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Abstract. A number of methods have been introduced in order to measure the inequality in
various situations such as income and expenditure. In order to curry out statistical inference,
one often needs to estimate the available measures of inequality. Many estimators are avail-
able in the literature, the most used ones being the non parametric estimators. Kpanzou
(2011) has developed semi-parametric estimators for measures of inequality and showed that
these are very appropriate especially for heavy tailed distributions. In this paper we apply
such semi-parametric methods to a practical data set and show how they compare to the non
parametric estimators. A guidance is also given on the choice of parametric distributions to
fit in the tails of the data.
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Résumé. Des méthodes ont été introduites en vue de mesurer l’inégalité dans diverses situa-
tions comme, par exemple, dans la répartition du revenu. Pour faire de l’inférence statistique,
l’on a souvent besoin d’estimer les mesures d’inégalité disponibles. Des estimateurs ont été
developpés, les plus utilisés étant les estimateurs non paramétriques. Kpanzou (2011) a
developpé des estimateurs semi-paramétriques, estimateurs qui sont beaucoup plus appro-
priés surtout quand l’on a à traiter avec les distributions à queue épaisse. Dans cet article,
nous appliquons ces estimateurs semi-paramétriques à des données de la vie réelle et les
comparons à leurs équivalents non paramétriques. Une indication est aussi donnée sur le
choix des distributions paramétriques à ajuster à la queue.

1. Introduction

An area of application of the statistical methods is that of measures of inequality. These
are very popular in economics and have applications in many other branches of Science,
see e.g. EU-SILC (2004); Hullinger and Schoch (2009); Allison (1978). In order to curry
out statistical inference, one often needs to estimate the available measures of inequality,
namely the Gini, the Generalised entropy, the Atkinson, the quintile share ratio, just to
mention a few. Many estimators are available in the literature, the most used ones being
the non parametric estimators. Details on the definitions of inequality measures as well
as non parametric estimators can be found in, e.g., Cowell and Flachaire (2007), Langel
and Tillé (2011), Kpanzou (2011), Kpanzou (2014) and Kpanzou (2015). Further on
inequality and poverty measures can be found in Lo (2013) and Lo and Mergane (2013).

Kpanzou (2011) has developed semi-parametric estimators for measures of inequality
and showed that these are very appropriate especially for heavy tailed distributions. In
this paper we apply such semi-parametric methods to a practical data set and show how
they compare to the non parametric estimators. A guidance is also given on the choice of
parametric distributions to fit in the tails of the data. The data used are claims data from
a South African short term insurer.

The remainder of the paper is organized as follows. In Section 2, we briefly describe the
semi-parametric methods used. Results on application to the aforementioned data set are
given in Section 3. We give some concluding remarks in Section 4.

2. Methodology

In this section we present the semi-parametric estimation method. The procedure relies on
the estimation of the underlying distribution in a semi-parametric setting.

Define a semi-parametric distribution function by

F̃ (x) =

{
F (x), x ≤ x0,
F (x0) + (1− F (x0))Fθ(x), x > x0,

(1)

for a given x0, where Fθ is a parametric distribution satisfying the condition Fθ(x0) = 0,
and F is an unknown distribution. Note that θ can be a vector parameter. Choose
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x0 = Q(F, 1− α), α ∈ [0, 1], where Q denotes the quantile function associated with F .

We then have

F (x0) + (1− F (x0))Fθ(x) = 1− α+ (1− (1− α))Fθ(x)

= 1− α+ αFθ(x)

= 1− α(1− Fθ(x)).

It follows that

F̃ (x) =

{
F (x), x ≤ Q(F, 1− α),

1− α(1− Fθ(x)), x > Q(F, 1− α),
(2)

where Fθ satisfies the condition Fθ(Q(F, 1− α)) = 0.

Estimating θ by θ̂, and estimating F by the empirical distribution function Fn, we estimate
the underlying distribution semi-parametrically as

F̃n(x) =

{
Fn(x), x ≤ Q(Fn, 1− α),

1− α(1− Fθ̂(x)), x > Q(Fn, 1− α).
(3)

Equation (3) is very important as it estimates the underlying distribution. However, a
choice of the parametric distribution Fθ is required in order to make the estimation process
possible. We address that issue by making use of results from Extreme Value Theory
(EVT). See e.g. Beirlant et al. Beirlant et al. (2004) for these results.

Given a certain threshold u, we consider the conditional distribution of the exceedance of u
given that u was exceeded. We consider two types of exceedances:

1. X − u given X > u (absolute exceedance).
2. X/u given X > u (relative exceedance).

From EVT, if F belongs to the domain of attraction of the generalized extreme value dis-
tribution, the following limiting results hold when u→∞.

