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Abstract. Let X be an infinite dimensional complex vector space. We show
that a non-constant endomorphism of X has a proper hyperinvariant subspace
if and only if its spectrum is non-void. As an application we show that each
non-constant continuous endomorphism of the locally convex space (s) of all
complex sequences has a proper closed hyperinvariant subspace.

1. Introduction

In a short note Schaefer [3] has observed that any linear map from an infinite
dimensional complex vector space into itself has a proper invariant linear sub-
space. A similar result concerning hyperinvariant subspaces we obtain here. The
presented here proof of this result is simple and can be offered during the first
course of linear algebra. Nevertheless the result is new. We apply this result for
obtaining a simpler proof of the result already observed in [6], which states that
all non-constant continuous endomorphisms of the locally convex space (s) of all
complex sequences have proper closed hyperinvariant subspaces (Corollary 2.3).

2. The results

Denote by L(X) the family (algebra) of all linear maps (operators) from a
vector space X into itself. The spectrum σ(T ) of an operator T ∈ L(X) is
defined as

σ(T ) = {λ ∈ C : T − λI ∈ L(X)−1},
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144 W. ŻELAZKO

where I is the identity map on X and L(X)−1 is the set of all invertible maps in
L(X). The commutant T ′ is the set {S ∈ L(X) : ST = TS} and a hyperinvariant
subspace for T is a linear subspace X0 ⊂ X which is an invariant subspace for all
operators in T ′, i.e. SX0 ⊂ X0 for all S in T ′. Such a subspace is said proper if
(0) 6= X0 6= X. Call T in L(X) non-constant if T 6= λI for all scalars λ. Clearly,
any constant operator has no proper hyperinvariant subspace. Our result reads
as follows.

Theorem 2.1. Let X be an infinite dimensional complex vector space and let T
be a non-constant operator in L(X). Then T has a proper hyperinvariant subspace
X0 if and only if the spectrum σ(T ) is non-void.

Proof. Assume first that λ0 ∈ σ(T ), so that either T − λ0I is not one-to-one, or
it is not a map onto. In the first case the kernel

X0 = {x ∈ X : (T − λ0I)x = 0}
is a non-zero vector subspace of X, and since T is non-constant, it is also different
from X. Thus X0 is a proper subspace of X. For an arbitrary S in T ′ and x in
X0 we have

0 = S(T − λ0I)x = (T − λ0I)Sx,

so that Sx ∈ X0. Thus X0 is invariant for all S in T ′.
In the case when the operator T − λ0I is one-to-one but not onto, the vector

subspace
X0 = (T − λ0I)X

is proper, and for any S in T ′ we have

SX0 = S(T − λ0I)X = (T − λ0I)SX ⊂ (T − λ0I)X = X0.

Thus X0 is hyperinvariant for T .
It remains to be shown that if σ(T ) is void, then T has no proper hyperinvari-

ant subspace. Suppose then, that T has such a subspace X0 and try to get a
contradiction. Since σ(T ) = ∅, then for each non-zero complex rational function
ϕ the operator ϕ(T ) is a well defined element of L(X)−1. Denote by Q the set
(field) of all complex rational functions and by Q(T ) the set of all operators of
the form ϕ(T ). Clearly Q(T ) ⊂ T ′. Fix now a non-zero element x0 in X0 and put

Y0 = Q(T )x0 = {Sx0 : S ∈ Q(T )}.
Thus Y0 is a non-zero vector subspace of X0. Since X0 is proper, there is an
element x1 ∈ X \ X0. Put Y1 = Q(T )x1, it is a non-zero vector subspace of X.
We have

Y0 ∩ Y1 = (0),

otherwise ϕ0(T )x0 = ϕ1(T )x1 for some non-zero ϕ0, ϕ1 ∈ Q, and consequently
x1 = ϕ1(T )−1ϕ0(T )x0 ∈ Y0 ⊂ X0, which is a contradiction. �

Observe now, that we can treat X not only as a complex vector space, but also
as a vector space over the field Q, if we define there the scalar multiplication by
the formula

