ =
1

2

[
1− F2

(
2σ2

σ2 − 1
loge σ

2

)
+ F2

(
2

σ2 − 1
loge σ

2

)]
where F2(.) denotes distribution function of central Chi-square distribution with 2 degrees
of freedom.

2. for 0 < σ2 < 1

∆ =
1

2

[
1 + F2

(
2σ2

σ2 − 1
loge σ

2

)
− F2

(
2

σ2 − 1
loge σ

2

)]
Proof of Theorem 1: For x ∈ Rd, if x ∼ N(µ1,Σ1), x>x ∼ χ2

d and if x ∼ N(µ2,Σ2),
x>x ∼ σ2χ2

d. f1(x)/f2(x) ≥ 1 implies (x − µ1)>Σ−11 (x − µ1) − (x − µ2)>Σ−12 (x − µ2) ≤
loge |Σ2|− loge |Σ1|. This gives

(
σ2−1
σ2

)
x>x ≤ 2 loge(σ

2). For σ2 > 0, we consider two cases.

These are σ2 > 1 and σ2 < 1.

1. When σ2 > 1, the region of classification is

R1 : x>x ≤ 2σ2

σ2 − 1
loge σ

2 and R2 : x>x >
2σ2

σ2 − 1
loge σ

2.

Define p1P (2|1) as probability that x comes from population π1 but eventually falls in
the region of classification into population π2 and p2P (1|2) as probability that x comes
from population π2 but eventually falls in the region of classification into population π1.
Then

P (2|1) = P

(
x>x >

2σ2

σ2 − 1
loge σ

2
∣∣∣x>x ∼ χ2

2

)
= 1− F2

(
2σ2

σ2 − 1
loge σ

2

)
,

P (1|2) = P

(
x>x ≤ 2σ2

σ2 − 1
loge σ

2
∣∣∣x>x ∼ σ2χ2

2

)
= F2

(
2

σ2 − 1
loge σ

2

)
and ∆, probability of misclassification is

∆ =
1

2

[
1− F2

(
2σ2

σ2 − 1
loge σ

2

)
+ F2

(
2

σ2 − 1
loge σ

2

)]
.

2. When σ2 < 1, the region of classification is

R1 : x>x ≥ 2σ2

σ2 − 1
loge σ

2 and R2 : x>x <
2σ2

σ2 − 1
loge σ

2.

P (2|1) = P

(
x>x <

2σ2

σ2 − 1
loge σ

2
∣∣∣x>x ∼ χ2

2

)
= F2

(
2σ2

σ2 − 1
loge σ

2

)
P (1|2) = P

(
x>x ≥ 2σ2

σ2 − 1
loge σ

2
∣∣∣x>x ∼ σ2χ2

2

)
= 1− F2

(
2

σ2 − 1
loge σ

2

)
.

The probability of misclassification is

∆ =
1

2

[
1 + F2

(
2σ2

σ2 − 1
loge σ

2

)
− F2

(
2

σ2 − 1
loge σ

2

)]
.

�
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The results in Theorem 1 are compared with empirical results based on simulation. The
procedure for the simulation follows from Section 3. The mean vectors and covariance ma-

trices of competing distributions are taken to be µ1 = µ2 =
(
0, 0
)>

, Σ1 = I2,Σ2 = σ2I2 for
σ 6= 1. The numerical results are presented in Figure 1(b).

Theorem 2. Suppose the conditions of Theorem 1 hold and take µ1 =

(
0
0

)
,µ2 =

(
δ
0

)
and Σ1 = I2,Σ2 = σ2I2, then

∆ =

{
p1P (χ2

f1
> k

c1
) + p2P (χ2

f2
< k

c2
), for σ2 > 1

p1P (χ2
f1
< − k

c1
) + p2P (χ2

f2
> − k

c2
), for σ2 < 1

where

k = loge σ
2 +

1

4

δ2(σ2 + 1)

σ2 − 1
, ci =

σ2
i

µi
, fi =

µ2
i

ci
, i = 1, 2,

Σ = I2 + σ2I2, A = I2, υ = Σ−
1
2 (µ1 − µ2),

U2 = υ>Συ = (µ1 − µ2)>(µ1 − µ2) = δ2,

µ1 =
1

2σ2

{ 1
2 [1 + σ2]δ2

|σ2 − 1|
+ 2|σ2 − 1|

}
, µ2 =

1

2

{ 1
2σ

2[1 + σ2]δ2

|σ2 − 1|
+ 2|σ2 − 1|

}
,

σ2
1 =

1

σ2

{1

2
[1 + σ2]δ2 + (σ2 − 1)2

}
, σ2

2 =
1

2
σ2[1 + σ2]δ2 + (σ2 − 1)2.

