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Abstract. In this paper, we establish a uniform in bandwidth law of the iterated logarithm
for the Transformation kernel estimator of bivariate copulas introduced in Omelka et al.
(2009). To this end, we make use of a general empirical process approach inspired by the
works in Mason and Swanepoel (2011). We obtain the asymptotic order of the maximal
deviation of this estimator from its expectation. Then, we show that the bias converges
asymptotically to zero at the same order provided that the second-order partial derivatives
of the copula exist and are bounded. We also propose a bandwidth selection method by using
a cross-validation approach. Finally, we compare in a simulation study the performances of
the Transformation kernel estimator by considering two different methods of selecting the
bandwidth.
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Résumé (French) Nous établissons une loi du logarithme itéré uniforme en la fenêtre pour
l’estimateur à noyau de Transformation de la copule bivariée proposé par Omelka et al.
(2009). Notre méthodologie utilise une approche générale de processus empirique développée
dans les travaux de Mason and Swanepoel (2011) et nous a permis d’obtenir la vitesse de
convergence asymptotique de la deviation maximale de cet estimateur par rapport à son
espérance. Nous avons aussi montré, sous des hypothèses assez douces concernant la fonction
copule, que le biais de l’estimateur converge asymptotiquement vers 0, avec la même vitesse.
Une méthode de sélection du paramètre de lissage h, utilisant l’approche de la validation
croisée est proposée. Enfin, nous comparons par une étude de simulation cette approche
avec une autre approche de sélection de fenêtre basée sur une distribution de référence et
proposée par Omelka et al. (2009).

1. Introduction

Nonparametric kernel estimation of copulas suffers from boundary bias problem, mainly
because a copula function has its support in the hypercube [0, 1]d. Because of this difficulty,
there are a few works in the literature that paid special attention to the correction of
this boundary bias problem. For instance, Gijbels and Mielniczuk (1990) proposed an
estimator for the copula density by using a technique called mirror-reflexion. This technique
permits to overcome the boundary bias by reflecting the original data with respect to
the four edges and four corners of the unit square [0, 1]2. In the same spirit, Chen and
Huang (2007) introduced a local linear kernel estimator for the copula function and a
simple mathematical correction to remove the boundary bias. More recently, improved
versions of the two previous estimators have been introduced in Omelka et al. (2009),
where the boundary bias is taken into account by using a shrinkage principle that reduces
the bandwidth near the corners of the unit square. In addition, Omelka et al. (2009) also
provided a modification of the smoothed empirical copula estimator proposed in Fermanian
(2004). This modification consists of transforming the data which allows to deal with

unbounded domains in which the estimation of the copula can be done freely of boundary
bias.

There exist in the literature some Transformation kernel estimators for the copula density
(see, e.g.Geenens et al. (2014)). But in this paper, we are concerned with kernel estimation
of the copula function itself considered as a distribution function. Namely, a copula function
C is a multivariate distribution function with uniform margins in [0, 1] ; i.e. for example, for
d = 2,

C(u, v) = P(U ≤ u, V ≤ v), (u, v) ∈ [0, 1]2,

where U, V are [0,1]-Uniform random variables. It is a hidden function which is not directly
observable in empirical studies, but reveals to be very useful for modeling dependence
structure between random variables.

Let (X1, Y1), ..., (Xn, Yn) be an independent and identically distributed random sample of a
random vector (X,Y ) with joint cumulative distribution function H and marginal distribu-
tion functions F and G, respectively. It is customary in Transformation kernel estimation to
work with the pseudo-observations Ûi = n

n+1Fn(Xi) and V̂i = n
n+1Gn(Yi), where Fn and Gn
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denote the empirical marginal cumulative distribution functions associated with F and G,
respectively. But to simplify calculations, we shall consider the uniform pseudo-observations
Ûi = Fn(Xi) and V̂i = Gn(Yi) which are asymptotically equivalent to the formers. For a
bivariate multiplicative kernel K(·, ·) ; i.e., K(x, y) = K(x)K(y), the Transformation kernel
estimator for copula introduced in Omelka et al. (2009) is defined for all (u, v) ∈ [0, 1]2 as

Ĉ(T )
n (u, v) =

1

n

n∑
i=1

K

(
φ−1(u)− φ−1(Ûi)

hn

)
K

(
φ−1(v)− φ−1(V̂i)

hn

)
, (1)

where φ : R 7→ [0, 1] is an increasing transformation, and 0 < hn < 1 denotes a bandwidth
sequence. This estimator presents an advantage comparatively to the one proposed in
Fermanian (2004), since it does not depend on the marginal distributions F and G. Indeed,
the marginals of the transformed pseudo-observations, say Ŝi = φ−1(Ûi) and T̂i = φ−1(V̂i),
only depend on the transformation φ which determines their nature. For example, taking
φ equal to the standard Gaussian distribution leads to Gaussian margins ; this procedure
is known as the Probit transformation (see, e.g. Marron and Ruppert (1994) for more
details). Note that the bias problem may be removed under certain regularity conditions on
the function φ ( see, e.g. Omelka et al. (2009) for more details).

A major problem of the estimator defined in (1) is the choice of the bandwidth hn, as
pointed out in Omelka et al. (2009). Indeed, since the asymptotic expressions of the bias
and variance are not tractable, one cannot apply here the plug-in method which minimizes
the asymptotic mean square error to determine the optimal bandwidth. But, one has to ex-
periment other approaches in order to obtain an optimal bandwidth ensuring the consistency
of the estimator. It turns out that deterministic sequences hn are not suitable for many op-
timal bandwidth selectors which often produce data-dependent smoothing parameters. This
motivated us to consider in this paper the following estimator :

Ĉ
(T )
n,h (u, v) =

1

n

n∑
i=1

K

(
φ−1(u)− φ−1(Ûi)

h

)
K

(
φ−1(v)− φ−1(V̂i)

h

)
, (2)

where the deterministic bandwidth hn in (1) is replaced with a variable bandwidth h, that
may depend either on the data or the location point (u, v) at which the copula is estimated.
In the literature, it is found that, for practical use, the most interesting choice for the
bandwidth in kernel distribution function estimation is the data-driven method (see, e.g.
Altman and Léger (1995) ).

