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LOCAL HERZ-TYPE HARDY SPACES WITH VARIABLE
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Communicated by T. Sugawa

ABSTRACT. In this paper, we introduce a certain Herz-type Hardy space with
variable exponent and establish the atom decomposition theorem for it. Using
this decomposition, we obtain some boundedness on the Herz-type Hardy space
with variable exponent for a class of pseudo-differential operators.

1. INTRODUCTION

Given an open set 2 C R™, and a measurable function p(-) : Q — [1,00),
LP)(Q) denotes the set of measurable functions f on Q such that for some A > 0,

/Q (L;M)W) dr < oo

This set becomes a Banach function space when equipped with the Luxemburg-
Nakano norm

p(z)

These spaces are referred to as variable Lebesgue spaces or, more simply, as
variable LP spaces, since they generalized the standard L spaces: if p(z) = p is
constant, then LP()(Q) is isometrically isomorphic to LP(Q2). The L? spaces with
variable exponent are a special case of Musielak-Orlicz spaces.
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The space LP)(Q) is defined by
L'Y(Q) .= {f : f € L*V(E) for all compact subsets E C Q}.

loc

Define P(2) to be the set of p(-) : @ — [1, 00) such that
p- =essinf{p(z):z€Q} >1, p' =esssup{p(z):z e Q} <.

Denote p'(z) = p(z)/(p(z) — 1).
Let f € Ll (R"), the Hardy—Littlewood maximal operator is defined by

M) = sup \B s

where B,.(z) ={y € R" : |z — y| < r}. There exist some sufficient conditions on
p(+) such that the maximal operator M is bounded on LP()(R™), see [1, 2]. Let
B(R") be the set of p(-) € P(R") such that M is bounded on LPO)(R™).

In variable LP spaces there are some important lemmas as follows.

Lemma 1.1. ([6]) Let p(-) € P(R™). If f € LPO(R") and g € LP'O)(R™), then
fg is integrable on R™ and

y)|dy,

s |f(@)g(@)|dx < 7yl fll oo @my |9l Lo ) gy
where
rp=1+1/p" — 1/P+'

This inequality is named the generalized Holder inequality with respect to the
variable LP spaces.

Lemma 1.2. ([5]) Let q(-) € B(R™). Then there exists a positive constant C' such
that for all balls B in R™ and all measurable subsets S C B,

X8l Lao mny <C|B|
||XS||L4(‘)(]R”) |S|
5 . 5
X5l Laeo gy <o (ﬁ) | Ixsll oo @n) <o (ﬁ) |
X8l Lo @) 1Bl lIxsllLeo@n | B|

where 0 < 01,02 < 1 are constants.

Throughout this paper §; and d, are the same as in Lemma 1.2.
Lemma 1.3. ([5]) Suppose q(-) € B(R™). Then there exists a constant C' > 0
such that for all balls B in R",

|§|||XB||Lq<->(Rn)||XB||Lq'<»>(Rn) <C.

Firstly we give the definition of the Herz spaces with variable exponent. Let
By ={z € R": |z| < 2%} and A, = By \ By_1 for k € Z. Denote N and Z, as
the sets of all positive and non-negative integers, x, = xa, for k € Z, x = xx if
k € N and xo = xB,, Where x4, is the characteristic function of A.
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Definition 1.4. ([5]) Let « € R,0 < p < oo and ¢(-) € P(R™). The homogeneous

Herz space K o0y (R™) is defined by

Koh(R™) = {f € L) (®R™\ {0}) : £ 1l &eor ey < 00}

where

1/p
”fHK;("’;(Rn) = {ZQkOé;DHkaHLq() Rn)} .

kez
The non-homogeneous Herz space K f/(R") is defined by

K ()(Rn) ={f¢€ Lloc( ") Hf”K;“(’_’)’(R") < oo},

where

- 1/p
1 fllxcen ey = {Z 2kap||f>~<k||iq(A)(Rn)} :

k=0

In [10], we gave the definition of Herz-type Hardy space with variable exponent
H K;‘(I;(R") S(R™) denotes the space of Schwartz functions, and S’(R") denotes
the dual space of S(R"). Let Gy f(x) be the grand maximal function of f(z)
defined by

Gnf(z) = sup |og(f)(z)l,

PEAN

where Ay = {¢ € S(R") : sup [2°D’¢(z)| < 1} and N > n + 1, ¢% is the
lal.[BI<N
nontangential maximal operator defined by

¢v(f)(x) = sup |¢vx f(y)|

ly—z|<t

with ¢.(x) = t"¢(z/t).

