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Abstract. In this paper, we consider an estimation algorithm called cyclic iterative
algorithm (CA) that is used in statistics to estimate the unknown vector parameter
of a crash data model. We provide a theoretical proof of the global convergence of
the CA that justifies the good numerical results obtained in early numerical studies
of this algorithm. We also prove that the CA is an ascent algorithm, what ensures
its numerical stability.

Résumé. Dans cet article, nous considérons un algorithme d’estimation appelé al-
gorithme cyclic iteratif (CA) utilisé en statistique pour estimer le vecteur paramètre
inconnu d’une modèle pour les données d’accidents. Nous donnons une preuve
théorique de la convergence globale du CA qui justifie les excellents résultats
numériques obtenues dans les études numériques antérieures dudit algorithme.
Nous prouvons aussi que le CA augmente la log-vraisemblance à chaque itération,
ce qui assure sa stabilité numérique.
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1. Introduction

In statistics, one is usually confronted to the problem of the estimation of the un-
known parameter vector β ∈ Rd of a probability law Lβ. The first method and also
the most used for this purpose is the Maximum Likelihood (ML) method (Cramer,
1946; Shao, 2003). If Y1, . . . , Yn are n random variables considered as independent
and identically distributed according to Lβ, the likelihood of observed data y1, . . . ,
yn is the product of the probabilities that each Yi takes the value yi, i = 1, . . . , n.
The maximum likelihood method consists in maximizing the likelihood function
L(β) considered as a function of β ∈ Rd. In practice, one prefers to maximize the
log-likelihood function ` = logL. Except some school examples, the maximum like-
lihood estimation of β often requires the use of a numerical iterative optimization
method starting from an initial vector β(0) and computing successive approxima-
tions of the unknown solution by the recurrence formula

β(k+1) = M(β(k)) (1)

where M is a mapping from Rd into itself. Detailed reviews of modern numerical
optimization methods can be found in Dennis and Schnabel (1996), Nocedal and
Wright (2006), Lange (2013) and Lange et al. (2014).

The very first method that comes to mind is the Newton-Raphson’s (NR) algo-
rithm. The NR algorithm for the ML estimation of β uses the iteration mapping

M(β(k)) = −
(
∇2`(β(k))

)−1
∇`(β(k)) (2)

where ∇` is the gradient of ` and ∇2` is its Hessian matrix. Since the NR algorithm
requires the inversion of the Hessian matrix at each iteration, its implementation
may be difficult in large dimensions or if the Hessian matrix is ill-conditioned or
singular at the point β(k). We can also mention the fact that the NR algorithm can
diverge violently when the starting point β(0) is far from the true unknown value
of β (Dennis and Schnabel, 1996). When the NR algorithm fails, one can use one
of the many algorithms that have been proposed in the literature as remedies.
One can use the Fisher scoring algorithm which replaces the Hessian matrix by
the expectation of its negative (Osborne, 1992) or quasi-Newton algorithms which
compute an approximation of the inverse of the Hessian matrix using only the
first derivatives (Nocedal and Wright, 2006). We can also mention Derivative Free
Optimization (DFO) in which no derivative of the objective function is computed
and the successive iterates are computed from the values of the objective function
on a finite set of points (Rios and Sahinidis, 2013). DFO algorithms are of interest
when ` is expensive to evaluate or non-differentiable. The recent decades have also
seen the popularization of the Expectation Maximization (EM) algorithm (Demp-
ster et al., 1977; McLachlan and Krishnan, 2008) which is considered as a special
case of the more general class of MM (Minorization-Majorization) optimization
algorithms (Hunter and Lange, 2004; Zhou and Lange, 2010). In maximization
problems, the first M step consists in minorizing the objective function ` by a
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surrogate function g(β|β(k)) and the second M step consists in maximizing this sur-
rogate function with respect to β to produce the next iterate β(k+1). MM algorithms
are considered as effective algorithms for ML estimation because they consistently
drive the likelihood uphill by maximizing a simple surrogate function for the log-
likelihood. However, all these remedies brought by scientific results come at the
cost of a greater and greater complexity and they are not always easy to implement.

