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Abstract. The paper is devoted to the study of Hyers, Ulam and Rassias
types of stability for a class of nonlinear Volterra integral equations. Both
Hyers–Ulam–Rassias stability and Hyers–Ulam stability are obtained for such
a class of Volterra integral equations when considered on a finite interval. In
addition, for corresponding Volterra integral equations on infinite intervals the
Hyers–Ulam–Rassias stability is also obtained.

1. Introduction

Volterra integral equations have been studied in a quite extensive way since the
four fundamental papers of Vito Volterra in 1896, and specially since 1913 when
Volterra’s book Leçons sur les Équations Intégrales et les Équations Intégro-
différentielles appeared. Part of this interest arises directly from the applica-
tions where this kind of equations appears. This is the case in elasticity, semi-
conductors, scattering theory, seismology, heat conduction, fluid flow, chemical
reactions, population dynamics, etc. (see [1, 2, 3, 6]).

Equation stability is an important subject in the applications. In general terms,
we may say that the main issue in the stability of functional equations is to answer
the question of when the solutions of an equation, differing slightly from a given
one, must be close to a solution of the given equation.
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Despite the large amount of works on Volterra integral equations, up to our
knowledge only the work [5] studies conditions which ensure Hyers–Ulam–Rassias
stability and Hyers–Ulam stability of a certain type of Volterra integral equations
(see §2 and [4, 5, 7, 8]).

In the present work we propose a Hyers–Ulam–Rassias stability study for the
nonlinear Volterra integral equations of the form

y(x) =

∫ x

a

f(x, τ, y(τ)) dτ, −∞ < a ≤ x ≤ b < +∞, (1.1)

where a and b are fixed real numbers and f is a continuous function. We note
that this class of functional equations is more global than the one considered
in [5]. Anyway, we follow the fixed point arguments used in [5] and prove the
Hyers–Ulam–Rassias stability and the Hyers–Ulam stability of the Volterra inte-
gral equation (1.1) for the case of compact domains. In addition, conditions for
the Hyers–Ulam–Rassias stability of (1.1) in the case when x is not belonging to
a finite interval are also here obtained. We note however that for such an infinite
interval setting, the problem of finding conditions which ensure the corresponding
equation (1.1) to have the Hyers–Ulam stability remains open.

2. Basic concepts

In this section we introduce the basic definitions and a Banach fixed point
result which will be used throughout all the work.

Definition 2.1. If for each function y satisfying∣∣∣∣y(x)− ∫ x

a

f(x, τ, y(τ)) dτ

∣∣∣∣ ≤ ψ(x),

where ψ is a non-negative function, there exists a solution y0 of the Volterra
integral equation (1.1) and a constant C1 > 0 independent of y and y0 such that

|y(x)− y0(x)| ≤ C1ψ(x),

for all x, then we say that the integral equation (1.1) has the Hyers–Ulam–Rassias
stability.

Definition 2.2. In the particular case of Definition 2.1 when ψ is just a constant
function in the above inequalities, we say that the integral equation (1.1) has the
Hyers–Ulam stability.

For a nonempty set X, let us recall the definition of generalized metric on X.

Definition 2.3. A function d : X ×X → [0,+∞] is called a generalized metric
on X if and only if d satisfies the following three propositions:

(P1) d(x, y) = 0 if and only if x = y;

(P2) d(x, y) = d(y, x) for all x, y ∈ X;

(P3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
In the just presented setting of generalized metrics, we recall here the Banach

Fixed Point Theorem which will play an important role in proving our main
theorems.
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Theorem 2.4. Let (X, d) be a generalized complete metric space and T : X → X
a strictly contractive operator with a Lipschitz constant L < 1. If there exists a
nonnegative integer k such that d(T k+1x, T kx) < ∞ for some x ∈ X, then the
following propositions hold true:

(A) the sequence (T nx)n∈N converges to a fixed point x∗ of T ;
(B) x∗ is the unique fixed point of T in

X∗ = {y ∈ X | d(T kx, y) <∞};
(C) if y ∈ X∗, then

d(y, x∗) ≤ 1

1− L
d(Ty, y).