Definition 1.5. ([10]) Let &« € R,0 <p < o0,¢(-) € P(R") and N > n + 1.
(i) The homogeneous Herz-type Hardy space HK[(R") is defined by
HE;N(R") = {f € S'(R") : Gnf(x) € Ky (R")}
and we define ||fHHf<§(¢f;(Rn) = HGNfHK;*(’_’;(R")'

(ii) The non-homogeneous Herz-type Hardy space H K (R") is defined by

HESP(R™) = {f € S'(R") : Gy f(x) € KST(R™)}

and we define HfHHK;v(,Az;(Rn) = HGNf”K;‘(’?;(R")-

For a € R we denote by [a] the largest integer less than or equal to a.

Definition 1.6. ([10]) Let ndy < a < 00,¢(:) € P(R"), and s > [a — ndy).
(i) A function a(z) on R™ is said to be a central (o, ¢(+))-atom, if it satisfies
(1) suppa C B(O r)={zeR": |z| <r}
(2) HaHLqO @) < B0, )7/
(3) Jfen alz)zldz =0,]8] < s.
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(ii) A function a(z) on R™ is said to be a central («,¢(+))-atom of restricted
type, if it satisfies the conditions (2), (3) above and
(1) suppa C B(0,7),r > 1.

Lemma 1.7. ([10]) Let ndy < o < 00,0 < p < o0 and q(-) € B(R™). Then

fe HK S(R™) (or HKQ(I’(R”)) if and only if

f= Z Py <0r Z )\kak) in the sense of &'(R™),

k=—o00
where each ay, is a central (o, q(-))-atom (or central (a, q( ))-atom of restricted

type) with support contained in By, and Z |Ak|P < oo(or Z |Ak|P < 00). More-

k=—o00 k=0
over,

1/p

1/p
AW e s ey ~ inf ( > WI”) or || fll iy ey & inf (Z WI”) ,

k=—0o0
where the infimum is taken over all above decomposition of f.

In [11], we gave some real-variable characterizations for H K O (R™) and HEKS(R™).
Let ¢ € S(R™) with integral 1. For ¢t > 0, set ¢y(x) =t "¢(z/t). For f € S'(R"),
define the maximal operator ¢ , ¢g y (with N > 1) and ¢y3; (with M € N) by

¢4 (F)(x) = Stgg\(f * o) ()], ¢y n(f)(w) =sup sup |(f*i)(y)|

t>0 |z—y|<Nt

and

SH@= s |(Fxa)w) (;)M

(y,t)ERi+l |.T — y| +1

Lemma 1.8. ([l1]) Let 0 < a < 00,0 < p < oo and ¢q(-) € B(R™). For
f e S'(R"), the following statements are equivalent:

(i) f € HK;(];(]R") (or HK(?‘(’?)’(R”.)).

(ii) For some N > 1, ¢g y(f) € K 5(R") (or KN (R™)).

(i) () € K (B™) (or G (RY)).

(i) 62.(f) € K22(R™) (or K22(R™)).
Moreover,

Hf”HKa(Z;(R" ~ ||¢ N (f )”K;’?;(R") ~ H¢V(f)”[{§£(R") ~ H¢+(f)”f<§<’?;(Rn)

and

[ lzzxcep @y = (105,58 (e @ny = 109 (Dl xep @y = 105 (Dl ke @)

In [9], we establish the block decomposition for the Herz spaces with variable
exponent.
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Definition 1.9. ([9]) Let 0 < a < 00, ¢(+) € P(R™).
(i) A function a(x) on R" is said to be a central («, ¢(-))-block if
(1) suppa C B(0,r) = {x € R": |z| < r}.
(2) llall oo @ny < Cr®
(ii) A function a(z) on R" is said to be a central («,¢(-))-block of restricted
type if
(1) suppa C B(0,
(2) llall oy gy < 7
Inspired by [3, 10], we introduce a certain Herz-type Hardy space with vari-
able exponent and establish the atom decomposition theorem for it. Using this
decomposition, we obtain some boundedness on the Herz-type Hardy space with
variable exponent for a class of pseudo-differential operators.

) for some r > 1.