Our main purpose here is to establish a uniform in bandwidth law of the iterated logarithm

for the Transformation kernel estimator Ĉ
(T )
n,h defined in (2). We obtain the uniform in band-

width convergence rate of the maximal deviation of this estimator from its expectation by
adapting the methodology developed in Mason and Swanepoel (2011), which utilizes gen-
eral empirical process tools to establish such results for a wide class of kernel-type function
estimators including : kernel density, regression and distribution function estimators. We
also obtain the uniform in bandwidth convergence of the bias to zero, under some smooth
conditions on the copula function C and the transformation φ.
The rest of the paper is organized as follows. In Section 2, we state our main theoretical
results and give their proofs. Section 3 presents a practical method of bandwidth selection
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which relies on a cross-validation criterion inspired by the works in Sard (1993). In Section
4, we make a simulation study with data generated from Archimedean copula. Finally, we
give in Appendix the details of the proof of Proposition 1, which constitutes the fondation
of this paper.

2. Main results and Proofs

Let Rn =
(

n
2 log logn

)1/2
. We shall also assume that the function K(·) is the integral of a

symmetric bounded kernel k(·) supported on [−1, 1] and satisfying the following conditions
:

(K.1)
∫ 1

−1 k(s)ds = 1 ;

(K.2) k(·) is a 2-order kernel ; i.e.,
∫ 1

−1 sk(s)ds = 0 and 0 6=
∫ 1

−1 s
2k(s)ds <∞.

Here are our main results.

Theorem 1. Suppose that the transformation φ admits a bounded derivative φ′. Then, for
any sequence of positive constants (bn)n≥1 satisfying 0 < bn < 1, bn → 0 and bn ≥ (log n)−1,
we have almost surely, for some c > 0,

lim sup
n→∞

{
Rn sup

c logn
n ≤h≤bn

sup
(u,v)∈[0,1]2

∣∣∣Ĉ(T )
n,h (u, v)− EĈ(T )

n,h (u, v)
∣∣∣} ≤ 3. (3)

Theorem 2. Suppose that the copula function C(u, v) has bounded second-order partial
derivatives on [0, 1]2 and the transformation φ admits a bounded derivative φ′. Then, for any
sequence of positive constants (bn)n≥1 satisfying 0 < bn < 1 and

√
nb2n/

√
log log n = o(1),

we have almost surely, as n→∞,

Rn sup
0<h≤bn

sup
(u,v)∈[h,1−h]2

∣∣∣EĈ(T )
n,h (u, v)− C(u, v)

∣∣∣ −→ 0. (4)

Remark.

1) A similar result can be found in Bouzebda (2012) for copula derivatives estimators in the
multivariate case. But in this paper we deal with the Transformation Kernel Estimator
of bivariate copula for which a law of the iterated logarithm is not available yet.

2) The uniformity in h allows us to apply various bandwidth selection rules such as plug-in,
cross-validation or reference distribution methods, provided that the resulting optimal
bandwidth belongs to a suitable interval [an, bn].

3) In Deheuvels and Mason (2004) a local plug-in type estimator ĥn(x) of the bandwidth
h is considered, with the following condition

P(an ≤ ĥn(x) ≤ bn, x ∈ R)→ 1,

where an = c1hn, bn = c2hn, 0 < c1 ≤ c2 < ∞ and hn is a sequence of positive
constants converging to zero. Under slight conditions on the sequence hn, Deheuvels and
Mason (2004) proved probability versions of such results for the density and regression
function estimators which may be applied to construct uniform confidence bands for
these functionals. Note also that this methodology has been applied in Bâ et al. (2015)
to establish simultaneous confidence bands for the bivariate copula, using the local linear
kernel estimator proposed in Chen and Huang (2007).
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Proof. (Theorem 1) We begin by some notation. Recall that Hn, Fn and Gn are the
empirical cumulative distribution functions of H, F and G, respectively. Then the copula
estimator based directly on Sklar’s Theorem (See also ? for a new and direct proof) can be
defined as

Cn(u, v) = Hn(F−1n (u), G−1n (v)),

with F−1n (u) = inf{x : Fn(x) ≥ u} and G−1n (v) = inf{x : Fn(x) ≥ v} the quantile functions
corresponding to Fn and Gn. Denote the bivariate empirical copula process as

Cn(u, v) =
√
n[Cn(u, v)− C(u, v)], (u, v) ∈ [0, 1]2

and introduce the following quantity

C̃n(u, v) =
1

n

n∑
i=1

I{Ui ≤ u, Vi ≤ v}

which represents the uniform bivariate empirical distribution function based on a sam-
ple (U1, V1), · · · , (Un, Vn) of independent and identically distributed random variables with
marginals uniformly distributed on [0, 1]. Define the following empirical process :

C̃n(u, v) =
√
n[C̃n(u, v)− C(u, v)], (u, v) ∈ [0, 1]2.

We have

C̃n(u, v) =
√
n[C̃n(u, v)− Cn(u, v)] +

√
n[Cn(u, v)− C(u, v)]

=
√
n[C̃n(u, v)− Cn(u, v)] + Cn(u, v).

Applying Proposition 1.8 in Deheuvels (2009), we can write

C̃n(u, v)− Cn(u, v) = O

(
1

n

)
;

that is,

C̃n(u, v) = Cn(u, v) +O

(
1√
n

)
. (5)

For every n ≥ 1, 0 < h < 1, set

Dn,h(u, v) := Ĉ
(T )
n,h (u, v)− EĈ(T )

n,h (u, v)

and
gn,h := Ĉ

(T )
n,h (u, v)− C̃n(u, v).