3. The Hyers–Ulam–Rassias stability of the Volterra integral
equation

This section is totaly devoted to find out conditions under which the Volterra
integral equation (1.1) admits the Hyers–Ulam–Rassias stability. This is assem-
bled in the next theorem.

Theorem 3.1. Let C and L be positive constants with 0 < CL < 1 and assume
that f : [a, b]× [a, b]×C → C is a continuous function which additionally satisfies
the Lipschitz condition

|f(x, τ, y)− f(x, τ, z)| ≤ L|y − z| (3.1)

for any x, τ ∈ [a, b] and all y, z ∈ C.
If a continuous function y : [a, b] → C satisfies∣∣∣∣y(x)− ∫ x

a

f(x, τ, y(τ)) dτ

∣∣∣∣ ≤ ϕ(x) (3.2)

for all x ∈ [a, b], and where ϕ : [a, b] → (0,∞) is a continuous function with∣∣∣∣∫ x

a

ϕ(τ) dτ

∣∣∣∣ ≤ Cϕ(x) (3.3)

for each x ∈ [a, b], then there exists a unique continuous function y0 : [a, b] → C
such that

y0(x) =

∫ x

a

f(x, τ, y0(τ)) dτ (3.4)

|y(x)− y0(x)| ≤
1

1− CL
ϕ(x) (3.5)

for all x ∈ [a, b].

Proof. We will consider the space of continuous functions

X = {g : [a, b] → C | g is continuous} (3.6)

endowed with the generalized metric on X defined by

d(g, h) = inf{C ∈ [0,∞] | |g(x)− h(x)| ≤ Cϕ(x) , for all x ∈ [a, b]}.
It is known that (X, d) is a complete generalized metric space (cf. [5]).
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Let us now introduce the operator T : X → X which is defined by

(Tg)(x) =

∫ x

a

f(x, τ, g(τ)) dτ

for all g ∈ X and x ∈ [a, b]. Thus, due to the fact that f is a continuous function,
it follows that Tg is also continuous and this ensures that T is a well defined
operator. Indeed,

|(Tg)(x)− (Tg)(x0)| =

∣∣∣∣∫ x

a

f(x, τ, g(τ)) dτ −
∫ x0

a

f(x0, τ, g(τ)) dτ

∣∣∣∣
=

∣∣∣∣∫ x

a

f(x, τ, g(τ))−
∫ x

a

f(x0, τ, g(τ)) dτ

+

∫ x

a

f(x0, τ, g(τ))−
∫ x0

a

f(x0, τ, g(τ)) dτ

∣∣∣∣
≤

∣∣∣∣∫ x

a

f(x, τ, g(τ))−
∫ x

a

f(x0, τ, g(τ)) dτ

∣∣∣∣
+

∣∣∣∣∫ x

a

f(x0, τ, g(τ))−
∫ x0

a

f(x0, τ, g(τ)) dτ

∣∣∣∣
≤

∫ x

a

|f(x, τ, g(τ))− f(x0, τ, g(τ))| dτ

+

∣∣∣∣∫ x

x0

f(x0, τ, g(τ)) dτ

∣∣∣∣ x→x0−→ 0.

We will now verify that T is strictly contractive on X. For any g, h ∈ X, let
us consider Cgh ∈ [0,∞] such that

|g(x)− h(x)| ≤ Cghϕ(x) (3.7)

for any x ∈ [a, b]. Note that this is always possible due to the definition of (X, d).
From the definition of T and (3.1), (3.3) and (3.7), it follows

|(Tg)(x)− (Th)(x)| =

∣∣∣∣∫ x

a

[f(x, τ, g(τ))− f(x, τ, h(τ))] dτ

∣∣∣∣
≤

∣∣∣∣∫ x

a

|f(x, τ, g(τ))− f(x, τ, h(τ))| dτ
∣∣∣∣

≤ L

∣∣∣∣∫ x

a

|g(τ)− h(τ)| dτ
∣∣∣∣

≤ LCgh

∣∣∣∣∫ x

a

ϕ(τ) dτ

∣∣∣∣
≤ LCghCϕ(x)

for all x ∈ [a, b]. Therefore, d(Tg, Th) ≤ LCghC. This allows us to conclude that
d(Tg, Th) ≤ LCd(g, h) for any g, h ∈ X, and since CL ∈ (0, 1) the (strictly)
contraction property is verified.
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Let us take g0 ∈ X. From the continuous property of g0 and Tg0 it follows that
there exists a constant C1 ∈ (0,∞) such that

|(Tg0)(x)− g0(x)| =

∣∣∣∣∫ x

a

f(x, τ, g0(τ)) dτ − g0(x)