2. MAIN RESULTS AND THEIR PROOFS

In this section, we will give the definition of local Herz-type Hardy spaces with
variable exponent hJ_(R") and hK 5 (R") firstly.

Definition 2.1. Let ndy < a < 00,0 < p < 00, ¢(-) € B(R™).
(i)A function f € Lﬁfc) (R™\ {0}) is said to be in the space hK;“(’?)’(R”) if for

some N € N with N > a/dy + 1, the maximal function

Gy(f)=sup  sup  |f*éu(y)l

pEAN 0<t<1, [z—y|<t

belongs to the space K;X(’_’)’(R"); where Ay = {¢ € S(R") : sup |z°D’p(z)| <
laf,|B]<N
1} and 64(z) = £"0(a/1). ~
(ii)A function f is said to be in the space hK(R") if Gn(f) € K J(R").
Moreover, we define that ||f||hkg(,;;(Rn) = ||G'N(f)||K;,g(Rn and || fllpxer@n) =

a()
1GNP xcpr ey

It should be pointed out that, the spaces hK;’g(R”) and hK:;(’?; (R™) also enjoy

the characterizations in terms of the maximal operator, which are similar to those

of the spaces H K Ly (R™) and HKf(R"), namely,

Theorem 2.2. Let niy < a < 00,0 < p < oo, q(-) € BR"), ¢ € S(R*) with
Jgn O(x)dx = 1. For f € S'(R™), the following statements are equivalent:

(i) f € hEZH(RY) (or hKH(R)).
(i) 65 (f) = sup sup |f *du(y)| € Ko (R") (or K5 (R™)).

0<t<l |z—y|<t
(iii) 35(F) = sup |f * du(x)| € KSR (or KOA(R™)).
0<t<1
Moreover,
1 s oy 22 165 (F) e gy 22 1675 () e ey

and N -
[ llnrcep @y = Nl 05 (Dlxen @y = 1105 (F)lxeor @)
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Proof. The method of proof is similar to Lemma 1.8. Here we omit it.

OJ

To give another characterization of hK:(’g

lemma.

(R™), we first give a preliminary

Theorem 2.3. Let ndy < o < 00,0 < p < 00 and q(-) € B(R™). Suppose that
¢ € S(R™) such that

o(x)dr =1, / 2P p(x)dr = 0, forall € N, |3 < N.
Rn n

Then
[f — & f”HK;l("’;(]R”) < CHthK;"(’_’)’(R”)'

Moreover, if f € hK(?‘(’g(R”), then f —¢x f € HK:;‘(’?)’(R").

Proof. Take ¢ € S(R™) with [, ¥(x)dz = 1. By Lemma 1.8, we see that
1f— ¢ f”HK;*f;(Rﬂ = Stgg) Ve (f — ¢ * f)|||K§(’?;(R”)
< C| sup [0 * flll gor@ny + Cll sup [ % & fl gor@n)
1>t>0 a(-) 1>t>0 a(+)
+C| sup ¢y x (f — & )l gor g
co>t>1 a(-)
=U + U, + Us.
Note that sup |4y * f| < CGn(f)(z). So by Definition 2.1 we have
1

0<t<

U < CIGN(Pllger@ey = Cllfllnges @y
To estimate Us, we first claim that there is a constant Cy independent of ¢ <1
such that Cy 'y, * ¢ € Ay. In fact, for any v with |y| < n + N and any 8 with
|B| < N, a trivial computation leads to that

Do)l <lel | [ S (Y) Dot - iy

lyl<la| t"
ol L (Y Dot — u\d '
*le ‘/2|y>x| t"¢(t) (b(xdyy) 4
< Oz 1
> ‘x’ i<l ’¢( y)} (1 + ‘iL‘ _ yDM

ARl

+C|l’|7|t_n/ Wdy
2lyl>Jal Vf/h
< Ol @ny + Cllly[" || 21 @y < Co,

which means that Cy (v x ¢) € Ay(R"). Thus,
[the ¢+ f(2)] < CGn(f)(x)

and
Uz < Cllfllnsen@ny:
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On the other hand, a cumbersome but straightforward computation shows that
for any fixed £ > 1, any multi-index § and any t > 1,

D7 (e — ¢ % ve)| < Crp(1+ J2))7,

which via a trivial computation leads to that

sup ¢y * (f — ¢ f)(z)] < CGn(f)(2).