Then, one can write

gn,h =
1

n

n∑
i=1

[
K

(
φ−1(u)− φ−1(Ûi)

h

)
K

(
φ−1(v)− φ−1(V̂i)

h

)
− I{Ui ≤ u, Vi ≤ v}

]

=
1

n

n∑
i=1

[
K

(
φ−1(u)− φ−1(Fn ◦ F−1(Ui))

h

)
K

(
φ−1(v)− φ−1(Gn ◦G−1(Vi))

h

)
− I{Ui ≤ u, Vi ≤ v}

]

=:
1

n

n∑
i=1

g(Ui, Vi, h),

Journal home page: www.jafristat.net, www.projecteuclid.org/as



C. T. Seck, D. Ba and G. S. Lo, Vol. 13 (1), 2018, pages 1551 – 1568. Uniform in Bandwidth Law
of the Iterated Logarithm for a Transformation Kernel Estimator of Copulas. 1556

where g belongs to the class of measurable functions Gn defined as

Gn =
{
g : g(s, t, h) = K

(
φ−1(u)−φ−1(ζ1,n(s))

h

)
K
(
φ−1(v)−φ−1(ζ2,n(t))

h

)
− I{s ≤ u, t ≤ v}, u, v ∈ [0, 1], 0 < h < 1

}
,

(6)
where ζ1,n(s) = Fn ◦ F−1(s) and ζ2,n(t) = Gn ◦G−1(t).

Since EC̃n(u, v) = C(u, v), one can observe that

√
n|gn,h − Egn,h| = |

√
nDn,h(u, v)− C̃n(u, v)|.

Now, we have to apply the main Theorem of Mason and Swanepoel (2011), which gives the
order of convergence of the deviation of kernel-type function estimators from their expecta-
tion. To this end, the above class of functions Gn must satisfy the following four conditions
:

(G.i) There exists a finite constant κ > 0 such that

sup
0≤h≤1

sup
g∈Gn

‖g (·, ·, h)‖∞ = κ <∞.

(G.ii) There exists a constant C ′ > 0 such that for all h ∈ [0, 1],

sup
g∈Gn

E
[
g2 (U, V, h)

]
≤ C ′h.

(F.i) Gn satisfies the uniform entropy condition, i.e.,

∃C0 > 0, ν0 > 0 : N (ε,Gn) ≤ C0ε
−ν0 .

(F.ii) Gn is a pointwise measurable class, i.e there exists a countable sub-class G0 of Gn such
that for all g ∈ G, there exits (gm)m ⊂ G0 such that gm −→ g.

Checking of these conditions will be done in Appendix and constitutes the proof of the
following proposition.

Proposition 1. Suppose that the transformation φ admits a bounded derivative φ′. Then
assuming (G.i), (G.ii), (F.i) and (F.ii), we have for some c > 0, 0 < h0 < 1, with probability
one,

lim sup
n→∞

sup
c logn
n ≤h≤h0

sup
(u,v)∈(0,1)2

|
√
nDn,h(u, v)− C̃n(u, v)|√
h(| log h| ∨ log log n)

= A(c),

where A(c) is a positive constant.

Corollary 1. Under the assumptions of Proposition 1, one has for any sequence of constants
0 < bn < 1, satisfying bn → 0, bn ≥ (log n)−1, with probability one, as n→∞,

sup
c logn
n ≤h≤bn

sup
(u,v)∈(0,1)2

|
√
nDn,h(u, v)− C̃n(u, v)|√

log log n
= O(

√
bn).
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Proof. ( Corollary 1)
First, observe that the condition bn ≥ (log n)−1 implies

| log bn|
log log n

≤ 1. (7)

Next, by the monotonicity of the function x 7→ x| log x| on [0, 1/e], one can write for n large
enough, h| log h| ≤ bn| log bn| and hence,

h(| log h| ∨ log log n) ≤ bn(| log bn| ∨ log log n). (8)

Combining this with Proposition 1, we obtain

sup
c logn
n ≤h≤bn

sup
(u,v)∈(0,1)2

|
√
nDn,h(u, v)− C̃n(u, v)|√
bn log log n

(
| log bn|
log logn ∨ 1

) = O(1).

Thus the Corollary 1 follows from (7).

Now, coming back to the proof of Theorem 1, we have to show that the deviation Dn,h(u, v),
suitably normalized, is almost surely uniformly bounded, as n→∞. To this end, it suffices
to prove that

lim sup
n→∞

sup
c logn
n ≤h≤bn

sup
(u,v)∈[0,1]2

|
√
nDn,h(u, v)|√
2 log log n

≤ 3. (9)

We will make use of an approximation of the empirical copula process Cn by a Kiefer process
(see e.g., Zari (2010), page 100). Let W(u, v, t) denote a 3-parameter Wiener process defined
on [0, 1]2× [0,∞). Then the Gaussian process K(u, v, t) = W(u, v, t)−W(1, 1, t).uv is called
a 3-parameter Kiefer process defined on [0, 1]2 × [0,∞).

By Theorem 3.2 in Zari (2010), there exists a sequence of Gaussian processes
{KC(u, v, n), u, v ∈ [0, 1], n > 0} such that

sup
(u,v)∈[0,1]2

∣∣√nCn(u, v)−K∗C(u, v, n)
∣∣ = O

(
n3/8(log n)3/2

)
,

where

K∗C(u, v, n) = KC(u, v, n)−KC(u, 1, n)
∂C(u, v)

∂u
−KC(1, v, n)

∂C(u, v)

∂v
.

