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Abstract. The issue of Ulam’s type stability of an equation is understood
in the following way: when a mapping which satisfies the equation approx-
imately (in some sense), it is “close” to a solution of it. In this expository
paper, we present a survey and a discussion of selected recent results concern-
ing such stability of the equations of homomorphisms, focussing especially on
some conditional versions of them.

1. Some history

This is an expository paper, but because of the demands of the journal, we
had to restrict very significantly the number of references. We apologize to the
authors of all the papers that are connected with the subjects considered here,
but had to be omitted.

The property of additivity of a mapping is very important (not only in math-
ematics) and can be described by the following Cauchy functional equation

f(x+ y) = f(x) + f(y), (1.1)
where f is a mapping between semigroups endowed with binary operations de-
noted by + (we abuse the notation and we use the same symbol for operations in
two different structures). Every mapping satisfying equation (1.1) is said to be
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additive. The equation has drawn attention of researchers for a quite long time.
Cauchy [32] proved in 1821 that every continuous solution f : R → R of (1.1)
must be of the form f(x) ≡ cx for some fixed c ∈ R. In 1905, Hamel [60] used
the so called Hamel basis to provide a description of its discontinuous solutions,
and Ostrowski [83] proved that the functions constructed by Hamel cannot be
Lebesgue measurable. Moreover, it is well known that if an additive function
f : R → R is bounded on a set of positive inner Lebesgue measure, then it is
linear (cf. [72]). There are numerous further important outcomes of similar type
proved for this functional equation, also for functions with more general and/or
abstract domains and ranges.

One of interesting questions is the following: When is it true that a mapping
satisfying equation (1.1) approximately (in some sense) must be close to an exact
solution of (1.1), i.e., to an additive function?

Such a problem (in a more general form) was posed for the first time by Ulam
(cf., e.g., [62, 115]) in 1940 during his talk before a Mathematical Colloquium at
the University of Wisconsin. Namely, he asked about the following issue.

Given a group G1, a metric group (G2, d) and a positive number ε, does there
exist a number δ > 0 such that if a mapping f : G1 → G2 satisfies the inequality

d(f(xy), f(x)f(y)) ≤ δ, x, y ∈ G1,

then there exists a homomorphism T : G1 → G2 such that

d(f(x), T (x)) ≤ ε, x ∈ G1 ?

The first partial answer to Ulam’s problem was published by Hyers [62] in 1941
(in the context of Banach spaces) with δ = ε in the following form.

Suppose that E1, E2 are Banach spaces, f : E1 → E2 is a mapping, ε > 0 and

∥f(x+ y)− f(x)− f(y)∥ ≤ ε, x, y ∈ E1.

Then there is a unique additive mapping T : E1 → E2, defined by

T (x) = lim
n→∞

f(2nx)

2n
, x, y ∈ E1,

such that
∥f(x)− T (x)∥ ≤ ε, x ∈ E1.

However, it seems that the question of Ulam was somehow anticipated in [88],
where the subsequent outcome was presented.

For every real sequence (an)n∈N with

sup
n,m∈N

|an+m − an − am| ≤ 1,

there is a real number ω such that

sup
n∈N

|an − ωn| ≤ 1.

Moreover, ω = limn→∞ an/n.

Ulam’s problem has inspired numerous other authors (for details and further
references see [16, 28, 27, 63, 67]); in particular Bourgin, who presented in [15]
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some remarks concerning approximately additive mappings and Aoki [5], who
extended Hyers’ theorem in the following way.

Let E1 and E2 be real normed spaces, E2 be complete, ε ≥ 0, p ∈ [0, 1) and
f : E1 → E2 be a mapping with

∥f(x+ y)− f(x)− f(y)∥ ≤ ε(∥x∥p + ∥y∥p), x, y ∈ E1. (1.2)

Then there is a unique additive mapping T : E1 → E2 such that

∥f(x)− T (x)∥ ≤ 2ε

2− 2p
∥x∥p, x ∈ E1. (1.3)

Nearly thirty years later, Th.M. Rassias [90], independently, published a result
resembling that of Aoki and concerning linear mappings. Namely, he proved the
following.

Let E1 and E2 be real normed spaces with E2 complete and f : E1 → E2 be such
that the mapping t 7→ f(tx) is continuous on R for each fixed x ∈ E1. Assume
that there exist ε ≥ 0 and p ∈ [0, 1) with

∥f(x+ y)− f(x)− f(y)∥ ≤ ε(∥x∥p + ∥y∥p)
for all x, y ∈ E1. Then there exists a unique linear mapping T : E1 → E2 such
that

∥f(x)− T (x)∥ ≤ 2ε

2− 2p
∥x∥p

for all x ∈ E1.
It is easily seen that the latter outcome follows at once from that of Aoki.

Namely, it is enough to notice that the continuity of the mapping t 7→ f(tx)
and (1.3) imply that the mapping t 7→ T (tx) is bounded on a nontrivial real
interval and, consequently, T must be linear, because it is additive (see, e.g.,
[2]). Actually, it is enough to assume that, for each fixed x ∈ E1, the mapping
t 7→ f(tx) is continuous at least at one point (or bounded, above or below, on a
set with a positive inner Lebesgue measure).