1<t<oo

Thus we get that
Us < CHGN(f)HK;‘(’?;(R") = CHthkg(»?;(Rn)-
This completes the proof of Theorem 2.3.

Next, we will give the atomic decomposition for hK(%’(R”).

Theorem 2.4. Let ndy < a < 00,0 < p < oo and q(-) € B(R"). Then f €
hK;’S'(R”) if and only if

f(x) = Z Azar(z), in the sense of S&'(R™),

where for k < 0, ay is a central (o, q(-))-atom, while for k > 0, ay is a central

(a, q(+))-block, and {\c}72 . satisfies Z |Ak|P < oo. Moreover,

k=—00

1/p
||f||hK°‘p (Rn) ~ ~ inf ( Z |>\k|p> )

k=—o0c0

where the infimum is taken over all above decomposition of f.

Proof. To prove the necessity, let f € hK{f‘(’f)) (R™) and ¢ € S(R™) be the same as

in Theorem 2.3. Then g=f —¢x f € HK;(’.Z)’(R”), which implies that

f=g+¢x*f, in the sense of S'(R").
For g, we have the central (o, ¢(+))-atom decomposition by Lemma 1.7. Thus, it
suffices to decompose ¢ * f.
Let ¢ be a radial smooth function such that supp ¢ C {z : 1/2—¢e < |z]| < 1+4¢}
with 0 < & < 1/4, and ¢¥(z) = 1if 1/2 < |z| < 1. Set ¢p(x) = ¢(27%2) for k € Z
and Ay, = {x: 281 — 2kc < |z| < 28 + 2%¢}. We know that

supp vy C flkvg, Up(x) =1if 2 € Ay = {z: 2871 < |z < 2F}.

Obviously, 1 < Z Y(z) <2, |z| > 0. Let

k=—00

By(z) = Vi(z /ZM z # 0,

l=—00

0, z=0,
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o0

then Z ®p(x) =1 for x # 0. For some m € Z,, we denote by P, the class
k=—o00

of all the real polynomials with the degree less than m. Let Py(z) = Pz ((f *
¢)®r)(7)x 5, (7) € Pr(R™) be the unique polynomial such that

/g1 ((f % ) (2)®p(z) — Py(z)) 2’dx =0, |8] <m = [ — ndy).

Write

o0 [e.9]

fro(@) = Y (fxd(@)®(2)=Pu()+ Y Plw)= Y Hilx)+ Y Hi(x).

k=—o00 k=—o00 k=—o00 k=—o00

For the term Z H(x), let {¢F : |I] < m} be the orthogonal polynomials
k=—00

limited on Aj. with respect to the weight |Aj.|~', which are obtained from

{2 :|8| < m} by the Gram-Schmidt method, that is

1
(0, 98) = Al ok ()¢ (2)da = 6,

It is easy to see that

Pi(z) = Y ((f % 9)Pp, ¢ o1 (2), 7 € Ay

[l]<m
On the other hand, from

1

|Ak75| Ak,s

we infer that
1

|A1,6| Al,s

or (25 y) ok (25 y)dy = 6,

It then follows directly that ¢*(2¥'y) = ¢L(y),y € A,.. That is ¢*(z) =
¢r (27 V) for € Ap.. Thus [¢F(z)| < C, and for € Ag., by the gener-
alized Holder inequality we have

C

B |Ak575| Ak,a
C
< —
|Ak,€|

| Pi ()] |(f * &) (@) Pr ()| dx

1(f * @) Prll oo @y X 4, N o) -
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Therefore, by Lemma 1.3 we have that

HH;HL‘J(‘)(R") [(f * &) Prll Lac) @y + | Pell Loty ey
|

(f * ¢)‘I’k||Lq<) (Rm)

ICf * )il oo @y X 4, N 2w oy X 2, M 200 )

<
<

|Ak€|
< [I(f = ¢)q)k||Lq<-)(Rn) + C[|(f = ¢)<I>k:||Lq(')(]R”)
< C[(f = (b)q)k”Lq<'>(R”)

k+1

<cC Z 1GN ()X 200> @eny-

j=k—1

Set Ay = 2TV Hl|| Lao) ey and by(z) = 2—<k+1)a||Hk H(z ) It is easy

||Lq( J(R™)

to verify that each by is central (a,¢(+))-atom and Z Hi(z) = Z Apag(x)
k=—o00 k=—00
Moreover,

o0
Z ’)‘k‘p Z 2k+1 apHHlqu()Rn

k=—o00 k——oo

<O PGl

k=—o00

= C||f||hK0<P Rn

e¢]
We now turn our attention to Z H}(x). Let {¢)f : |I| < m} be the dual
k=—00
basis of {7 : |3| < m} limited on A with respected to the weight | Ay .|, that
is,