This yields

lim sup
n→∞

sup
(u,v)∈[0,1]2

|Cn(u, v)|√
2 log log n

= lim sup
n→∞

sup
(u,v)∈[0,1]2

|K∗C(u, v, n)|√
2n log log n

. (10)

By the works on the law of the iterated logarithm in Wichura (1973), one has almost surely,
for d = 2,

lim sup
n→∞

sup
(u,v)∈[0,1]2

|K∗C(u, v, n)|√
2n log logn

≤ 3, (11)
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which entails

lim sup
n→∞

sup
(u,v)∈[0,1]2

|Cn(u, v)|√
2 log log n

≤ 3.

Since Cn(u, v) and C̃n(u, v) are asymptotically equivalent in view of (5), one obtains

lim sup
n→∞

sup
(u,v)∈[0,1]2

∣∣∣C̃n(u, v)
∣∣∣

√
2 log log n

≤ 3.

Applying Corollary 1 and recalling the fact that bn → 0, one obtains (9) which completes
the proof of Theorem 1.

Proof. (Theorem 2) Let

Bn,h(u, v) = EĈ(T )
n,h (u, v)− C(u, v).

By hypothesis (K.1) on the kernel k(·), one can write for all (u, v) ∈ [0, 1]2,

C(u, v) =

∫ 1

−1

∫ 1

−1
C(u, v)k(s)k(t)dsdt.

Recall that ζ1,n(Ui) = Ûi = Fn ◦ F−1(Ui) and ζ2,n(Vi) = V̂i = Gn ◦G−1(Vi) . Then we have

EĈ(T )
n,h (u, v) = E

[
K

(
φ−1(u)− φ−1(Ûi)

h

)
K

(
φ−1(v)− φ−1(V̂i)

h

)]

=

∫ 1

−1

∫ 1

−1
EI{Ui ≤ ζ−11,n[φ(φ−1(u)− sh)], Vi ≤ ζ−12,n[φ(φ−1(v)− th)]}k(s)k(t)dsdt

=

∫ 1

−1

∫ 1

−1
C
(
ζ−11,n[φ(φ−1(u)− sh)], ζ−12,n[φ(φ−1(v)− th)]

)
k(s)k(t)dsdt

and

Bn,h(u, v) =

∫ 1

−1

∫ 1

−1

[
C
(
ζ−11,n[φ(φ−1(u)− sh)], ζ−12,n[φ(φ−1(v)− th)]

)
− C(u, v)

]
k(s)k(t)dsdt.

(12)
Making use of Chung’s (1949) law of the iterated logarithm, we can infer that, whenever F
is continuous and admits a bounded density f , for all u ∈ [0, 1], as n→∞,

ζ−11,n(u)− u = F ◦ F−1n (u)− F ◦ F−1(u) = f(cn)[F−1n (u)− F−1(u)], cn ∈ [F−1n (u) ∧ F−1(u), F−1n (u) ∨ F−1(u)]

= O
(√

log log n/2n
)
.

This implies that ζ−11,n(u) is asymptotically equivalent to u. As well, we have ζ−12,n(v) =

G ◦G−1n (v) is asymptotically equivalent to v, for all v ∈ [0, 1] . Thus, for all large n, one can
write

Bn,h(u, v) =

∫ 1

−1

∫ 1

−1

[
C(φ(φ−1(u)− sh), φ(φ−1(v)− th))− C(u, v)

]
k(s)k(t)dsdt+ o(1).
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By applying a 2-order Taylor expansion for the copula function C, we obtain

C(φ(φ−1(u)− sh), φ(φ−1(v)− th))− C(u, v) =

[φ(φ−1(u)− sh)− u]Cu(u, v) + [φ(φ−1(v)− th)− v]Cv(u, v) + [φ(φ−1(u)− sh)− u]2Cuu(u,v)2

+[φ(φ−1(v)− th)− v]2Cvv(u,v)2 + [φ(φ−1(u)− sh)− u][φ(φ−1(v)− th)− v]Cuv(u, v) + o(h2),

where

Cu(u, v) =
∂C

∂u
(u, v) ; Cv(u, v) =

∂C

∂v
(u, v)

and where

Cuu(u, v) =
∂2C

∂u2
(u, v) ; Cvv(u, v) =

∂2C

∂v2
(u, v) ; Cuv(u, v) =

∂2C

∂u∂v
(u, v).

Applying again a 1-order Taylor expansion for the function φ, we get

φ(φ−1(u)− sh)− u = φ(φ−1(u)− sh)− φ(φ−1(u)) = −φ′(φ−1(u))sh+ o(h)

and

φ(φ−1(v)− sh)− v = φ(φ−1(v)− th)− φ(φ−1(v)) = −φ′(φ−1(v))th+ o(h).

Thus

C(φ(φ−1(u)− sh), φ(φ−1(v)− th))− C(u, v) = −φ′(φ−1(u))shCu(u, v)− φ′(φ−1(v))thCv(u, v) + o(h)

+[φ′(φ−1(u))sh]2
Cuu(u, v)

2
+ [φ′(φ−1(v))th]2

Cvv(u, v)

2

+[φ′(φ−1(u))][φ′(φ−1(u))]sth2Cuv(u, v) + o(h2).

Now, by using the fact that k(·) is a 2-order kernel function ; i.e.,
∫ 1

−1 sk(s)ds = 0 and∫ 1

−1 s
2k(s)ds 6= 0, we obtain, by Fubini’s Theorem, that for all (u, v) ∈ [h, 1− h]2,

Bn,h(u, v) =
h2

2

[
φ′(φ−1(u))2Cuu(u, v)

∫ 1

−1
s2k(s)ds+ φ′(φ−1(v))2Cvv(u, v)

∫ 1

−1
t2k(t)dt

]
+o(1).

(13)
Since the second-order partial derivatives Cuu, Cvv and φ′ are assumed to be bounded, we
obtain

sup
0<h≤bn

sup
(u,v)∈[h,1−h]2

Bn,h(u, v) = O(b2n).