It is well known that the reasonings given in [5, 90] also work in the case p < 0, if
we assume that ∥0∥p = ∞. In 1990, during the 27th International Symposium on
Functional Equations, Th.M. Rassias [91] asked the question whether his theorem
can also be proved for p ≥ 1. In 1991, Gajda [49] gave an affirmative solution to
this question for p > 1 by following the same approach as in Rassias’ paper [90].
He actually used the Hyers method, but with T defined by

T (x) := lim
n→∞

2nf(2−nx).

It also was proved by Gajda [49] (cf., Th.M. Rassias and Šemrl [92]) that one
cannot prove a theorem of that type when p = 1. In 1994, Găvruta [52] provided
a generalization of the Aoki-Rassias result; he replaced the bound ε(∥x∥p+ ∥y∥p)
in (1.2) by a general control function φ(x, y) and considered the inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ φ(x, y). (1.4)

Namely, he proved the following.
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Theorem 1.1. Suppose (G,+) is an abelian group, E is a Banach space and the
so-called admissible control function φ : G×G→ [0,∞) satisfies

φ̃(x, y) :=
1

2

∞∑
n=0

2−nφ(2nx, 2ny) <∞, x, y ∈ G.

If f : G → E fulfils (1.4) for all x, y ∈ G, then there exists a unique additive
mapping T : G→ E such that ∥f(x)− T (x)∥ ≤ φ̃(x, x) for all x ∈ G.

All the results presented so far suggest the following formal definition.

Definition 1.2. Let (A,+) and (S,+) be semigroups, d be a metric in S, E ⊂
C ⊂ RA2

+ be nonempty, and T be an operator mapping C into RA
+ . We say that

the Cauchy equation (1.1) is (E , T ) – stable provided for every ε ∈ E and φ0 ∈ SA

with
d
(
φ0(x+ y), φ0(x) + φ0(y)

)
≤ ε(x, y), x, y ∈ A, (1.5)

there exists a solution φ ∈ SA of equation (1.1) such that

d
(
φ(x), φ0(x)

)
≤ T ε(x), x ∈ A. (1.6)

Roughly speaking, (E , T ) – stability of equation (1.1) means that every approx-
imate (in the sense of (1.5)) solution of (1.1) is always close (in the sense of (1.6))
to an exact solution of (1.1).

If C = E consists only of all the constant functions in RA2

+ and T takes values
only in the family of constant functions in RA

+ , then (sometimes under some
additional conditions) the (E , T ) – stability is quite often called the Hyers-Ulam
stability.

Clearly, according to Definition 1.2, we can say that Theorem 1.1 states that
the Cauchy equation is (E , T ) – stable with

E :=
{
φ ∈ EG :

∞∑
n=0

2−nφ(2nx, 2ny) <∞, x, y ∈ G
}
,

T φ(x) := 1

2

∞∑
n=0

2−nφ(2nx, 2nx), φ ∈ E , x ∈ G.

Jun et al. [66] obtained some stability results for the so-called pexiderized
Cauchy equation f(x+ y) = g(x) + h(y).

Another significant version of stability is the conditional stability (sometimes
called also stability on the restricted domain or stability of conditional equations),
in which, for example, inequality (1.4) is assumed to hold for (x, y) belonging to
a subset D of X2, where X is the domain of f .

Modifying slightly the proof of Theorem 1.1 (e.g., arguing analogously as in the
proof of Theorem 3.4), we can obtain the following version of it on a restricted
domain (with D = {(x, y) ∈ W 2 : x+ y ∈ W}).
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Theorem 1.3. Suppose (G,+) is an abelian semigroup, W ⊂ G is nonempty,
2W ⊂ W , E is a Banach space and φ : G×G→ [0,∞) satisfies

φ̃(x, y) :=
1

2

∞∑
n=0

2−nφ(2nx, 2ny) <∞, x, y ∈ W,x+ y ∈ W. (1.7)

If f : G → E fulfils (1.4) for all x, y ∈ W with x + y ∈ W , then there exists a
unique mapping T : W → E such that T (x + y) = T (x) + T (y) for all x, y ∈ W
with x+ y ∈ W and ∥f(x)− T (x)∥ ≤ φ̃(x, x) for x ∈ W .

We say that Cauchy functional equation is satisfied on a sphere if for all x and
y from a normed space X

∥x∥ = ∥y∥ =⇒ f(x+ y) = f(x) + f(y). (1.8)

In this case we have D = {(x, y) ∈ X2 : ∥x∥ = ∥y∥}. Alsina and Garcia-Roig in
[3] considered this equation in case where f : X → Y is a continuous mapping
from a real inner product space X with dimX ≥ 2 into a real topological space
Y . Szabó in [112] proved that if X is a real normed space with dimX ≥ 3, and
(Y,+) is an abelian group, then f : X → Y satisfies conditional Cauchy equation
(1.8) if and only if f is additive.