1

W’h Iﬂ> == fﬁﬁbzk(x)dx = g1
k.e Ak,g
We can prove that if gzﬁl Z B Y then wl Z 6 . In fact, let
lv|<m v|<m
= Z Cﬁl¢llj(aj)a then
lv|<m

Cl= (U, of) = (U, Y Bhat)y =Y Bh(uUf, a7) = B

Ivl<sm lylsm
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Thus, for x € flkvg,

Pu(z) = > ((f * )P, ok)ek(x)

lv|<m

= ((f+d)Pi, Y Bhy)oh(x)
lv|<m \l\<m

= > ()i, v D Bidh(@)
[l|<m v|<m

= > ()P, v ().
l[<m

It is easy to prove that if = € Ay ., then [if(2)] < C27*!(see [7, Theorem 2.1]).
It follows that

> Hiw) = ) Px)
k=—00 k=—o00
= D D AP, ) (0)x4, (2)
k=—o0 |l|<m
= N * l M
- lek:ZOO ([ ormmin dy) o
> ( > / (o)) ()y dy)
|| <m k=— -
. (W(@mk,g( )_ P (x )XAHLE(x))
|Ak€| ‘Ak—i-l e|
Ui (@)x 4, (2)
+”Zm{(_2w o) ) A,
Sy ) Y, (@)
#3 ([ o >ydy) T
=I(z)+ J(x).
We first decompose I(z). From Z / y)y'dy < C 2k it is easy to

j=—00

deduce that

Z/ f*0)(W)®;(y)y'dy

j=—00

XB 02k+2)( z) < Czk(nﬂl')é(f)(x)XB(o,zkH)(37>~

In addition, we have that

Ui (@)xa,, (7) 0 (@)xa,,,, (@)

‘Ak7€| Ak+1,€

< 2K+l Z x; ().
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Set

N o U (@), (0) T @)X, (@)
hy () = (jzzoo /R (o) y)2;(y)y dy) ( A G )
and

gy ::2_{k+2*’Hth”Zi»(Rny

Then ay; is a central (a, q(-))-atom with support Bys.
Let 74, = 25729 by | oo gny- Then we have that

0
= Z Z Tkl,lalle,l(x)

[l|<m k=—oc0

and

k2 p
Z Z |7l <CZ Z gk +2)ep (Z |G (f XJHLQ()(R"))

[I|<m k=—o0 [l|<m k=—o00 j=k—1
2
<C Z Z 2(k+2)apHGN(f)Xj”iq(»)(w)
1] <m k=—o0
< CIfIF,

hkj(’?;(w)‘
Now we decompose J. A trivial computation as above gives us that
1

3 [ 70wy | x o) < COn (o),

Set

and
Ail(x) = 2a||hil||L‘1(')(]R")'
We can verify that

||hllHLq() Rn) < CZ HGN XJ”Lq()(Rn)

7=0
Moreover, a3 (x) = (A};)"hi,(z) is a central (a, ¢(-))-block supported on B, and
h(x) = ()\%l) 1,(x). For integer k > 2, let

hi(x) = (/n(f * ¢)(y)<1>k(y)yldy) W

By Lemma 1.3 and the generalized Holder inequality we have

th,lHLﬂ‘)(R") < C||GN(f)XAk,€||Lq(~>(Rn)
E+1

<C Z HGN(f)XAjHLq<'>(R")'

j=k—1
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This implies that a(z) = (||hi7l||Lq(-)(Rn)2ka)fl hi,(x) is a central (v, (-))-block
which is supported on Byi1. Set A}, = [|hi ]l pa) ) 2" It then follows that

ZZ)‘klakl

[l|<m k=1
and
DY P < CZ2kap||@N(f)XkHiq<»>(Rn C||thKa,, )’
ll|<m k=1 k=0

Similar to the method of [10, Theorem 2.1], we can get

fxdp= Z Arai in the sense of 8'(R").

k=1

Now we prove the sufficiency. Let {A;}32_., be a sequence of number such
o0

that Z |Ak|P < oo, {ar}r<o be a sequence of central (v, g(-))-atom supported

k=—o00
on By, and {ay}r>o be a sequence of central (a, g(-))-block, and

f= Z Akay  in the sense of S'(R™).

k=—o00

Let ¢ € S(R") such that [, ¢(z)de = 1, supp¢ C B(0,1). Our goal is to
prove that

o1 (f) € K (R™).
To this aim, we consider the following two cases.