ϕx = ϕ(T )x, (ϕ ∈ Q, x ∈ X).
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With this interpretation, the elements x0 and x1 are Q-linearly independent,
and the subspaces Y0 and Y1 are Q-one dimensional. The elements x0 and x1

can be imbedded into a Q-Hamel basis (xα) for X treated as a Q-vector space.
Consequently we obtain a Q-direct sum decomposition

X = Y0 + Y1 + Y2, (2.1)

where Y2 is the Q-span of (xα)\{x0, x1} (it can happen that Y2 is the zero-subspace
of X). In particular we have

QYi = Yi (i = 0, 1, 2). (2.2)

Denote by LQ(X) the set of all Q-linear operators on X, i.e. the set of all
operators S in L(X) satisfying

Sϕx = ϕSx, x ∈ X, ϕ ∈ Q.

Clearly LQ(X) ⊂ T ′ (in fact LQ(X) = T ′). By the decomposition (2.1) we can
write every element x in X in the form

x = ϕ
(x)
0 x0 + ϕ

(x)
1 x1 + y2, ϕ

(x)
0 , ϕ

(x)
1 ∈ Q, y2 ∈ Y2. (2.3)

Define an operator S0 in L(X) setting for an x of the form (2.3)

S0(x) = ϕ
(x)
0 x1 + ϕ

(x)
1 x0 .

By the formulas (2.1), (2.2) and (2.3) it is a well defined operator in LQ(X) ⊂ T ′.
Since the subspace X0 is hyperinvariant for T and x0 ∈ X0, we have S0x0 ∈ X0.
But S0(x0) = x1 6∈ X0. The obtained contradiction shows that T has no proper
hyperinvariant subspace and our conclusion follows.

Call a subset U ⊂ L(X) transitive, if for all x0, x1 ∈ X, x0 6= 0, there is an
operator T in U with Tx0 = x1.

The following corollary is in fact equivalent to the above result.

Corollary 2.2. Let X be a complex vector space and T ∈ L(X). Then the
commutant T ′ is transitive if and only if either of the following conditions hold
true.

(i) The operator T is a scalar multiple of the identity operator I,
or

(ii) the spectrum σ(T ) is empty.

Finally, as another corollary, we obtain the following, already observed result
([6, Theorem 2.2]) concerning the locally convex space X of all sequences with
the topology of coordinatewise convergence (denoted in Banach [1]) by (s) and
in Köthe [2] by ω).

Corollary 2.3. All non-constant continuous linear operators on the complex
space of all sequences have proper closed hyperinvariant subspaces.

For the reader’s convenience we give details of the proof. We shall be using
the following facts concerning the space (s). It is a completely metrizable locally
convex space, whose topology can be given by means of the sequence of seminorms

||x||n = max{|ξ1(x)|, . . . , |ξn(x)|}, n = 1, 2, . . . ,
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where x = (ξi(n))∞1 is an element of (s).
The dual space (s)′, i.e. the linear space of all continuous linear functionals on

(s), provided with the topology of uniform convergence on bounded subsets of (s),
consists of all eventually zero sequences f = (ηi(f))∞1 (ηi(f) = 0 for i > i0(f))
and the topology of (s)′ turns out to be the maximal locally convex topology
defined by the means of all seminorms on (s)′. Under this topology (s)′ is a
complete locally convex space with all linear subspaces closed and with all linear
functionals and all operators (endomorphisms) continuous. Note that (s)′ has a
countable Hamel basis, e.g. consisting of all vectors ei = (δi,j)

∞
j=1, i = 1, 2, . . . ,

where δi,j is the Kronecker symbol. An essential fact, used in the sequel, is that
(s) is a reflexive space, i.e. every its continuous linear functional F is of the form

F (f) = f(xF ) (xF ∈ (s))

and the topology of s′′, identified by the above formula with (s), coincides with
the original topology of (s). The duality between (s) and (s)′ is given by the
bilinear form

(x, f) =
∑

i

ξi(x)ηi(f).

For the proofs of above facts the reader is referred to [2, pp. 287–292], (see
also [2, §18.5, p. 214]) and to [4, Example on p. 56].

We pass now to the proof of the Corollary 2.3. Denote by L((s)) and L((s)′) the
algebras of all continuous operators (endomorphisms) respectively on the spaces
(s) and (s)′. Let T ∈ L(s). Its dual, denoted by T ∗ is an operator in L((s)′) is
given by the formula

(T ∗f)x = f(Tx), x ∈ (s), f ∈ (s)′.