Thus (
n

2 log log n

)1/2

sup
0<h≤bn

sup
(u,v)∈[h,1−h]2

Bn,h(u, v) = O

( √
nb2n√

2 log log n

)
= o(1), (14)

which completes the proof of Theorem 2.
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3. Bandwidth choice

As pointed out in Omelka et al. (2009), the choice of the bandwidth for the Transformation

estimator Ĉ
(T )
n,h (u, v) is problematic. Indeed, since the asymptotic expressions of the bias

and variance of this estimator are not tractable, one cannot apply the plug-in method which
relies on the minimization of the asymptotic mean integrated square error. Instead, one may
use a cross-validation method to select an optimal bandwidth for the kernel copula estimator

Ĉ
(T )
n,h (u, v).

Let
Cn(u, v) = Hn(F−1n (u), G−1n (v))

be the empirical copula estimator directly based on Sklar’s Theorem, where Hn, Fn and Gn
represent the empirical cumulative distribution functions of H, F and G, respectively. F−1n

and G−1n are the empirical quantile distributions of F and G. For any couple of pseudo-
observations (Ûi, V̂i ), let

Ĉ
(T )
n,h,−i(u, v) =

1

n− 1

n∑
j=1,j 6=i

K

(
φ−1(u)− φ−1(Ûj)

h

)
K

(
φ−1(v)− φ−1(V̂j)

h

)

denote the leave-(Ûi, V̂i)-out version of Ĉ
(T )
n,h (u, v), computed with all pseudo-observations

except the couple (Ûi, V̂i). By taking a same weight equal to the unity for all pseudo-
observations, we may here define Sarda’s criterion (see, Sard (1993)) as follows :

CV (h) =
1

n

n∑
i=1

[
Ĉ

(T )
n,h,−i(Ûi, V̂i)− Cn(Ûi, V̂i)

]2
. (15)

Let an = c logn
n and (bn) a sequence satisfying conditions of Theorems 1 and 2. The optimal

bandwidth, say ĥopt, is then solution to the following minimization problem :

min
h∈[an,bn]

CV (h).

Since ĥopt must be in the interval [an, bn], then the strong consistency of the estimator

Ĉ
(T )

n,ĥopt
is guarranted by applying Theorems 1 and 2.

4. Simulation study

Here, we give numerical experiments to compare the performances of our Transformation

kernel estimator Ĉ
(T )
n,h constructed separately with two optimal bandwidths, say ĥCV

and ĥOm, selected via the above cross-validation method and the reference distribution
method (see, e.g.Omelka et al. (2009)), respectively. Towards this end, we first determine
graphically the optimal bandwidth for each method by visualizing the curve of its criterion

over h ∈ [an, bn]. In this study, we take an = log n/n (with c=1) and bn =
(

log logn
n2

)1/4
in such a way that Theorems 1 and 2 hold. Thus, for a given sample size n, we may com-
pute the interval [an, bn], which is equal to [0.08, 0.15] for n = 50 and [0.04, 0.11] for n = 100.
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The reference distribution rule proposed in Omelka et al. (2009) is based on the minimization
of the following criterion:∫ ∞

−∞

∫ ∞
−∞

(
Ĥn(x, y)−H(x, y)

)2
h(x, y)dxdy, (16)

where H(x, y) is taken equal to a bivariate normal distribution with density h(x, y), and
Ĥn(x, y) is a bivariate kernel distribution function estimator defined as

Ĥn(x, y) =
1

n

n∑
i=1

K

(
x−Xi

h

)
K

(
y − Yi
h

)
, (17)

where the (Xi, Yi)’s are independent replicae of the random couple (X,Y ). Notice that the
expression in (16) can be seen as the expectation of the quantity [Ĥn(X,Y ) − H(X,Y )]2,
and hence may be approximated by the criterion

Om(h) =
1

n

n∑
i=1

[
Ĥn(Xi, Yi)−H(Xi, Yi)

]2
. (18)

Let us now consider a 0.001-step grid of points in the interval [an, bn] and represent the
curves of the two criteria CV (h) and Om(h) in Figure 1 below. To compute these criteria,

0.04 0.06 0.08 0.10

1e
-0
4

2e
-0
4

3e
-0
4

4e
-0
4

CV curve

Bandwidth h

C
V
(h
)

0.04 0.06 0.08 0.10

0.
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Bandwidth h

O
m
(h
)

Fig. 1. Curves of criteria CV (h) and Om(h) , over h ∈ [an, bn] with n = 100

we generate data from Frank’s copula by using the conditional sampling method for fixed
parameters. Frank’s copula has bounded second-order partial derivatives and is defined for
any given parameter θ ∈ R∗, as

Cθ(u, v) = −1

θ
log

[
1 +

(e−θu − 1)(e−θv − 1)

(e−θ − 1)

]
. (19)
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We also choose the Epanechnikov kernel density k(t) = 0.75(1 − t2)I(|t| ≤ 1) to compute
the integral function K(·), whereas the transformation φ(·) is taken to be the standard
Gaussian distribution.

From Figure 1, we can observe that the cross-validation criterion CV (h) is minimal at value
h = 0.085, while the reference distribution criterion Om(h) reaches its minimum at value

h = 0.045. So, we may take ĥCV = 0.085 and ĥOm = 0.045 as the optimal bandwidths for
CV (h) and Om(h) criteria, respectively.

