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Abstract. For analytic functions f in the open unit disc U, a generaliza-
tion operator Dλf(z) of Sǎlǎgean operator is introduced. Some properties for
Dλf(z) are discussed in the present paper.

1. Introduction and preliminaries

Let A be the class of functions f of the form

f(z) = z +
∞∑

k=2

akz
k

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. For f ∈ A,
Sǎlǎgean[5] has defined the following operator Dnf(z) by

(i) D0f(z) = f(z)

(ii) D1f(z) = Df(z) = zf ′(z) = z +
∑∞

k=2 kakz
k,

(iii) Dnf(z) = D(Dn−1f(z)) = z +
∑∞

k=2 knakz
k, (n = 1, 2, 3...).
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In view of the Sǎlǎgean operator, we introduce

Dλf(z) = z +
∞∑

k=2

kλakz
k, (λ ∈ <)

for f ∈ A. Then for any real λ ∈ < we see that

Dλ+1f(z) = z +
∞∑

k=2

kλ+1akz
k = z(Dλf(z))′

and

Dλ−1f(z) = z +
∞∑

k=2

kλ−1akz
k =

∫ z

0

Dλf(t)

t
dt.

It is easy to see that

Dλ1+λ2f(z) = Dλ2(Dλ1f(z)) = Dλ1(Dλ2f(z))

for any real λ1 and λ2.

To discuss our new problem, we have to recall here the following lemma by Jack
[1] (also by Miller and Mocanu [3]).

Lemma 1.1. Let w(z) be non-constant and analytic in U with w(0) = 0. If
|w(z)| attains its maximum value on the circle |z| = r at the point z0 ∈ U, then
we have z0w(z0)

′ = kw(z0) where k ≥ 1 is real.

2. Properties of the operator Dλf(z)

Our first result for the operator Dλf(z) is contained in the following theorem.

Theorem 2.1. If f ∈ A satisfies

∣∣∣∣Dλ+1f(z)

Dλf(z)
− 1

∣∣∣∣α
∣∣∣∣∣z

(
Dλ+1f(z)

Dλf(z)

)′
∣∣∣∣∣
β

<

(
1

2

)β

(z ∈ U) (2.1)

for some real α, β with α + 2β ≥ 0 and for any real λ, then

<
(

Dλ+1f(z)

Dλf(z)

)
> 0 (z ∈ U).

Proof. Let us define w(z) by

Dλ+1f(z)

Dλf(z)
=

1 + w(z)

1− w(z)
(w(z) 6= 1).

Then w(z) is analytic in U and w(z) = 0.

Since

z

(
Dλ+1f(z)

Dλf(z)

)′

=
2zw′(z)

(1− w(z))2
,
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we obtain that∣∣∣∣Dλ+1f(z)

Dλf(z)
− 1

∣∣∣∣α
∣∣∣∣∣z

(
Dλ+1f(z)

Dλf(z)

)′
∣∣∣∣∣
β

=

∣∣∣∣ 2w(z)

1− w(z)

∣∣∣∣α ∣∣∣∣ 2zw(z)′

(1− w(z))2

∣∣∣∣β <

(
1

2

)β

for all z ∈ U. If there exists a point z0 ∈ U such that max|z|≤|z0||w(z)| = |w(z0)| =
1, then Lemma 1.1 gives us that w(z0) = eiθ and z0w

′(z0) = keiθ (k ≥ 1).

This implies that∣∣∣∣Dλ+1f(z0)

Dλf(z0)
− 1

∣∣∣∣α
∣∣∣∣∣z0

(
Dλ+1f(z0)

Dλf(z0)

)′
∣∣∣∣∣
β

=

∣∣∣∣ 2eiθ

1− eiθ

∣∣∣∣α ∣∣∣∣ 2keiθ

(1− eiθ)2

∣∣∣∣β
=

2α+βkβ

|1− eiθ|α+2β
≥

(
k

2

)β

≥
(

1

2

)β

for all z ∈ U, which contradicts the condition of the theorem. This show that

there is no z0 ∈ U such that |w(z0)| = 1. Therefore |w(z)| < 1 for all z ∈ U which
implies that

<
(

Dλ+1f(z)

Dλf(z)

)
> 0 (z ∈ U).