Since (s) is reflexive, we have T ∗∗ = T . Thus all elements in L((s)′) are of the
form T ∗ with T ∈ L((s)).

We shall first prove this Corollary with (s) replaced by (s)′ and then we pass,
by duality, to the space (s). In order to show that every non constant operator T ∗

in L((s)′) has a proper closed hyperinvariant subspace it is sufficient to show that
its spectrum is non-void and apply our Theorem, since all linear subspaces of (s)′

are closed. So suppose, towards contradiction, that for some T in L(s) its dual T ∗

has a void spectrum, i.e. for all complex λ there are inverses (T ∗−λI∗)−1, where
I is the identity operator on (s). These inverses are automatically continuous
since all linear operators on (s)′ are continuous. Fix any non-zero functional f0

in (s)′. Since each Hamel basis in (s)′ is countable and the family

{(T ∗ − λI∗)−1f0 ∈ (s)′ : λ ∈ C}

is uncountable, it is linearly dependent. Thus there are λi, αi ∈ C, 1 ≤ i ≤ k,
αi 6= 0, such that( k∑

i=1

αi(T
∗ − λiI

∗)−1
)
f0 =

k∑
i=1

αi(T
∗ − λiI

∗)−1f0 = 0. (2.4)
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The invertibility of T ∗ − λI∗ for all complex λ implies that for each non-zero
complex polynomial p the operator p(T ∗) is invertible. Since the left-hand oper-
ator in (2.4) can be written as a quotient of two polynomials p(T ∗)/q(T ∗) with
q 6= 0, it is invertible, which implies f0 = 0. This contradiction shows that every
non-constant operator T ∗ in L((s)′) has a proper closed hyperinvariant subspace
YT ∗ .

Let now T be a non constant operator in L((s)), so that T ∗ is non-constant
too. Put

YT = {x ∈ (s) : f(x) = 0 for all f in YT ∗}, (2.5)

where YT ∗ is a proper closed hyperinvariant subspace for T ∗. We shall show
that YT is a proper closed hyperinvariant subspace for T . It is closed, because
whenever y = limi xi, xi ∈ YT we have f(xi) = 0 for all f in YT ∗ , and so f(y) = 0
by the continuity of f . Consequently f(y) = 0 for all f ∈ YT ∗ and y is in
YT . Since YT ∗ 6= (s)′, there is a functional f0 6∈ YT ∗ . By the Hahn–Banach
theorem for locally convex spaces, we can find a continuous linear functional on
(s)′ represented by an element x0 in (s) such that f(x0) = 0 for all f in YT ∗ and
f0(x0) = 1. Thus x0 ∈ YT and x0 6= 0. Consequently YT 6= (0). Since YT ∗ 6= (0),
there is a functional x0 on (s)′ with f0(x0) = 1 for some f0 in YT ∗ . Thus x0 6∈ YT

and YT 6= (s). Thus YT is a proper closed subspace of (s). It remains to be
shown that it is hyperinvariant for T . Let S ∈ L((s)) with ST = TS. Since
(TS)∗ = S∗T ∗, we have S∗T ∗ = T ∗S∗, and so the subspace YT ∗ is invariant for
S∗. Let now f ∈ YT ∗ and x ∈ YT . Since YT ∗ is invariant for S∗, we have S∗f ∈ YT ∗

and so (S∗f)x = f(Sx) = 0. The last equality holds for all f in YT ∗ , and so, by
the formula (2.5), Sx ∈ YT . Consequently YT is invariant for S and since S was
an arbitrary operator in the commutant of T , it is hyperinvariant for T . Since T
was an arbitrary non-constant operator on (s) the conclusion follows.

The space (s) is the only known complete metric infinite dimensional locally
convex space (a B0 space in terminology of the Banach school), for which the
Corollary 2.3 holds true, and even the only known B0-space for each every its
continuous endomorphism has a proper closed invariant subspace (by a result
in [5] every such endomorphism has a proper closed invariant subspace which
is either of dimension or codimension 1). In particular, no infinite dimensional
Banach space is known for which every continuous endomorphism has a proper
closed invariant subspace.
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