Regardless of the algorithm used, global convergence is necessary. An optimization
algorithm is said to be globally convergent if the sequence of iterates β(k) generated
by this algorithm converges to a stationary point of ` (a point where the gradient
vanishes) from any starting β(0) (Dennis and Schnabel, 1996). Proving the global
convergence is always a delicate exercise and this property may not always be sat-
isfied. For example, the NR algorithm is not globally convergent because the con-
vergence to a stationary point of the sequence β(k) generated by the NR algorithm
is guaranteed only if the starting point β(0) is sufficiently close to the true value of
β (Lange, 2013). For MM algorithms, the global convergence has been established
under some conditions (Lange, 2010). In order to ensure numerical stability, a
maximum likelihood estimation algorithm should also be an ascent algorithm i.e.
it should increase the log-likelihood at each step.
In the context of statistical analysis of crash data, N’Guessan and Truffier (2008)
have considered a parameter vector β = (θ, φT )T where θ is the first component
of β and φ is a vector consisting in the remaining components of β. They proved
the existence of a unique stationary point and proposed an estimation algorithm
called Cyclic iterative Algorithm (CA) that cycles through the two subsets of
components updating each from the other one. More specifically, this CA starts
from an initial value φ(0) and updates successively θ(1) from φ(0), φ(1) from θ(1), θ(2)
from φ(1) and so on until a convergence criteria is satisfied. N’Guessan and Geraldo
(2015) studied some numerical convergence properties of the CA using simulated
accident datasets. Their simulation studies suggest that the CA converges to
the maximum likelihood estimator (MLE) β̂ of β from any starting point β(0) and
outperforms the classical optimization algorithms such as NR and MM. Geraldo
et al. (2015) proved that the MLE β̂ is strongly consistent, that is, it converges
almost surely to the true value of β when the sample size tends to +∞.

In this paper, we provide convergence results that justify the good numerical
results given by N’Guessan and Geraldo (2015) and which complete the stochastic
convergence results of Geraldo et al. (2015). We prove that the CA is globally
convergent (it converges to the MLE from any starting value β(0)) and is also an
ascent algorithm (the log-likelihood increases at each iteration of the algorithm
i.e. `(β(k+1)) > `(β(k)) for any iteration k > 0).

The rest of the paper is structured as follows. Section 2 provides the state of the
art of the cyclic algorithm. In section 3, we provide some intermediate lemmas
that will be used to prove the main convergence theorems given in Section 4. More
precisely, we prove that the sequence of iterates β(k) generated by the CA converges
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to the MLE from every starting point and that the CA enjoys the ascent property.
The paper finishes with some concluding remarks.

2. An overview of the cyclic algorithm

2.1. Problem setting and statistical model

Consider an experimental site where accidents can be classified into r (r > 0)
mutually exclusive accidents types by increasing severity (for example, property
damage, minor injury, severe injury, fatal). Assume that a road safety measure
(transformation of intersections into roundabouts, installation of roundabouts,
modification of the ground marking, etc. . . ) has been applied at this experimental
site with the purpose of reducing the occurrence of accidents. After a certain
period of application of the measure, it is certainly desirable to know if the latter
had a significant effect.

There exists in the literature a plethora of statistical models for the evaluation
of a road safety measure. In general, these models strongly depend on the avail-
able data. Lord and Mannering (2010) and Mannering and Bhat (2014) provide
comprehensive reviews of contemporary thinking in the crash frequency-analysis
field and give the advantages and disadvantages of each approach. In this work,
we consider the before-after model proposed by N’Guessan et al. (2001). One
of the main advantages of this before-after model is that it allows cause-effect
interpretations (Hauer, 2010).