When 0 < p < 1. In this case, we just need to show that there exists a constant
C such that for any ay,

||¢~ﬁ(ak)||f<§<vg(ﬂzn) <C.
If £ <0, write

k+3 00
1% (@) oy = D 27165 (@)Xt oo gy + D 2PN (@)X s oy
at) j=—00 j=k+4
= L1+ L.

Applying the trivial estimate that

¢’ (ar)(z) < CMay(z) (2.1)
and the L) (R")-boundedness of M, we see that
k+3 k+3

L< D 27IManlugn <O 3 2 lanluo gy < O

j=—00 j=—00
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Now let m € Z, such that a — nd, < m + 1, and 7, be the m-order Taylor
expansion for ¢ at x/t. For v € A; with j > k+4, a straightforward computation
gives us that

n t

_ g / ax(y) (¢ (“7 > y) T (%)) dy‘

<C | an()llyl™ (¢t + |o — oy~ Ddy

2k(m+1)
< CW /Rn |ar(y)|dy,

where 0 < § < 1. Therefore, for x € A; with j > k + 4, we have

ol =\ [ ato (“5) dy\

éi(@k)(x) < CQk(m+1)‘x’_(n+m+l)’Bk‘_a/nHXBkHL‘/(‘)(R")'

So by Lemma 1.2 and Lemma 1.3 we have

00 ' |B| pa/n
Lé <C Z oplk(m+1)—j(nt+m+1)] (ﬁ) HXBk||iq’(~)(Rn)HXBj|’iq<')(Rn)
j=k+4

o0 a/n
<oy wrensioemen) (BT e (1B e ko)
— |Bk| X By, Lq() (R™) XB Lq() (R™)
j=k+4

> P
_0 Y g (M)

j=k+4 ”XBJ'HL‘Z/(~)(R")
)

<C Z gp(k—j)(m+1—a+nds) <C.

j=k+4

If k > 1, by (2.1), the L10)(R™)-boundedness of M and supp ¢* (ax) C By, we
have

k+1

193 (@)l zen gy = > 205 (@)X, T
e

j=—o00
k+1

<C Z QNPHM%HLq() (R")

j=—00
k+1

<C Z oU=ker < .

j=—o00
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When 1 < p < oo, take 1/p+ 1/p/ = 1. Write

”¢+()Hpaan E: 2me¢+ XHE«NRM

k=—0o0
o0 oo b
< 3 ook ( > |/\j‘H(bi(aj)XkHLq('>(R”)>
kf—oo ]7—00
<C Z okp ( >IN (ag) xll paco R”)
kf—oo Jj=—00
oy (ZM 19% ()Xl o <>
k—foo j=1
p

+022akp <Z Al ( ) Xkl Lae) )

= C’(U1 —i— Us + Us).

For the term Us, it follows from the Holder inequality that

00 o0 P
= ( > |Aj|r|¢:<aj>><k”“”<R">)
k=1 Jj=k-1
00 0 P
<0y 2 ( > \Aj!2°‘j)
k=1 Jj=k—1
- . o /v’
<oy o ( > |Aj|p2‘°‘”/2) <Z 2‘”“”)
k=1 j=k—1 Jj=k-1

<O NP < 0.