Now, we estimate the mean square error (mse), with respect to Frank’s copula Cθ, of

our Transformation kernel estimator Ĉ
(T )
n,h (u, v), where h is replaced by ĥCV or ĥOm. To this

end, we replicate B = 1000 samples of size n from Cθ and apply the formula

mse
(
Ĉ

(T )
n,h (u, v)

)
=

1

B

B∑
b=1

(
Ĉ

(T )
n,h,b(u, v)− Cθ(u, v)

)2
,

where Ĉ
(T )
n,h,b(u, v) is the value of Ĉ

(T )
n,h (u, v) obtained with the bth sample. For arbitrary

values of θ = −2, 1, 5 and randomly chosen couples (u, v) ∈ [0, 1]2; we obtain the results in
Table 1 which contains the values of the ratio r defined as

r(u, v) =
mse

(
Ĉ

(T )

n,ĥCV
(u, v)

)
mse

(
Ĉ

(T )

n,ĥOm
(u, v)

) .
This ratio fluctuates around the unity and suggests that the proposed cross-validation
method is as performant as the distribution reference method in selecting the optimal band-
width for the Transformation kernel estimator of bivariate copula. We also observe that
for negative values of θ, our cross-validation method seems to be better than the reference
distribution rule, because the ratio r is most of the time less than the unity.

θ = −2 θ = 1 θ = 5

(u, v) n = 50 n = 100 n = 50 n = 100 n = 50 n = 100

(0.48, 0.25) 0.59 0.93 1.03 0.97 0.83 1.16

(0.12, 0.80) 1.73 0.95 1.02 0.80 1.03 1.10

(0.35, 0.68) 0.85 0.45 0.95 0.81 1.27 2.05

(0.73, 0.21) 1.26 1.09 1.48 1.00 0.79 0.89

(0.84, 0.44) 0.38 0.63 1.12 0.69 1.06 1.86

(0.14, 0.67) 0.89 1.02 1.16 0.07 0.82 1.00

(0.29, 0.25) 0.53 0.81 0.91 0.98 0.71 1.70

(0.57, 0.50) 0.70 0.62 1.48 1.03 1.31 0.62

Table 1. Values of the ratio r for some couples (u, v).
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Appendix

Proof. (Proposition 1)
Recall that K(·, ·) is the integral of a symmetric bounded multiplicative kernel
k(s, t) = k(s)k(t), supported on [−1, 1]2; i.e., K(x, y) =

∫ x
−∞

∫ y
−∞ k(s, t)dsdt. We

have to check (G.i), (G.ii), (F.i) and (F.ii).

Checking for (G.i): Recall that (Ui, Vi), i ≥ 1 are iid random variables uniformly dis-
tributed on [0, 1]2, ζ1,n(Ui) = FnoF

−1(Ui) and ζ2,n(Vi) = GnoG
−1(Vi). For any function

g ∈ Gn and 0 < h < 1, we can write

g (Ui, Vi, h) = K

(
φ−1(u)− φ−1(ζ1,n(Ui))

h

)
K

(
φ−1(v)− φ−1(ζ2,n(Vi))

h

)
− I{Ui ≤ u, Vi ≤ v}

=

∫ φ−1(u)−φ−1(ζ1,n(Ui))

h

−∞

∫ φ−1(v)−φ−1(ζ2,n(Vi))

h

−∞
k(s, t)dsdt− I{Ui ≤ u, Vi ≤ v}

=

∫ 1

−1

∫ 1

−1
I
{
Ui ≤ ζ−11,n ◦ φ(φ−1(u)− th), Vi ≤ ζ−12,n ◦ φ(φ−1(v)− sh)

}
k(s, t)dsdt

−I{Ui ≤ u, Vi ≤ v}

≤
∫ 1

−1

∫ 1

−1
k(s, t)dsdt− I{Ui ≤ u, Vi ≤ v} ≤ 4‖k‖2 + 1,

where ‖k‖ = sup
(s,t)∈[−1,1]2

|k(s, t)| represents the supremum norm on [−1, 1]2. Thus (G.i)

holds by taking κ := 4‖k‖2 + 1.

Checking for (G.ii): We have to show that sup
g∈Gn

Eg2(U, V, h) ≤ C ′h, where C ′ is a positive

constant. One can write

Eg2(U, V, h) = E
[
K
(
φ−1(u)−φ−1(ζ1,n(U))

h

)
K
(
φ−1(v)−φ−1(ζ2,n(V ))

h

)
− I{U ≤ u, V ≤ v}

]2
= E

[
K2
(
φ−1(u)−φ−1(ζ1,n(U))

h

)
K2
(
φ−1(v)−φ−1(ζ2,n(V ))

h

)]
−2E

[
K
(
φ−1(u)−φ−1(ζ1,n(U))

h

)
K
(
φ−1(v)−φ−1(ζ2,n(V ))

h

)
I{U ≤ u, V ≤ v}

]
+ C(u, v)

=: A− 2B + C(u, v) .

Since the function K(·, ·) is a kernel of a distribution function, we may assume that it takes
its values in [0, 1]. Then, we can use the inequality K2(x, y) ≤ K(x, y) to bound up the term
A in the right hand side of the previous equality.

A = E
[
K2
(
φ−1(u)−φ−1(ζ1,n(U))

h

)
K2
(
φ−1(v)−φ−1(ζ2,n(V ))

h

)]
≤ E

[
K
(
φ−1(u)−φ−1(ζ1,n(U))

h

)
K
(
φ−1(v)−φ−1(ζ2,n(V ))

h

)]
≤ E

[∫ 1

−1
∫ 1

−1 I
{
U ≤ ζ−11,n ◦ φ(φ−1(u)− sh), V ≤ ζ−12,n ◦ φ(φ−1(v)− th)

}
k(s, t)dsdt

]
.
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The other term B can be written into

B = E
[
K
(
φ−1(u)−φ−1(ζ1,n(U))

h

)
K
(
φ−1(v)−φ−1(ζ2,n(V ))

h

)
I{U ≤ u, V ≤ v}

]
= E

[∫ 1

−1
∫ 1

−1 I
{
s ≤ φ−1(u)−φ−1(ζ1,n(U))

h , t ≤ φ−1(v)−φ−1(ζ2,n(V ))
h

}
I{U ≤ u, V ≤ v}k(s, t)dsdt

]
= E

[∫ 1

−1
∫ 1

−1 I
{
U ≤ u ∧ ζ−11,n ◦ φ(φ−1(u)− sh), V ≤ v ∧ ζ−12,n ◦ φ(φ−1(v)− th)