Let X = (X11, . . . , X1r, X21, . . . , X2r)
T be a random vector where X1j (resp. X2j ),

j = 1, . . . , r, represents the number of crashes of type j occurred in the ”before”
(resp. ”after”) period. In order to take into account some external factors (traf-
fic flow, speed limit variation, weather conditions, etc. . .), the experimental site
is associated to a control area where the safety measure was not applied. Let
Z = (z1, . . . , zr)

T be a vector such that zj denotes the ratio of the number of ac-
cidents of type j for the period ”after” to the period ”before” in the control area
over the same time period. The model of N’Guessan et al. (2001) (in the case of one
experimental site) is described by the following assumptions:

(A1) The total number of accidents observed on the experimental site where the
measure was applied is a fixed constant denoted n.

(A2) The control coefficients z1, . . . , zr are known and non-random.
(A3) The random vector X is assumed to have the multinomial distribution

X ∼M(n;π1(β), π2(β))

where β = (θ, φT )T ∈ R1+r, θ > 0, φ = (φ1, . . . , φr)
T belongs to the simplex

Sr =
{

(φ1, . . . , φr)
T ∈ Rr | φi > 0, 1 6 i 6 r,

r∑
i=1

φi = 1
}
, (3)
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πi(β) = (πi1(β), . . . , πir(β))T , i = 1, 2 and

πij(β) =


φj

1 + θ
∑r
m=1 zmφm

, i = 1; j = 1, . . . , r,

θzjφj
1 + θ

∑r
m=1 zmφm

, i = 2; j = 1, . . . , r

(4)

The parameter θ represents the mean effect of the road safety measure while the
components of φ = (φ1, . . . , φr)

T represent the different accident risks.

2.2. The cyclic algorithm (CA) for maximum likelihood estimation of the parameters

For an observed data x = (x11, . . . , x1r, x21, . . . , x2r) such that
∑2
i=1

∑r
j=1 xij = n, set

x·j = x1j + x2j (j = 1, . . . , r) and xi· =
∑r
j=1 xij (i = 1, 2). Then the log-likelihood is

defined up to an additive constant by

`(β) =

r∑
j=1

(
x·j log(φj) + x2j log(θ)− x·j log(1 + θ

r∑
m=1

zmφm)

)
. (5)

Provided that it exists, the Maximum Likelihood Estimator, β̂ = (θ̂, φ̂T )T , of β =
(θ, φT )T is solution to the constrained optimization problem:

β̂ = argmax
β∈R1+r

`(β)

subject to
∀j = 1, . . . , r, φj > 0, θ > 0 and

∑r
j=1 φj = 1.

(6)

N’Guessan et al. (2001) proved that the MLE β̂ is solution to the non-linear system
of equations 

r∑
j=1

(
x2j −

x·r θ̂
∑r
m=1 zmφ̂m

1 + θ̂
∑r
m=1 zmφ̂m

)
= 0

x·j −
nφ̂j(1 + θ̂zj)

1 + θ̂
∑r
m=1 zmφ̂m

= 0, j = 1, . . . , r.

(7)

N’Guessan (2010) proved that the non-linear system (7) accepts a solution β̂ =
(θ̂, φ̂T )T such that

θ̂ =
x2·

x1·

1∑r
j=1 zj φ̂j

φ̂j =
1

1− 1

n

r∑
m=1

θ̂zmx·m

1 + θ̂zm

× x·j

n(1 + θ̂zj)
, j = 1, . . . , r.

(8)
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He then proposed an iterative procedure alternating between updating θ holding φ
fixed and vice-versa. Because of the link between θ̂ and φ̂, his procedure starts from
an initial vector φ(0) = (φ

(0)
1 , . . . , φ

(0)
r )T such that

∑r
j=1 φ

(0)
j = 1. At the step k+1, θ(k+1)

is updated from φ(k) = (φ
(k)
1 , . . . , φ

(k)
r )T , afterwards φ(k+1) = (φ

(k+1)
1 , . . . , φ

(k+1)
r )T

is updated from the θ(k+1), and so on until the convergence of the sequence of
vectors β(k) = (θ(k), φ(k)