=0

On the other hand, a straightforward computation leads to that

0 00 p
U2 - Z 2akp (Z’)‘j‘H¢j—(&j)XkHLq<<>(Rn))

k=—00 7=1

0o P
<C ) ok <Z|Aj|2—aj)

k=—o00 7j=1
p/Y
<CZ|)\ Py b (Zz )
k=—o0

SCZ’)\]‘p<OO

Jj=0
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To estimate Uy, write

oo 0 ?
U = 20 ( > |)‘j|||¢j—(aj)Xk||Lq<‘>(R")>

k=2 Jj=—00

1 k-2 ’
L3 e ( 3 w||¢:<aj>xk||m<~><w>>

k=—00 j=—00

1 0 ’
N Z gakp ( Z ’)\j‘||¢i(aj)Xk“Lq(<)(Rn)>

k=—00 Jj=k—1
=U! + U} + U}

The Hoélder inequality, along with the estimate (2.1), gives us that

1 0 P
Ui <c Y ok ( > P\j!HajHLqm(Rn))

k=—o00 j=k—1
1 0 p
<oy w3 ne)
k=—oc0 j=k—1

0
<C Y NP <o

j=—o00

On the other hand, for z € A, with k > 742 and k < 1, similar to the first case
we have

0% (ag)(x) < CPUD ||~ By 2 x| L gy

Note that a — ndy < m + 1, so we have

h
1 k—2 ' |Bk| a/n p
<C Z Z ‘)\j|2J(m+1)*k(n+m+1) (E) ||XBj||Lq’(-)(Rn)HXBkHLq<'>(Rn)
k=—0c0 \j=— J
1 ]kf;o p
<o 3 (5 npoeeren)
k=—o0 \j=—00

-1
<C Y NP <o

j=—o0

Similarly, we have

00 0 p
Ull < CZ ( Z |/\j‘2(jk)(m+1a+n62)>
k=2

j=—o0

0
<C Z ‘)\j’p<OO.

j=—oc0
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Combining the estimates above, it will show that if f has the decomposition
o0

f = Z )\jaja then
j=—00
||¢+( )HKQP Rn) < 0.
This completes the proof of Theorem 2.4.
OJ

Similar to the proof of Theorem 2.4, we are easy to get the following conclusion,
which gives another characterization of hK/(R").

Theorem 2.5. Let nds < a < 00,0 < p < 00 and q(-) € B(R"). Then f €

hES(R™) if and only if f € Ki5(R"). That is,

x) = Z Aga(z), in the sense of S'(R™),

where each ay, is a central (o, q(+))-block of restricted type, and { A}, satisfies

that Z | Ak|P < oo. Moreover,
k=0

00 l/p
”thK“P (Rny A Inf <Z ‘)‘k|p> )

k=0
where the infimum is taken over all above decomposition of f.

The boundedness of pseudo-differential operators on Herz-type spaces was stud-
ied by many authors (see [3, 8]). In the following part, as an application of The-
orem 2.4, we will prove the boundedness of pseudo-differential operators of order
zero on the space hK(ZO‘(’g(R”), which generalizes the result in [3].

Theorem 2.6. Let ndy < o < 00,0 < p < 00 and q(-) € BR™). If T'f(z) =
Jon f(x)o(z, )™ 4dE with o € S, that is, 0 € C*(R"xR™) and |D0‘D6 (x,8)] <
Ca,ﬂ(l + €)™ P, then HTthK;"(’)’ &) = C”f“hK;<§ (R7)*

Proof. Let [ € hf.(:(’f’)’(R”). By Theorem 2.4, we have f(x Z Arag(z) in
k=—00
distributional sense. Then we consider two cases with 0 <p <1 and 1 < p < o0.
When 0 < p < 1. In this case, we only need to show that HTathKa(,z;(Rn) <C
o

and C'is independent of a. If £ < 0, then

HTakHZK;"("l)’(Rn) = Z 2jap||GN(Tak)Xj||1[7,q(~)(Rn)

j:—OO
) >

_ Z 2]0cp||GN(Tak)Xj||}Zq(')(Rn)—|— Z 2Jozp||GN(Tak;>Xj||I£q(-)(Rn)
e j=k+3

- Il +[2
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For I, using the L?")(R")-boundedness of M, we have

k+2
I, = Z 29ap||GN(Tak)XjHi:;(»)(Rn)

j=—o0
k+2

<C Z 2jap||M(Tak)||I£q(~)(R")
Teiz

<C Z 2]ap\|ak”m(> ™)

j=—00
k+2

<C Z 9(i—k)ap <C.

j=—o0

To estimate I, by Theorem 4 in [4], we can write that

O x (Tap)(z) = [ Ki(z,z — 2)ag(z)dz.