The proof of Theorem 2 follows from Gilbert (1969).

3. Numerical Examples

As illustration of actual error rates of LDA and QDA, we present a small simulation study.
Let us consider the two populations π1 and π2 to be bivariate spherically symmetric with
centre of symmetries µ1 = (0, 0)> and µ2 = (δ, 0)>, respectively. The sample sizes for
X1, . . . ,Xn from π1 and Y1, . . . ,Ym from π2 are taken to be n = m = 100. We simulate
a new random sample Z1, . . . ,Zm from π1 and Zm+1, . . . ,Z2m from π2 with m = 100 and
estimate the actual error rates by the proportion of misclassification in Z1, . . . ,Z2m. The
simulation size is 1000.

Figure 1 presents the comparison between results from theory and simulation based on
information above for misclassification probabilities of linear and quadratic classifiers under
location shift and scale shift, as described in Section 2. It is clearly seen that the sample
estimate of probability of misclassification is a good approximation for the population version
of it. As expected, the error rate is nearly 0.5 when δ = 0 and it decreases as δ goes away from
0 and the separation between the populations increases for location shift case. Consider the
nonlinear case where µ1 = (0, 0)T and µ2 = (δ, 0)T , Σ1 = I2 and Σ2 = σ2I2. Figure 2 shows
that error rate is affected by the difference in location and scale parameters of competing
populations. The error rate is smaller with σ−2 than σ2, given that σ2 > 1. It can be
ascertained from figure 2 that the error rate for σ2 and σ−2 at the medians of symmetric
distributions are the same. Also, misclassification rate decreases as σ2 goes farther from 1.
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Fig. 1: Misclassification probability: Theoretical versus Simulation.

Theoretically, LDA and QDA can not used for discriminating between distributions whose
first and second moments do not exist. Furthermore, the presence of an outlying training
sample point will affect the performance of LDA and QDA. Hence, both linear and quadratic
classifiers are not robust against outliers and extreme values. However, Hubert and Van
Driessen (2004) proposed replacing the estimates of µ1, µ2, Σ1 and Σ2 in Equation(1) by
reweighted minimum covariance determinant (MCD) estimator of multivariate location and
scatter based on FAST-MCD algorithm of Rousseeuw and Van Driessen (1999).

4. Theoretical Bayes Risk - Location Shift

We want to derive misclassification probability associated with Bayes rule for some compet-
ing distributions with location shift in a two-class problem. The distributions are multivariate
t distribution with k degree of freedom and multivariate Laplace distribution. For multivari-
ate normal distributions, the probability of misclassification associated with Bayes rule is
discussed in Section 2 above.

Multivariate t distributions

Let Z ∼ Nd(0,Σ) and U ∼ χ2
k be independent, where k is the degree of freedom of Chi-

squared distribution. Define X =

(
Z
√

k
U

)
+ µ. The distribution of X is multivariate t

distribution with k degree of freedom, denoted by t(k,µ,Σ). The probability density function
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Fig. 2: Plot of error rate for location-scale shift problem using QDA.

of x is

f(x) = (kπ)−
d
2

Γ(k+d2 )

Γ(k2 )
|Σ|− 1

2 {1 +
1

k
(x− µ)>Σ−1(x− µ)}−(

k+d
2 ). (4)

Suppose π1 has distribution t(k,µ1,Σ) with probability density function f1(x) and π2 has
distribution t(k,µ2,Σ) with probability density function f2(x). Under the assumption of
equal prior probabilities, Bayes rule is to assign x to π1 if f1(x) > f2(x), which is equivalent
to

assign x to π1 if (x− µ1)>Σ−1(x− µ1) < (x− µ2)>Σ−1(x− µ2).

This holds since the competing distributions have the same degree of freedom. The expression
above is equivalent to −2x>Σ−1(µ1 −µ2) + (µ1 + µ2)>Σ−1(µ1 −µ2) < 0 and can also be
written as (

z

√
k

u
+ µ

)>
Σ−1(µ1 − µ2)− 1

2
(µ1 + µ2)>Σ−1(µ1 − µ2) > 0,

Journal home page: www.jafristat.net



O.S. Makinde, Afrika Statistika, Vol. 11(1), 2016, pages 943–953. On misclassification probabilities
of linear and quadratic classifiers. 950

where x = z
√

k
u + µ and z is distributed as Nd(0,Σ). If x is from π1, µ = µ1. Similarly, if

x is from π2, µ = µ2. It follows that

P (2|1) = P

[√
k

u
z>Σ−1(µ1 − µ2) +

1

2
(µ1 − µ2)>Σ−1(µ1 − µ2) < 0

]
= P

[
z>Σ−1(µ1 − µ2) <

−1

2

√
u

k
(µ1 − µ2)>Σ−1(µ1 − µ2)

]
.