T
)T is achieved. This strategy yields the following iterative

algorithm (N’Guessan, 2010):

Given an initial vector φ(0) = (φ
(0)
1 , . . . , φ

(0)
r )T such that

∑r
j=1 φ

(0)
j = 1 and for any

k > 0,

θ(k+1) =
x2·

x1·

1∑r
j=1 zjφ

(k)
j

φ
(k+1)
j =

1

1− 1

n

r∑
m=1

θ(k+1)zmx·m
1 + θ(k+1)zm

× x·j
n(1 + θ(k+1)zj)

, j = 1, . . . , r.

(9)

The aim of this paper is to prove that the sequence of vectors β(k) = (θ(k), φ(k)
T

)T

produced by Algorithm (9) converges to the MLE β̂ = (θ̂, φ̂T )T of β. We also prove
that Algorithm (9) is an ascent algorithm i.e. for all k > 0, `(β(k+1)) > `(β(k)).

3. Preliminary results

Lemma 1. Let ψ be the mapping defined on R+ by

ψ(u) = −x1· +
r∑

m=1

x·m
1 + uzm

. (10)

i) There exists a unique real number θ∗ such that ψ(θ∗) = 0 and the MLE θ̂ of θ is
equal to that unique root θ∗ of ψ.

ii) For all u > 0, ψ(u) > 0 if 0 < u 6 θ∗ and ψ(u) 6 0 if u > θ∗.

Proof.
i) One can easily check that ψ is continuous and its derivative ψ′(u) is strictly
negative for every u > 0 and therefore ψ is bijective. Moreover,

lim
u→0

ψ(u)× lim
u→+∞

ψ(u) = (x2·)× (−x1·) < 0.

Hence the equation ψ(u) = 0 has a unique solution denoted θ∗. Let j be an integer
from the set {1, . . . , r}. From the equalities

φ̂j =
1

1− 1

n

r∑
m=1

θ̂zmx·m

1 + θ̂zm

× x·j

n(1 + θ̂zj)
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and

1− 1

n

r∑
m=1

θ̂zmx·m

1 + θ̂zm
= 1− 1

n

r∑
m=1

(
x·m −

x·m

1 + θ̂zm

)
=

1

n

r∑
m=1

x·m

1 + θ̂zm
,

we may write

φ̂j =
x·j/(1 + θ̂zj)∑r

m=1 x·m/(1 + θ̂zm)
(11)

and then
r∑
j=1

zj φ̂j =

∑r
j=1

(
zjx·j/(1 + θ̂zj)

)
∑r
m=1

(
x·m/(1 + θ̂zm)

) .
From the first line of (8), we deduce

θ̂ =
x2·
x1·

∑r
m=1

(
x·m/(1 + θ̂zm)

)
∑r
j=1

(
zjx·j/(1 + θ̂zj)

) .
This is equivalent to

x2·
x1·

r∑
m=1

x·m

1 + θ̂zm
=

r∑
m=1

θ̂zmx·m

1 + θ̂zm
.

As we have x1· + x2· = n, we deduce the following equality:

n

x1·

r∑
m=1

x·m

1 + θ̂zm
= n

which yields the equality ψ(θ̂) = 0. Since ψ is bijective and ψ(θ∗) = 0 then θ̂ = θ∗.

ii) The function ψ is a strictly decreasing function. Therefore,

∀u 6 θ∗, ψ(u) > ψ(θ∗) = 0 and ∀u > θ∗, ψ(u) 6 ψ(θ∗) = 0.

This completes the proof of Lemma 1.