1. The distribution of X−u|X > u converges to the generalized Pareto distribution (GPD)

G(x;σ, γ) = 1−
(

1 +
γx

σ

)− 1
γ

, x > 0, (4)

where σ > 0 is the scale parameter and γ > 0 is the extreme value index (EVI).
2. The distribution of X/u|X > u converges to the strict Pareto (Pa) distribution

FP (x) = 1− x−
1
γ , x > 1, γ > 0, (5)

where γ is the EVI.
3. A second order approximation of the distribution of the relative exceedance is the per-

turbed Pareto distribution (PPD) defined by the survival function

G(x; γ, c, τ) = 1−G(x; γ, c, τ) = (1− c)x−1/γ + cx−1/γ−τ , (6)

where x > 1, γ > 0, τ > 0 and c ∈ (−1/τ, 1). The idea here is to fit such a PPD to
the relative exceedance, aiming for a more accurate estimation of the unknown tail. See
Beirlant et al. (2004) for more details.
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Once the semi-parametric estimators for the distribution function are obtained, we plug
them in the functional form of the inequality measures to obtain their SP estimators.
Here we only give the estimator for Gini when fitting the GPD in order to illustrate the
procedures we are aiming to apply.

Recall that given a distribution function F of a random variable X with mean µ, the ordinary
Gini coefficient can be defined as

IG =
1

µ

∫ ∞
0

F (x)(1− F (x))dx. (7)

Consider a random sample X1, X2, . . . , Xn from F , with associated order statistics X1,n ≤
X2,n ≤ . . . ≤ Xn,n, and suppose the threshold above which a parametric distribution is
fitted is x0 = Q(F, 1− α). The Gini coefficient is then estimated semi-parametrically as

ÎSPG =
1

µ̂

∫ ∞
0

F̃n(x)(1− F̃n(x))dx, (8)

where F̃n is given in Equation (3), and µ̂ is the estimator of µ using F̃n, that is

µ̂ =

∫ ∞
0

xdF̃n(x). (9)

Estimate the threshold u by Xn−k,n, and assume that for a large n, the GPD is a reason-
able approximation to the distribution of the exceedances Xn−k+1,n −Xn−k,n, Xn−k+2,n −
Xn−k,n, . . . , Xn,n −Xn−k,n for a given k. A semi-parametric estimator for IG is then given
by

ÎSPG =
1

µ̂

n−k−1∑
i=1

i

n
(1− i

n
)(Xi+1,n −Xi,n) +

kσ̂ [2n− k − γ̂(n− k)]

n2µ̂(1− γ̂)(2− γ̂)
, (10)

where σ̂ and γ̂ are estimators for the unknown scale and shape parameters σ and γ of the
GPD using the exceedances, with γ̂ < 1, and

µ̂ =
1

n

n−k∑
i=1

Xi,n +
k

n

(
Xn−k,n +

σ̂

1− γ̂

)
(11)

is an estimator for µ.

Theoretical details and other estimators can be found in Kpanzou (2011). We remind that
the aim of this work is to show how the semi-parametric methods can be applied to real life
data, and so we direct the reader to the previous reference for all the theoretical derivations.

3. Numerical applications and interpretations

Here we consider claims data from a South African short term insurer. These consist of a
portfolio of claims from 1 July 2004 to 21 July 2006. The dates used, were the dates the
claims occurred, and not the dates the claims were registered. The claim amounts were the
total claim amounts and any excesses paid by the client were ignored. The claim amounts
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Fig. 1. Histogram and Boxplot for Portfolio data

were adjusted for inflation to July 2006 as base month. Finally, any negative or zero claim
amounts were deleted from the data set. Negative amounts occur if, for instance, the value
of the items salvaged from the wreck exceeds the claim amount in value. The final sample
size is 16104. We will refer to the data set as Portfolio.

The histogram and the boxplot for the data are shown in Fig. 1., giving an idea of the tails
of the distribution.
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Table 1. Descriptive statistics for the Portfolio data set

Sample size n Median MAD Maximum

Portfolio 16104 3268.5050 2951.3525 835567.7000

Table 2. Non parametric estimates of inequality measures for Portfolio data set

Gini GE0 A1 QSR

Portfolio 0.5767 0.7070 0.5069 34.8292

Table 3. Non parametric and semi-parametric estimates of inequality measures for Portfolio
data set

Portfolio NP SPGPD SPPa SPPPD

Gini 0.5767 0.5923 0.5145 0.5850

GE0 0.7070 0.7499 0.6999 0.7453

A1 0.5069 0.5276 0.5034 0.5072

QSR 34.8292 36.6990 34.4200 34.9122

We see from Fig. 1. that the data have heavy tails and so we can use them to illustrate
our methods. Table 1 gives some descriptive statistics (Median, Median Absolute Deviation
(MAD) and maximum value).