This holds because u takes values in [0,∞). For either of the population, E
(
z>Σ−1(µ1 −

µ2)
)

= 0 and var
(
z>Σ−1(µ1 − µ2)

)
= (µ1 − µ2)>Σ−1(µ1 − µ2), then

P (2|1) = P

[
R <

−1
2

√
u
k (µ1 − µ2)>Σ−1(µ1 − µ2)(

(µ1 − µ2)>Σ−1(µ1 − µ2)
)1/2 ]

= P

[
R <

−1

2

√
u

k
c0

]
=

∫
Φ(c1)fu(u)du

where R is a standard normal random variable defined as

R =
z>Σ−1(µ1 − µ2)− E[z>Σ−1(µ1 − µ2)](

var(z>Σ−1(µ1 − µ2))
)1/2 ,

Φ is the distribution function of the standard normal distribution, fu is probability density
function of χ2

k, u is Chi-squared distributed random variable,

c1 =
−1

2

√
u

k
c0, c2 =

1

2

√
u

k
c0.

Similarly,

P (1|2) = P

[√
k

u
z>Σ−1(µ1 − µ2)− 1

2
(µ1 − µ2)>Σ−1(µ1 − µ2) > 0

]
= P

[
z>Σ−1(µ1 − µ2) >

1

2

√
u

k
(µ1 − µ2)>Σ−1(µ1 − µ2)

]
= P

[
R >

1
2

√
u
k (µ1 − µ2)>Σ−1(µ1 − µ2)(

(µ1 − µ2)>Σ−1(µ1 − µ2)
)1/2 ] = 1− P

[
R <

1
2

√
u
k (µ1 − µ2)>Σ−1(µ1 − µ2)(

(µ1 − µ2)>Σ−1(µ1 − µ2)
)1/2 ]

= 1− P
[
R <

1

2

√
u

k
c0

]
= 1−

∫
Φ(c2)fu(u)du

The probability of misclassification associated with Bayes rule, denoted by ∆B , is

∆B = p1P (2|1) + p2P (1|2) = p1

∫
Φ(c1)fu(u)du+ p2

(
1−

∫
Φ(c2)fu(u)du

)
.
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Multivariate Laplace distributions

Suppose the distribution of X ∈ Rd is multivariate Laplace distribution L(µ,Σ), where µ
and Σ are mean vector and covariance matrix of the distribution respectively. The probability
density function of x is of the form

f(x) ∝ e−
√

(x−µ)>Σ−1(x−µ).

Without loss of generality, let d = 2, r ∼ Gamma(d), θ ∼ Uniform(0, 2π), µ = (µ1, µ2)>.
Define

Z1 = r cos θ, Z2 = r sin θ, Z =

(
Z1

Z2

)
.

Then, X = Σ
1
2 Z + µ has bivariate Laplace distribution BL(µ,Σ), where µ and Σ are

mean and covariance of the distribution respectively. It follows that X−µ = Σ
1
2 Z. Suppose

populations π1 and π2 have distribution functions BL(µ1,Σ) and BL(µ2,Σ) respectively.

If x ∈ π1, then Z = Σ−
1
2 (X − µ1),

√
(x− µ1)>Σ−1(x− µ1) =

√
z>z = r ∼ Gamma(d)

and (x − µ2)>Σ−1(x − µ2) 6= r2 except µ1 = µ2, where d = 2. Similarly, if x ∈ π2,

then Z = Σ−
1
2 (X − µ2),

√
(x− µ2)>Σ−1(x− µ2) =

√
z>z = r ∼ Gamma(d) and (x −

µ1)>Σ−1(x− µ1) 6= r2 except µ1 = µ2. It follows that

log

(
f1(x)

f2(x)

)
= −

√
(x− µ1)>Σ−1(x− µ1) +

√
(x− µ2)>Σ−1(x− µ2).

Assuming equal prior probabilities, and for x, µ1, µ2 ∈ Rd and d ≥ 2, the separating
hyperplane between π1 and π2 can be written as

(x− µ1)>Σ−1(x− µ1) = (x− µ2)>Σ−1(x− µ2).