Lemma 2. Let αx = x2·/x1· and Ψx be the function from ]0; +∞[ to ]0; +∞[ defined by:

Ψx(u) = αx

(
r∑

m=1

x·m
1 + uzm

)/( r∑
m=1

zmx·m
1 + uzm

)
.

i) The real θ∗ defined by Lemma 1 is the unique fixed point of Ψx.
ii) The function Ψx is such that

∀u 6 θ∗, Ψx(u) > u and ∀u > θ∗, Ψx(u) 6 u.

iii) The sequence of real numbers (θ(k)) generated by Algorithm (9) is monotonous
and its monotony depends on θ(0). If θ(0) < θ∗ then it is an increasing sequence
and if θ(0) > θ∗, it is a decreasing sequence.

iv) The sequence (θ(k)) is also bounded. Then it is convergent and its limit is θ∗.
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Proof.
i) The equation Ψx(u) = u is equivalent to

x2·
x1·

r∑
m=1

x·m
1 + uzm

=

r∑
m=1

uzmx·m
1 + uzm

.

After straightforward computations similar to those used in the proof of Lemma
1, one gets ψ(u) = 0. This latter equation has a unique solution θ∗ that is also the
unique solution of the equation Ψx(u) = u.

ii) Let u > 0. Then

Ψx(u)− u =

(
x2·
x1·

r∑
m=1

x·m
1 + uzm

−
r∑

m=1

uzmx·m
1 + uzm

)/( r∑
m=1

zmx·m
1 + uzm

)

=

(
x2·
x1·

r∑
m=1

x·m
1 + uzm

− n+

r∑
m=1

x·m
1 + uzm

)/( r∑
m=1

zmx·m
1 + uzm

)

=
n

x1·

(
r∑

m=1

x·m
1 + uzm

− x1·

)/( r∑
m=1

zmx·m
1 + uzm

)

=
n

x1·
(ψ(u))

/( r∑
m=1

zmx·m
1 + uzm

)
.

The sign of Ψx(u)− u is obtained from that of ψ(u).

iii) From the second line of Equation (9) and the equality

1− 1

n

r∑
m=1

θ(k+1)zmx·m
1 + θ(k+1)zm

= 1− 1

n

r∑
m=1

(
x·m −

x·m
1 + θ(k+1)zm

)
=

1

n

r∑
m=1

x·m
1 + θ(k+1)zm

,

we deduce that the real sequence θ(k) is given by :

θ(k+1) =

(
r∑

m=1

x·m
1 + θ(k)zm

)/( r∑
m=1

zmx·m
1 + θ(k)zm

)
. (12)

which is equivalent to θ(k+1) = Ψx(θ(k)). The function Ψx is differentiable and its
derivative has the form Ψ′x(u) = αx ×Ψ1,x(u)/Ψ2,x(u) where

Ψ2,x(u) =

(
r∑

m=1

zmx·m
1 + uzm

)2

> 0

and

Ψ1,x(u) = −
r∑
i=1

zix·i
(1 + uzi)2

r∑
j=1

zjx·j
1 + uzj

+

r∑
i=1

x·i
1 + uzi

r∑
j=1

(zj)
2x·j

(1 + uzj)2
.
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By swapping indexes i and j in the second right-hand term, we get

Ψ1,x(u) =

r∑
i=1

r∑
j=1

(zi)
2x·ix·j − zizjx·ix·j

(1 + uzi)2(1 + uzj)
.

After removing the zero terms corresponding to i = j, we get:

Ψ1,x(u) =
∑

16i<j6r

(zi)
2x·ix·j − zizjx·ix·j

(1 + uzi)2(1 + uzj)
+

∑
16j<i6r

(zi)
2x·ix·j − zizjx·ix·j

(1 + uzi)2(1 + uzj)
.

By swapping indexes i and j in the second right-hand term, we get

Ψ1,x(u) =
∑

16i<j6r

(zi)
2x·ix·j − zizjx·ix·j

(1 + uzi)2(1 + uzj)
+

∑
16i<j6r

(zj)
2x·ix·j − zizjx·ix·j

(1 + uzj)2(1 + uzi)
.