RTL
Then we expand K;(z,x — z) in a Taylor series about z = 0. By the vanishing
moments of ai, we get that

o % (Tag)(x) = Z DSKy(x,x — 02)2%y(2)dz,
la|=N+17R"
where § € (0,1) and N € Z satisfying that « —nd, < N +1. Noting that z € A;
with 7 > k + 3, by Theorem 4 in [4], we can obtain that
C
|py % (Tag)(z)| < W/ |2[M ag(2)dz
CQk(NJrl) v
— |I|n+N+1
C2k(N+1)
= WH%HL«) @ Xl Lo O (Rm)

0219 (N+1)
< 927 (n+N+1)

ag(z)dz
Rn

|Bk’_a/nHXBkHLq /() (R

So by Lemma 1.2 and Lemma 1.3 we have

n B[\

Jj= k+3 |B |
. ‘B ‘ pa/n p
S C Z 2p [(k—J7)(N+1)—jn] (’B | ||XBk||Lq() R") <|B |||XB ||Lq )(]R”)>
j=k+3

=C i op(k=j)(N+1-a) (M)p

j=k+3 ||XBj ||Lq/(‘)(]R")
oo

S C Z 2p(k—j)(N+l—a+n62) S C.
j=k+3
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If £ > 0, we choose a radial smooth function n such that suppn C B(0,1) and
n equals 1 near the origin. We split 7" = T} + T» by decomposing K(x,z) =
Ki(z,z) + Ko(x,2) = n(2)K(x,2) + (1 — n(z))K(x,z). Then T7 and T3 are of
order zero. Noting that supp ¢* (Tyaz) C Byyy and LIO(R™)-boundedness of M,
we get that

k+1
1Tkl gy = 2 2P NOL D)X 0 gy
j=f]<€>il
<C Z QjQPHM(Tlak)||I£q(~)(ugn)
T
<O YTl
Ty
<O 2l
gty
<C Z oUi=kar < .
j=—o0
To estimate Thax (), we have
|(Ka)e(@, 2)] < Cur(1+ [z~ (2.2)
for any M > n (see [4, Theorem 4]). Then we write that
1T2aelh sy = Z 2§ (Toar) X317 0 @
o
= Z 2]ap||¢+(T2ak)XJ”Lq(> R7) + Z 2]ap||¢+(T2ak)Xg||Lq<> (Rn)
j=——oo j=k+3
=1L+ 1.

About I1;, we can obtain the desirable estimate by a similar method to [;. For
I1,, noting that x € A; and | > k + 3, by (2.2) we can obtain that

[+ (Toan)(@)] =1 | (Ka)ilw o = 2)ar(z)dz

1
o (L o =z 212

|ak(2)|d=

< Cuy

- $|n+N+l

CQk(N'H) Caln
= W‘BH / HXBkHL‘I'(‘)(R")?

where we take N € Z, satisfying that &« —nds < N + 1. So it is readily to follow
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When 1 < p < oo. In this case, we write that

o 1/p
1T fllngeer ey = { > 2kap||¢+(Tf)XkHLq<>(Rn }
kzc;oo oo py 1/p
s { Z 2her ( Z |)‘J’|||<g*+(Taj)Xk||Lq<->(Rn)> }
k:f;oo ]::100 py /P
< { > 2k ( > wrw%:(Taj)Xkum(.)(Rn)) }
k:*:; j:;OOO py 1/p
+{ Z 2her <Z ‘)\j|H&:<TQJ)X7€HL‘1<‘>(R")) }
_an i

Similar to I, we can get the estimates of I11,. For I11,, we continue to decompose
it as follows.

11, = { Z okap ( Z |)\ |||¢+(Ta] Xk;HLQ()(R") }
k=—o0 j=—00
0
{ £ (£ i) |
k=—00 Jj=—00
{Z gkap ( > N6 (Tias) xall oo Rﬂ)) }
]_—OO
{Z gkap ( > N6 (Taas) xall oo Rn)) }
]7—00

=11+ 1117+ 1113,

For I11%, it is easy to get the estimate by a similar method to I;. Using the
vanishing moments for 71} and (2.2) for III}, it is readily to follow that if
r € Ay and k > j + 1, then

- ~ C23(N+1) o/
9% (T'ay) ()], |04 (Toas) (2)] < H,LWUB i s, HLq<> (Rm)>

where we choose N € Z, such that & — nd; < N + 1. From this, it is readily to
follow that ITI} + I1T} < C.

This completes the proof of Theorem 2.6. OJ
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