}
k(s, t)dsdt

]
,

where x ∧ y = min(x, y). Note that

C(u, v) =

∫ 1

−1

∫ 1

−1
C(u, v)k(s, t)dsdt,

as the kernel k(·, ·) satisfies
∫ 1

−1
∫ 1

−1 k(s, t)dsdt = 1. Thus

Eg2(U, V, h) ≤ E
[∫ 1

−1
∫ 1

−1 I
{
U ≤ ζ−11,n ◦ φ(φ−1(u)− sh), V ≤ ζ−12,n ◦ φ(φ−1(v)− th)

}
k(s, t)dsdt

]
−2E

[ ∫ 1

−1
∫ 1

−1 I
{
U ≤ u ∧ ζ−11,n ◦ φ(φ−1(u)− sh), V ≤ v ∧ ζ−12,n ◦ φ(φ−1(v)− th)

}
k(s, t)dsdt

]
+
∫ 1

−1
∫ 1

−1 C(u, v)k(s, t)dsdt.

By using the same arguments (Chung’s (1949) LIL ) as in the proof of Theorem 2, we can
write for all large n,

Eg2(U, V, h) ≤ E
[∫ 1

−1
∫ 1

−1 I
{
U ≤ φ(φ−1(u)− sh), V ≤ φ(φ−1(v)− th)

}
k(s, t)dsdt

]
−2E

[∫ 1

−1
∫ 1

−1 I
{
U ≤ u ∧ φ(φ−1(u)− sh), V ≤ v ∧ φ(φ−1(v)− th)

}
k(s, t)dsdt

]
+
∫ 1

−1
∫ 1

−1 C(u, v)k(s, t)dsdt+ o(1).

That is,

Eg2(U, V, h) ≤
∫ 1

−1

∫ 1

−1
C
(
φ(φ−1(u)− sh), φ(φ−1(v)− th)

)
k(s, t)dsdt

−2

∫ 1

−1

∫ 1

−1
C
(
u ∧ φ(φ−1(u)− sh), v ∧ φ(φ−1(v)− th)

)
k(s, t)dsdt (20)

+

∫ 1

−1

∫ 1

−1
C(u, v)k(s, t)dsdt+ o(1).

Now, we have to discuss condition (G.ii) in the four following cases:

Case 1. u∧ φ(φ−1(u)− sh) = φ(φ−1(u)− sh) and v ∧ φ(φ−1(v)− th) = φ(φ−1(v)− th).
In this case the second member of inequality (20) is reduced, and we have

Eg2(U, V, h) ≤ −
∫ 1

−1

∫ 1

−1
C
(
φ(φ−1(u)− sh), φ(φ−1(v)− th)

)
k(s, t)dsdt

+

∫ 1

−1

∫ 1

−1
C(u, v)k(s, t)dsdt+ o(1)

≤
∫ 1

−1

∫ 1

−1

[
C(u, v)− C

(
φ(φ−1(u)− sh), φ(φ−1(v)− th)

)]
k(s, t)dsdt+ o(1).
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By a Taylor expansion for the copula function C, we have

C(u, v)− C(φ(φ−1(u)− sh), φ(φ−1(v)− th)) = [u− φ(φ−1(u)− sh)]Cu(u, v)

+ [v − φ(φ−1(v)− th)]Cv(u, v) + o(h).

Applying again a Taylor-Young expansion for the function φ, we obtain

u− φ(φ−1(u)− sh) = φ(φ−1(u))− φ(φ−1(u)− sh) = φ′(u)sh+ o(h)

and
v − φ(φ−1(v)− sh) = φ(φ−1(v))− φ(φ−1(v)− th) = φ′(v)th+ o(h).

Thus

Eg2(U, V, h) ≤
∫ 1

−1

∫ 1

−1
[φ′(u)Cu(u, v)h+ φ′(v)Cv(u, v)h] k(s, t)dsdt

≤ 4h [‖Cu‖+ ‖Cv‖] sup
x∈R
|φ′(x)|‖k‖.

Taking C ′ = 4 [‖Cu‖+ ‖Cv‖] ‖φ′‖ ‖k‖ gives condition (G.ii).

Case 2. u ∧ φ(φ−1(u)− sh) = u and v ∧ φ(φ−1(v)− th) = v.
Here, inequality (20) is reduced to

Eg2(U, V, h) ≤
∫ 1

−1

∫ 1

−1

[
C
(
φ(φ−1(u)− sh), φ(φ−1(v)− th)

)
− C(u, v)

]
k(s, t)dsdt+ o(1).

Using the same arguments as in Case 1, we obtain condition (G.ii),with C ′ =
4 [‖Cu‖+ ‖Cv‖] ‖φ′‖ ‖k‖.

Case 3. u ∧ φ(φ−1(u)− sh) = φ(φ−1(u)− sh) and v ∧ φ(φ−1(v)− th) = v.
Here, inequality (20) is rewritten into

Eg2(U, V, h) ≤
∫ 1

−1
∫ 1

−1 C
(
φ(φ−1(u)− sh), φ(φ−1(v)− th)

)
k(s, t)dsdt

−2
∫ 1

−1
∫ 1

−1 C
(
φ(φ−1(u)− sh), v

)
k(s, t)dsdt+

∫ 1

−1
∫ 1

−1 C(u, v)k(s, t)dsdt+ o(1)

≤
∫ 1

−1
∫ 1

−1
[
C
(
φ(φ−1(u)− sh), φ(φ−1(v)− th)

)
− C

(
φ(φ−1(u)− sh), v

)]
k(s, t)dsdt

−
∫ 1

−1
∫ 1

−1
[
C
(
φ(φ−1(u)− sh), v

)
− C(u, v)

]
k(s, t)dsdt+ o(1).