This completes the proof of the theorem.

Noting that if f ∈ A is starlike in U which is equivalent to

<
(

zf ′(z)

f(z)

)
> 0 (z ∈ U),

then
|ak| ≤ k (k = 2, 3, 4, ...)

and equality holds true for Koebe function f given by f(z) =
z

(1− z)2
which is

the extremal function for the class of starlike functions in U.
Thus we have

Corollary 2.2. If f ∈ A satisfies the inequality (2.1) for some real α, β with
α + 2β ≥ 0 and for any real λ, then

|ak| ≤ k1−λ (k = 2, 3, 4, ...).

Equality holds true for Koebe function.

By the Marx-Strohhäcker theorem ([2], [6]), we know that if f ∈ A satisfies

<
(

1 +
zf ′′(z)

f ′(z)

)
> 0 (z ∈ U),

then

<
(

zf ′(z)

f(z)

)
>

1

2
(z ∈ U).

If we define the function F (z) by F (z) = Dλ−1f(z), then zF ′(z) = Dλf(z) and
zF ′(z) + z2F ′′(z) = Dλ+1f(z). Therefore, we have
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Corollary 2.3. If f ∈ A satisfies the inequality (2.1) for some real α, β with
α + 2β ≥ 0 and for any real λ, then

<
(

Dλf(z)

Dλ−1f(z)

)
>

1

2
(z ∈ U).

The result is sharp for the function f given by

f(z) = z +
∞∑

k=2

k1−λzk

which is equivalent to

Dλf(z) =
z

(1− z)2
.

Next we prove the following theorem.

Theorem 2.4. If f ∈ A satisfies

∣∣∣∣Dλ+1f(z)

Dλf(z)
− 1

∣∣∣∣α
∣∣∣∣∣z

(
Dλ+1f(z)

Dλf(z)

)′
∣∣∣∣∣
β

<

(
1

2

)β

(1− γ)α+β (z ∈ U) (2.2)

for some real α, β, γ with α + 2β ≥ 0 and 0 ≤ γ < 1, then

<
(

Dλ+1f(z)

Dλf(z)

)
> γ (z ∈ U).

Proof. Defining the function w(z) by

Dλ+1f(z)

Dλf(z)
=

1 + (1− 2γ)w(z)

1− w(z)
(w(z) 6= 1),

we see that w(z) is analytic in U and w(0) = 0. Note that

z

(
Dλ+1f(z)

Dλf(z)

)′

=
2(1− γ)zw′(z)

(1− w(z))2
.

Thus we have that∣∣∣∣Dλ+1f(z)

Dλf(z)
− 1

∣∣∣∣α
∣∣∣∣∣z

(
Dλ+1f(z)

Dλf(z)

)′
∣∣∣∣∣
β

=

∣∣∣∣2(1− γ)w(z)

1− w(z)

∣∣∣∣α ∣∣∣∣2(1− γ)zw(z)′

(1− w(z))2

∣∣∣∣β
<

(
1

2

)β

(1− γ)α+β (z ∈ U).

If there exists a point z0 ∈ U such that max|z|≤|z0||w(z)| = |w(z0)| = 1, then w(z)
satisfies w(z0) = eiθ and z0w

′(z0) = keiθ (k ≥ 1) by Lemma 1.1.



20 A. IBRAHIM, S. OWA, M. DARUS & Y. NAKAMURA

This gives us that∣∣∣∣Dλ+1f(z0)

Dλf(z0)
− 1

∣∣∣∣α
∣∣∣∣∣z0

(
Dλ+1f(z0)

Dλf(z0)

)′
∣∣∣∣∣
β

=

∣∣∣∣2(1− γ)eiθ

1− eiθ

∣∣∣∣α ∣∣∣∣2(1− γ)keiθ

(1− eiθ)2

∣∣∣∣β
=

2α+βkβ(1− γ)α+β

|1− eiθ|α+2β

≥
(

k

2

)β

(1− γ)α+β

≥
(

1

2

)β

(1− γ)α+β (z ∈ U)

which contradicts the condition of the theorem. This show that there is no z0 ∈ U
such that |w(z0)| = 1. Therefore |w(z)| < 1 for all z ∈ U.