This is equivalent to

x>Σ−1(µ1 − µ2) =
1

2
(µ1 + µ2)>Σ−1(µ1 − µ2).

It follows that if x is distributed as population π1, x>Σ−1(µ1−µ2) = 1
2 (µ1+µ2)>Σ−1(µ1−

µ2) implies (x− µ1)>Σ−1(µ1 − µ2) = − 1
2 (µ1 − µ2)>Σ−1(µ1 − µ2) and can be written as

z>a = −1

2
a>a,

where a = Σ−1/2(µ1 − µ2) and z is a standard multivariate Laplace distributed random
variable. Kotz et al. (2001) has shown that linear combination of standard multivariate
Laplace random variables has a univariate symmetric Laplace distribution L(0, σl) (See
Proposition 5.1.1 in pp. 232). That is, w = a>z has a univariate Laplace distribution with
mean 0 and variance σl, where σl =

√
var(a>z) and a is a vector of constant real numbers.

Similarly, if x is distributed as population π2, the separating hyperplane remains unchanged.
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Observe that f1(x) > f2(x) implies (x − µ1)>Σ−1(x − µ1) < (x − µ2)>Σ−1(x − µ2) and
x>Σ−1(µ1 − µ2) > 1

2 (µ1 + µ2)>Σ−1(µ1 − µ2). It follows that

P (2|1) = P
(
x>Σ−1(µ1 − µ2) <

1

2
(µ1 + µ2)>Σ−1(µ1 − µ2)|x ∈ π1

)
= P

(
x>Σ−1(µ1 − µ2)− µ>1 Σ−1(µ1 − µ2) <

1

2
(µ1 + µ2)>Σ−1(µ1 − µ2)− µ>1 Σ−1(µ1 − µ2)

)
= P

(
z>a < −1

2
(µ1 − µ2)>Σ−1(µ1 − µ2)

)
= P

(
w < −1

2
(µ1 − µ2)>Σ−1(µ1 − µ2)

)
= F

(
− 1

2
(µ1 − µ2)>Σ−1(µ1 − µ2)

)
,

where F is the distribution function of 1-dimensional symmetric Laplace distribution L
(
0, c0

)
with c20 > 0. Similarly,

P (1|2) = P
(
x>Σ−1(µ1 − µ2) >

1

2
(µ1 + µ2)>Σ−1(µ1 − µ2)|x ∈ π2

)
= P

(
x>Σ−1(µ1 − µ2)− µ>2 Σ−1(µ1 − µ2) >

1

2
(µ1 + µ2)>Σ−1(µ1 − µ2)− µ>2 Σ−1(µ1 − µ2)

)
= P

(
z>a >

1

2
(µ1 − µ2)>Σ−1(µ1 − µ2)

)
= P

(
w >

1

2
(µ1 − µ2)>Σ−1(µ1 − µ2)

)
= 1− F

(
1

2
(µ1 − µ2)>Σ−1(µ1 − µ2)

)
where F is as defined above. The Bayes probability of misclassifying of x into either π1 or
π2, denoted by ∆B , is

∆B = p1P (2|1) + p2P (1|2)

= p1F

(
− 1

2
(µ1 − µ2)>Σ−1(µ1 − µ2)

)
+ p2

[
1− F

(
1

2
(µ1 − µ2)>Σ−1(µ1 − µ2)

)]
where p1 + p2 = 1. Suppose G is a Laplace distribution function which is symmetric about
c, then G(−c) = 1−G(c) for all c ∈ R. Hence

∆B = p1F

(
− 1

2
(µ1 − µ2)>Σ−1(µ1 − µ2)

)
+ p2

[
F

(
− 1

2
(µ1 − µ2)>Σ−1(µ1 − µ2)

)]
= F

(
− 1

2
(µ1 − µ2)>Σ−1(µ1 − µ2)

)
5. Concluding Remarks

In this paper, we have considered probabilities of misclassification between two populations
only. However, these can be extended to more than two populations easily. The optimal
performance of linear and quadratic discriminant functions are investigated and provide
solutions of some theoretical examples. The theoretical probabilities of misclassification are
compared with empirical error rates based on simulation, when competing populations differ
in location and scale. The sample estimates of probability of misclassification associated
with LDA and QDA are good approximation for their respective population versions. We
derive expressions for Bayes error for multivariate Laplace distributions and multivariate t
distributions with the same degree of freedom, under location shift.
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