By applying successively a Taylor expansion for C and for φ, we get

Eg2(U, V, h) ≤
∫ 1

−1

∫ 1

−1
Cv
(
φ(φ−1(u)− sh), θ1

) [
φ(φ−1(v)− th)− φ(φ−1(v))

]
k(s, t)dsdt

−
∫ 1

−1

∫ 1

−1
Cu (θ2, v)

[
φ(φ−1(u)− sh)− φ(φ−1(u))

]
k(s, t)dsdt+ o(1)

≤
∫ 1

−1

∫ 1

−1
Cv
(
φ(φ−1(u)− sh), θ1

)
φ′(γ1).(−th)k(s, t)dsdt

−
∫ 1

−1

∫ 1

−1
Cu (θ2, v)φ′(γ2).(−sh)k(s, t)dsdt+ o(1),
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where θ1 ∈
(
φ(φ−1(v)− th), v

)
; θ2 ∈

(
φ(φ−1(u)− sh), u

)
; γ1 ∈(

φ−1(v)− th, φ−1(v)
)

; γ2 ∈
(
φ−1(u)− sh, φ−1(u)

)
.

This implies

Eg2(U, V, h) ≤ 4h ‖Cv‖ ‖φ′‖ ‖k‖2 |t|+ 4h ‖Cu‖ ‖φ′‖ ‖k‖ |s|
≤ 4h ‖φ′‖ ‖k‖ (‖Cv‖+ ‖Cu‖) .

Thus condition (G.ii) holds, with C ′ = 4 ‖φ′‖ ‖k‖ (‖Cv‖+ ‖Cu‖) .

Case 4. u ∧ φ(φ−1(u)− sh) = u and v ∧ φ(φ−1(v)− th) = φ(φ−1(v)− th).
This case is analogous to Case 3, where the roles of u and v are interchanged. Hence,
condition (G.ii) is fulfilled, with the same constant C ′ = 4 ‖φ′‖ ‖k‖ (‖Cv‖+ ‖Cu‖) .

Checking for (F.i):We have to check the uniform entropy condition for the class Gn
defined in (6).
To this end, we introduce the following classes of functions, where ϕ is a fixed non-decreasing
function :

F =
{
x 7→ m−ϕ(x)

h , 0 < h < 1, m ∈ R
}

K0 =

{
x 7→ K

(
m− ϕ(x)

h

)
, 0 < h < 1, m ∈ R

}
K =

{
(x, y) 7→ K

(
m− ϕ(x)

h

)
K

(
m− ϕ(y)

h

)
, 0 < h < 1, m ∈ R

}
H =

{
(x, y) 7→ K

(
m− ϕ(x)

h

)
K

(
m− ϕ(y)

h

)
− I {x ≤ u, y ≤ v} ; 0 < h < 1, m ∈ R, (u, v) ∈ [0, 1]2

}
.

It is clear that by applying successively Lemmas 2.6.15 and 2.6.18 in van der Vaart and
Wellner (1996), pages 146-147, the sets of functions F and K0 are VC-subgraph classes.
Theorem 2.6.7 of the same reference implies that the class K0 admits a uniform polynomial
covering number. Then applying Lemma A.1 in Einmahl and Mason (2000), we can infer
that K is a class of functions with a uniform polynomial covering number too. It follows from
this that the class H admits a uniform polynomial covering number. Since H and Gn have
the same structure, we conclude that Gn satisfies this property too ; i.e. Gn fulfills condition
(F.i).
Checking for (F.ii):
Define the class of functions

G0 =
{

(s, t) 7→ K
(
φ−1(u)−φ−1(ζ1,n(s))

h

)
K
(
φ−1(v)−φ−1(ζ2,n(t))

h

)
− I{s ≤ u, t ≤ v}, u, v ∈ [0, 1] ∩Q, 0 < h < 1

}
It’s clear that G0 is countable and G0 ⊂ Gn. Let g ∈ Gn,

g(s, t) = K

(
φ−1(u)− φ−1(ζ1,n(s))

h

)
K

(
φ−1(v)− φ−1(ζ2,n(t))

h

)
−I{s ≤ u, s ≤ v}, ∀(s, t) ∈ [0, 1]2

and for m ≥ 1,

gm(s, t) = K

(
φ−1(um)− φ−1(ζ1,n(s))

h

)
K

(
φ−1(vm)− φ−1(ζ2,n(y))

h

)
−I{s ≤ um, t ≤ vm},
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where um = 1
m2 [m2u] + 1

m2 and vm = 1
m2 [m2v] + 1

m2 .

Let αm = um − u, βm = vm − v. Then, we have 0 < αm ≤
1

m2
and 0 < βm ≤

1

m2
.

Hence um ↘ u and vm ↘ v. By continuity, φ−1(um) ↘ φ−1(u) and φ−1(vm) ↘ φ−1(v).
Define

δm,u =

(
φ−1(um)− φ−1(ζ1,n(s))

h

)
−
(
φ−1(u)− φ−1(ζ1,n(s))

h

)
=
φ−1(um)− φ−1(u)

h

and

δm,v =

(
φ−1(vm)− φ−1(ζ2,n(t))

h

)
−
(
φ−1(v)− φ−1(ζ2,n(t))

h

)
=
φ−1(vm)− φ−1(v)

h
.

Then δm,u ↘ 0 and δm,v ↘ 0, which are equivalent to(
φ−1(um)− φ−1(ζ1,n(s))

h

)
↘
(
φ−1(u)− φ−1(ζ1,n(s))

h

)
and (

φ−1(vm)− φ−1(ζ2,n(t))

h

)
↘
(
φ−1(v)− φ−1(ζ2,n(t))

h

)
.

By right-continuity of the kernel K(·), we obtain for all (s, t) ∈ [0, 1]2,

gm(s, t) −→ g(s, t), m→∞

and conclude that Gn is pointwise measurable class.
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