We next give the estimates of the inequality measures, starting with the non parametric
ones summarised in Table 2.

The semi-parametric estimates for the inequality measures using the methods described in
Section 2 (fitting the GPD, the strict Pareto and the PPD in the tails) are now calculated.
We use 10% of the data (upper order statistics) in each case both to estimate the parameters
in the tail distribution and to fit that distribution. For comparison purposes we put together
both the non parametric and semi-parametric estimates. The results are given in Table 3.
We only show these for the Gini coefficient, the generalised entropy with parameter 0 (GE0),
the Atkinson with parameter 1 (A1) and the quintile share ratio (QSR). The non parametric
estimators are denoted by NP, the semi-parametric (SP) ones by SPGPD (when fitting the
GPD in the tails), SPPa (when fitting the Pa) and SPPPD (when fitting the PPD).

We see from these tables that the SP estimates are not far away from the NP estimates. The
interpretation is that for the portfolio data considered, we have a high level of inequality in
the distribution. In fact, Gini is around 60%, GE0 around 70%, A1 around 50%, and the
QSR shows that the 20% upper claims are worth 35 times the 20% lowers claims. For the
interpretation of inequality measures, see e.g. Creedy (2014).

However, the advantage of using the semi-parametric estimators relies on the fact that
they are more resistant to extreme values in the data, as shown by Kpanzou (2011). In
addition, although we do not show confidence intervals in this paper, note that the coverage
probabilities are very satisfactory for confidence intervals based on SP methods. This is
also demonstrated in Kpanzou (2011).
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Table 4. Measure of representativeness

X R(X,GPD) R(X,Pa) R(X,PPD)

Portfolio 0.97362 0.99987 0.99988

The question that is now raised is how one can choose the right parametric distribution
to fit in the tails. Such a choice is done among the GPD, the Pa and the PPD. In order
to decide which one to use in a specific application, we suggest the use of a measure of
representativeness of the sample to each distribution. In our applications, we use the one
given by Bertino (2006). Below is the description of that measure.

Let X = (X1, X2, . . . , Xn) be a simple random sample of size n from a distribution F and
denote by X1,n ≤ X2,n ≤ . . . ≤ Xn,n its associated order statistics. A representativeness
index is given by

R(X,F ) = 1− 12n

4n2 − 1

n∑
i=1

(
F (Xi.n)− 2i− 1

2n

)2

. (12)

This index is used to measure how well the sample X represents its parent distribution.
Therefore, it can be used to select the model one should use when having to choose between
a number of different models.

In our case, we use the measure to decide between the three parametric choices, GPD,
strict Pareto and PPD. To do this we calculate R(X,GPD), R(X,Pa) and R(X,PPD),
and the largest value determines the preferred distribution to use.

Applying the measure of representativeness to 10% of the upper values of the Portfolio data
considered, we obtain the results in Table 4.
These results show that the strict Pareto and the PPD are well represented by the
data in the tails and so either of them can be used. The corresponding estimators are
the most reliable, and should be considered for assessing the inequality in the given situation.

Given a practical data set, in order to use a semi-parametric method, a two-step approach
would be to first determine which of the three parametric distributions to use in the tail
estimation. The corresponding semi-parametric procedure can then be used as a preferred
choice to estimate the desired measures.

4. Conclusions

In this paper we have illustrated the application of semi-parametric estimators to real
life data. Such estimators indeed perform very well, especially in the case of heavy
tailed distributions. They are based on semi-parametric estimators of the underlying
distribution using results from Extreme Value Theory. As the name indicates, a part of
a semi-parametric estimator is made up with non parametric estimation and the other
part (the tails) with parametric estimation. Three options have been considered for fitting
such parametric distributions, namely the generalized Pareto, the strict Pareto and the
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perturbed Pareto. Given a data set, one therefore needs to decide which one of the three
he should use for the estimation. We have addressed this question by suggesting the use of
the measure of representativeness proposed by Bertino (2006). In order to illustrate the
way one should use it, this measure has also been applied to the portfolio data set considered.

From the analysis done in this paper, we make the following recommendations. Suppose one
has a data set from a heavy tailed distribution. Then:

(i) Choose a threshold above which a particular distribution fits well (we have the three
possibilities mentioned above);

(ii) Use the measure of representativeness to choose the best fitting distribution;
(iii) Calculate the estimates of the inequality measures using the estimators corresponding

to the distribution obtained in (ii).

Applying this procedure guarantees, to some extent, that the conclusions drawn from the
analysis will be more reliable.
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