It is easy to check that

Ψ1,x(u) =
∑

16i<j6r

(
(zi)

2x·ix·j − zizjx·ix·j
(1 + uzi)2(1 + uzj)

+
(zj)

2x·ix·j − zizjx·ix·j
(1 + uzi)(1 + uzj)2

)

=
∑

16i<j6r

(
x·ix·j

(1 + uzi)(1 + uzj)

)(
(zi)

2 − zizj
1 + uzi

+
(zj)

2 − zizj
1 + uzj

)
.

Since

(zi)
2 − zizj

1 + uzi
+

(zj)
2 − zizj

1 + uzj
=

(zi)
2 − 2zizj + (zj)

2

(1 + uzi)(1 + uzj)
=

(zi − zj)2

(1 + uzi)(1 + uzj)
> 0,

we get Ψ1,x(u) > 0. Thus the function Ψx is an increasing function.
If θ(0) < θ∗, then by using the property ii) of Lemma 2, we will have

θ(0) < Ψx(θ(0)) = θ(1). As Ψx is an increasing function, we will then have
θ(1) = Ψx(θ(0)) < Ψx(θ(1)) = θ(2), θ(2) = Ψx(θ(1)) < Ψx(θ(2)) = θ(3) and so on. By a
similar reasoning, one can prove by recurrence that if θ(0) > θ∗ then θ(k) > θ(k+1)

for all k = 0, 1, 2, . . ..

iv) For every k > 0, we have

0 < θ(k) 6 max

(
θ(0), sup

u>0
Ψx(u)

)
where

sup
u>0

Ψx(u) = lim
u→+∞

Ψx(u) =
αx
n

r∑
m=1

x·m
zm

. (13)

The real sequence (θ(k)) is monotonous and bounded. Thus it converges to θ∗ the
only fixed point of the function Ψx that is also equal to the MLE θ̂ (by Lemma 1).
The proof of Lemma 2 is then completed.
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Because of the partition of the parameter vector β into two sub-parameters θ and φ,
we consider the concentrated (or profile) likelihood function that is also commonly
used in maximum likelihood estimation (Monahan, 2011). For a given value of θ̂,
the MLE of the sub-parameter φ is found as a function φ̂ = g(θ̂) = (g1(θ̂), . . . , gr(θ̂))

T

where

gj(θ̂) =
1

1− 1

n

r∑
m=1

θ̂zmx·m

1 + θ̂zm

× x·j

n(1 + θ̂zj)
, j = 1, . . . , r

=
x·j/(1 + θ̂zj)∑r

m=1 x·m/(1 + θ̂zm)
, j = 1, . . . , r (by expression (11)).

(14)

The likelihood function `(β) = `(θ, φ) can be re-written as a function only of θ,

`c(θ) = `(θ, g(θ))

that is called the concentrated (or profile) likelihood.

Lemma 3. The concentrated (or profile) likelihood function is defined up to an addi-
tive constant by

`c(θ) = x2· log θ −
r∑
j=1

x·j log(1 + θzj) (15)

Proof. The expression (5) is equivalent to

`(β) =

r∑
j=1

x·j log(φj) + x2· log(θ)− n log(1 + θ

r∑
m=1

zmφm)

and one can write

`c(θ) =
r∑
j=1

x·j log

(
x·j

1 + θzj

)
−

r∑
j=1

x·j log

(
r∑

m=1

x·m
1 + θzm

)
+ x2· log(θ)

− n log

(
r∑

m=1

x·m
1 + θzm

+

r∑
m=1

θzmx·m
1 + θzm

)
+ n log

(
r∑

m=1

x·m
1 + θzm

)
.

This is equivalent to

`c(θ) =

r∑
j=1

x·j log

(
x·j

1 + θzj

)
− n log

(
r∑

m=1

x·m
1 + θzm

)
+ x2· log(θ)

− n log n+ n log

(
r∑

m=1

x·m

1 + θ̂zm

)
.