∣∣∣∣
≤ C1ϕ(x)

for all x ∈ [a, b]. Note that this occurs also because f and g0 are bounded on
[a, b] and ϕ is a positive function. Therefore, from the definition of the generalized
metric d, it follows that

d(Tg0, g0) <∞. (3.8)

Consequently, we are in conditions to use the Banach Fixed Point Theorem and
conclude that there exists a continuous function y0 : [a, b] → C such that

T ng0
n→∞−→ y0 in (X, d),

and Ty0 = y0.
For any g0 with the property (3.8) it follows that X can be rewritten the

following new form

X = {g ∈ X | d(g0, g) <∞}

(cf. [5]). Therefore, once again the Banach Fixed Point Theorem ensures that y0

is the unique continuous function with the property (3.4).
Now, from (3.2) it follows that d(y, Ty) ≤ 1, and so the Banach Fixed Point

Theorem leads to

d(y, y0) ≤
1

1− CL
d(Ty, y) ≤ 1

1− CL
. (3.9)

Thus, the last inequality together with the definition of the generalized metric d
lead to inequality (3.5). �

4. Hyers–Ulam–Rassias stability of the Volterra integral
equation in the infinite interval case

The present section is devoted to the analysis of the Hyers–Ulam–Rassias stabil-
ity of the Volterra integral equation (1.1) but when considering infinite intervals.
Such stability is here obtained for this case under the conditions of the next re-
sult. Here the main argument is based on a recurrence procedure due the already
obtained result for the corresponding finite interval case.

Theorem 4.1. Let C and L be positive constants with 0 < CL < 1 and assume
that f : R× R× C → C is a continuous function which additionally satisfies the
Lipschitz condition (3.1), for any x, τ ∈ R and all y, z ∈ C.

If a continuous function y : R → C satisfies (3.2), for all x ∈ R and for some
a ∈ R, where ϕ : R → (0,∞) is a continuous function satisfying (3.3), for each
x ∈ R, then there exists a unique continuous function y0 : R → C which satisfies
(3.4) and (3.5) for all x ∈ R.
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Proof. First we will prove that y0 is a continuous function.
For any n ∈ N, let us define In = [a − n, a + n]. According to Theorem 3.1,

there exists a unique continuous function y0,n : In → C such that

y0,n(x) =

∫ x

a

f(x, τ, y0,n(τ)) dτ (4.1)

|y(x)− y0,n(x)| ≤ 1

1− CL
ϕ(x) (4.2)

for all x ∈ In. The uniqueness of y0,n implies that if x ∈ In then

y0,n(x) = y0,n+1(x) = y0,n+2(x) = ... (4.3)

For any x ∈ R, let us define n(x) ∈ N as

n(x) = min{n ∈ N | x ∈ In}.

We define also a function y0 : R → C by

y0(x) = y0,n(x)(x),

and we can say that y0 is continuous. Indeed, for any x1 ∈ R, let n1 = n(x1).
Then x1 belongs to the interior of In1+1 and there exists an ε > 0 such that
y0(x) = y0,n1+1(x) for all x ∈ (x1−ε, x1+ε). By Theorem 3.1, y0,n1+1 is continuous
at x1, so it is y0.

We will now prove that y0 satisfies (3.4) and (3.5) for all x ∈ R. We must
choose n(x) for an arbitrary x ∈ R. Then x ∈ In(x) and from (4.1) it follows that

y0(x) = y0,n(x)(x) =

∫ x

a

f(x, τ, y0,n(x)(τ)) dτ =

∫ x

a

f(x, τ, y0(τ)) dτ

where the last equality is true because n(τ) ≤ n(x) for any τ ∈ In(x) and it follows
from (4.3) that

y0(τ) = y0,n(τ)(τ) = y0,n(x)(τ).