Thus we conclude that

<
(

Dλ+1f(z)

Dλf(z)

)
> γ (z ∈ U).

Noting that if f ∈ A satisfies

<
(

zf ′(z)

f(z)

)
> γ (z ∈ U),

then

|ak| ≤
∏k

j=2(j − 2γ)

(k − 1)!
(k = 2, 3, 4, ...)

and equality holds true for the functions f given by

f(z) =
z

(1− z)2(1−γ)

which is the extremal function for the class of starlike of order γ in U (cf.
Robertson[4]).

In view of the above, we give direct corollary as follows:

Corollary 2.5. If f ∈ A satisfies the inequality (2.2) for some real α, β, γ
with α + 2β ≥ 0 and 0 ≤ γ < 1, then

|ak| ≤
∏k

j=2(j − 2γ)

kλ(k − 1)!
(k = 2, 3, 4, ...).

Equality holds true for the function f given by

f(z) = z +
∞∑

k=2

∏k
j=2(j − 2γ)

kλ(k − 1)!
zk

which is equivalent to

Dλf(z) =
z

(1− z)2(1−γ)
.
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Finally, we derive the following:

Theorem 2.6. If f ∈ A satisfies

∣∣∣∣Dλ+1f(z)

Dλf(z)
− 1

∣∣∣∣α
∣∣∣∣∣z

(
Dλ+1f(z)

Dλf(z)

)′
∣∣∣∣∣
β

<
(γ

2

)β

(z ∈ U)

for some real α, β, and γ =
β

α + β
, then

<
(

Dλ+1f(z)

Dλf(z)

)1

γ
> 0 (z ∈ U).

Proof. Defining the function w(z) by

Dλ+1f(z)

Dλf(z)
=

(
1 + w(z)

1− w(z)

)γ

(w(z) 6= 1)

with γ =
β

α + β
, we see that w(z) is analytic in U and w(0) = 0. Noting that

z

(
Dλ+1f(z)

Dλf(z)

)′

=
2γzw′(z)

(1− w(z))2

(
1 + w(z)

1− w(z)

)γ−1

,

we have that

∣∣∣∣Dλ+1f(z)

Dλf(z)
− 1

∣∣∣∣α
∣∣∣∣∣z

(
Dλ+1f(z)

Dλf(z)

)′
∣∣∣∣∣
β

=

∣∣∣∣1 + w(z)

1− w(z)

∣∣∣∣αβ+β(γ−1) ∣∣∣∣ 2γzw(z)′

(1− w(z))2

∣∣∣∣β
=

∣∣∣∣ 2γzw(z)′

(1− w(z))2

∣∣∣∣β
<

(γ

2

)β

(z ∈ U)

since γ =
β

α + β
. Now, suppose that there exists a point z0 ∈ U such that

max|z|≤|z0||w(z)| = |w(z0)| = 1. Then, by Lemma 1.1, we have that w(z0) = eiθ

and z0w
′(z0) = keiθ (k ≥ 1).
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This gives us that∣∣∣∣Dλ+1f(z0)

Dλf(z0)
− 1

∣∣∣∣α
∣∣∣∣∣z0

(
Dλ+1f(z0)

Dλf(z0)

)′
∣∣∣∣∣
β

=

∣∣∣∣ 2γkeiθ

(1− eiθ)2

∣∣∣∣β
=

2βkβγβ

|(1− eiθ)2|β

≥
(

kγ

2

)β

≥
(γ

2

)β

(z ∈ U)

which contradicts the condition of the theorem. This show that there is no z0 ∈ U
such that |w(z0)| = 1. Therefore, we conclude that |w(z)| < 1 for all z ∈ U, that
is, that

<
(

Dλ+1f(z)

Dλf(z)

)1

γ
> 0 (z ∈ U).
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