After removing the second and the fifth terms and the constants, we get the equality
(15).
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4. Main results

In this section we prove that the cyclic algorithm (9) satisfies two main properties
generally required for ML estimation iterative algorithms. The first one is the con-
vergence of the iterative scheme (9) to the MLE β̂ = (θ̂, φ̂T )T from the algorithmic
viewpoint. Indeed, there is no guarantee that an iterative algorithm will converge
to the MLE. It should be noted that the convergence studied here is different from
the consistency that was already studied by Geraldo et al. (2015). The first main
result proved in this section is stated by the following theorem.

Theorem 1. For all starting vector β(0) = (θ(0), (φ(0))T )T where θ(0) > 0 and φ(0) ∈ Sr,
the sequence β(k) = (θ(k), (φ(k))T )T generated by the cyclic algorithm (9) converges to
the MLE β̂ = (θ̂, φ̂T )T of β.

Proof. From Lemma 2, we can conclude that the sequence (θ(k)) converges to θ̂.
Since each φ

(k)
j , j = 1, . . . , r, is the image of θ(k) by the continuous mapping gj

defined by (14), the real sequence φ(k)j also has a limit that is gj(θ̂) = φ̂j. Thus, the
vector β(k) = (θ(k), (φ(k))T )T converges to the MLE β̂ = (θ̂, φ̂T )T . Theorem 1 is thus
proved.

The second result that we prove is the ascent property of the cyclic algorithm (9)
i.e. the fact that the log-likelihood is increased monotonically by the algorithm.
That is given by the following theorem.

Theorem 2. The cyclic algorithm (9) enjoys the ascent property i.e. the sequence
β(k) = (θ(k), (φ(k))T )T generated by the cyclic algorithm satisfies the property

`(β(k+1)) > `(β(k)), k = 0, 1, . . . (16)

Proof. The profile log-likelihood `c(θ) is differentiable for every θ > 0 and its deriva-
tive is

`′c(θ) =
x2·
θ
−

r∑
j=1

x·jzj
1 + θzj

=
1

θ

x2· − r∑
j=1

(
x·j −

x·j
1 + θzj

) =
1

θ

x2· − n+
r∑
j=1

x·j
1 + θzj

 .

Since x1· + x2· = n, we have
`′c(θ) = θ−1 ψ(θ)

where the function ψ is defined by equation (10) (Lemma 1). Using this lemma, we
deduce that

∀θ 6 θ∗, `′c(θ) > 0 and ∀θ > θ∗, `′c(θ) 6 0

where θ∗ is the MLE of θ and also the unique root of ψ. Hence the function `c is
increasing on the interval ]0, θ∗] and decreasing on [θ∗,+∞[. To finish the proof, we
consider the two cases θ(0) < θ∗ and θ(0) > θ∗.

− If θ(0) < θ∗, then we have proved that the sequence θ(k) is increasing and still
belongs to the interval ]0, θ∗]. Then θ(k) 6 θ(k+1) and `c(θ

(k)) 6 `c(θ
(k+1)) because

`c is increasing on ]0, θ∗].
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− If θ(0) > θ∗, then the sequence θ(k) is decreasing and still belongs to the interval
[θ∗,+∞[. Then θ(k+1) 6 θ(k) and `c(θ

(k+1)) > `c(θ
(k)) because `c is decreasing on

[θ∗,+∞[.

In all the cases, we have

`(β(k+1))− `(β(k)) = `c(θ
(k+1))− `c(θ(k)) > 0

and the proof of Theorem 2 is complete.

5. Concluding remarks

In this paper, we gave some theoretical convergence theorems for a cyclic algo-
rithm (CA) for the maximum likelihood estimation of the vector parameter of a sta-
tistical model for crash data. The vector parameter is partitioned under the form
β = (θ, φT )T where θ is a positive real number while φ is a vector belonging to a
multidimensional simplex. We proved the global convergence of the CA (i.e. the
CA converges to the MLE of β from every initial point) and we also proved that it
enjoys the ascent property. Future research will include the study of the conver-
gence rate as well as the extension of our results to the statistical model proposed
in N’Guessan et al. (2001) which is a generalization of the model studied in this
paper.
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