Moreover, (4.2) implies that, for all x ∈ R,

|y(x)− y0(x)| =
∣∣y(x)− y0,n(x)(x)

∣∣ ≤ 1

1− CL
ϕ(x).

Finally, we will prove that y0 is unique. Suppose that y1 is another continuous
function which satisfies (3.4) and (3.5), for all x ∈ R. Since the restrictions
y0|In(x)

= y0,n(x) and y1|In(x)
both satisfy (3.4) and (3.5) for all x ∈ In(x), the

uniqueness of y0|In(x)
= y0,n(x) implies that

y0(x) = y0|In(x)
(x) = y1|In(x)

(x) = y1(x).

�
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5. The Hyers–Ulam stability of the Volterra integral equation

In this final section, by imposing some stronger assumptions, the Hyers–Ulam
stability is obtained for the Volterra integral equation under study (in the finite
interval case).

Theorem 5.1. Let K = b− a and consider L to be a positive constant such that
0 < KL < 1. Assume that f : [a, b] × [a, b] × C → C is a continuous function
which fulfils the Lipschitz condition

|f(x, τ, y)− f(x, τ, z)| ≤ L|y − z| (5.1)

for any x, τ ∈ [a, b] and y, z ∈ C.
If a continuous function y : [a, b] → C satisfies∣∣∣∣y(x)− ∫ x

a

f(x, τ, y(τ)) dτ

∣∣∣∣ ≤ θ

for each x ∈ [a, b] and some θ ≥ 0, then there exists a unique continuous function
y0 : [a, b] → C such that

y0(x) =

∫ x

a

f(x, τ, y0(τ)) dτ (5.2)

|y(x)− y0(x)| ≤
θ

1−KL

for all x ∈ [a, b].

Proof. Let us consider once more the space of continuous functions presented in
(3.6) and endowed with the generalized metric defined by

d(g, h) = inf{C ∈ [0,∞] | |g(x)− h(x)| ≤ C , for all x ∈ [a, b]}.
Let us now introduce the operator T : X → X which is defined by

(Tg)(x) =

∫ x

a

f(x, τ, g(τ)) dτ

for all g ∈ X and x ∈ [a, b]. Note that for any continuous function g, Tg is also
continuous, as we have seen before.

Let us now verify that the operator T is strictly contractive on X. For any
g, h ∈ X, let us consider Cgh ∈ [0,∞] such that

|g(x)− h(x)| ≤ Cgh (5.3)

for any x ∈ [a, b]. From the definition of T , (5.1) and (5.3), it follows

|(Tg)(x)− (Th)(x)| =

∣∣∣∣∫ x

a

[f(x, τ, g(τ))− f(x, τ, h(τ))] dτ

∣∣∣∣
≤

∣∣∣∣∫ x

a

|f(x, τ, g(τ))− f(x, τ, h(τ))| dτ
∣∣∣∣

≤ L

∣∣∣∣∫ x

a

|g(τ)− h(τ)| dτ
∣∣∣∣

≤ LCghK
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for all x ∈ [a, b]. Therefore, d(Tg, Th) ≤ LCghK. This allows us to conclude
that d(Tg, Th) ≤ LKd(g, h) for any g, h ∈ X, and since KL ∈ (0, 1) the (strict)
contraction property is verified.

Similarly as in the proof of Theorem 3.1 we can choose g0 ∈ X with

d(Tg0, g0) <∞. (5.4)

Consequently, we are in conditions to use the Banach Fixed Point Theorem and
conclude that there exists a continuous function y0 : [a, b] → C such that

T ng0
n→∞−→ y0 in (X, d),

and Ty0 = y0. For any g0 with the property (5.4) it follows that X can be
rewritten in the following new form

X = {g ∈ X | d(g0, g) <∞}
(cf. [5]). Therefore, once again the Banach Fixed Point Theorem ensures that
y0 is the unique continuous function with the property (5.2). Furthermore, the
third proposition of Theorem 2.4 yields

|y(x)− y0(x)| ≤
θ

1−KL
,

for all x ∈ [a, b]. �
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