Further, we say that a function f is orthogonally additive if for any x, y from
the domain of f ,

x ⊥ y =⇒ f(x+ y) = f(x) + f(y). (1.9)

Initially, we consider the orthogonality relation ⊥ as the one defined in an
inner product space. However, one can define various notions of orthogonality,
in arbitrary normed spaces, playing a fundamental role in geometry of normed
spaces. Many mathematicians have introduced different types of orthogonality for
normed linear spaces, cf. [4]. Suppose (X, ∥.∥) is a real normed linear space whose
dimension is at least two. In 1934, Roberts [95] introduced the first orthogonality
relation: x ∈ X is said to be orthogonal in the sense of Roberts to y ∈ X (x⊥Ry)
if ∥x + ty∥ = ∥x− ty∥ for all t ∈ R. Later, in 1935, Birkhoff [14] introduced one
of the most important types of orthogonality: x is said to be Birkhoff orthogonal
to y (x ⊥B y) if ∥x + ty∥ ≥ ∥x∥ for all t ∈ R. In 1945, James [64] introduced
the so-called James (isosceles) orthogonality: x is said to be isosceles orthogonal
to y (x ⊥I y) if ∥x + y∥ = ∥x − y∥. Trivially, the implications ⊥R =⇒ ⊥I and
⊥R =⇒ ⊥B hold while each of the reciprocals of these implications holds only in
real-valued inner product spaces.

In [59], Gudder and Strawther gave the first axiomatic definition of an abstract
orthogonality relation in linear spaces. In what follows, we give a definition pro-
posed by Rätz in [94] (for some historical background and a number of references
see Sikorska [108]). We say that a pair (X,⊥) is an orthogonality space if X is
a linear space with dimension at least 2 and ⊥ is a binary relation defined on X
and fulfilling four properties:

- x ⊥ 0 and 0 ⊥ x for all x ∈ X;
- if x, y ∈ X \ {0} and x ⊥ y, then x and y are linearly independent;
- if x, y ∈ X and x ⊥ y, then for all α, β ∈ R we have αx ⊥ βy;
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- for every 2-dimensional subspace P of X and for every x ∈ P , λ ∈ [0,∞),
there exists y ∈ P such that x ⊥ y and x+ y ⊥ λx− y.

A normed space with Birkhoff orthogonality is a typical example of an orthogonal-
ity space, and on the other hand James orthogonality, since it is not homogeneous,
is not an example of a binary relation in such a space.

In [112], Szabó studied also a conditional Cauchy equation of the form

∥x+ y∥ = ∥x− y∥ =⇒ f(x+ y) = f(x) + f(y). (1.10)

It is worth underlying that equation (1.10) is nothing else but equation of orthog-
onal additivity (1.9) with the James orthogonality relation.

In [57], Ger and Sikorska studied (1.8) and (1.10) in more general structures
than it was done in [3] and [112]. They also replaced a norm by an abstract func-
tion γ, satisfying given conditions. Namely, the following conditional equations
were investigated:

γ(x) = γ(y) =⇒ f(x+ y) = f(x) + f(y), (1.11)

γ(x+ y) = γ(x− y) =⇒ f(x+ y) = f(x) + f(y). (1.12)
All just mentioned examples are conditional Cauchy equations of the form

(x, y) ∈ D =⇒ f(x+ y) = f(x) + f(y), (1.13)

where D is a subset of X ×X with some given properties.
Concerning the structure of the target space, we may consider another form of

a conditional homomorphism, namely a conditional exponential equation:

(x, y) ∈ D =⇒ f(x+ y) = f(x)f(y).

In [20], Brzdęk solved the orthogonally exponential equation in an orthogonality
space (D = {(x, y) : x ⊥ y}), and in [21] he solved this equation in an normed
space with James orthogonality (D = {(x, y) : ∥x+ y∥ = ∥x− y∥}).

Stability problem for the orthogonal additivity appeared first in the paper by
Ger and Sikorska [56], being a starting point for a number of stability results
obtained for various functional equations defined for orthogonal vectors. Results
from [56] were improved and generalized by Fechner and Sikorska in [43] (for
some more general investigations, see also [107]). In fact, they showed that if f
is a mapping from an orthogonality space X into a real Banach space Y , ε > 0
is given and for all x, y ∈ X with x ⊥ y we have f(x + y) = f(x) + f(y), then
there exists exactly one orthogonally additive mapping g : X → Y such that for
all x ∈ X there is ∥f(x)− g(x)∥ ≤ 5ε.

Skof [110] studied the stability of the Cauchy equation on an interval, Kominek
[69] investigated the equation on an N -dimensional cube in the space RN , and
Sikorska [100, 101] dealt with such stability postulated for orthogonal vectors
in a ball centered at the origin. A somewhat more abstract approach to the
conditional stability is presented in [116, 117].

The stability of the linear mappings in Banach modules was studied by Park
[85]. Moslehian [77] investigated the stability of orthogonal Cauchy equation
of Pexider type in the framework of Banach modules over unital Banach alge-
bras. Further, Moslehian and Eshaghi Gordji [39] utilized the notion of module
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extension to reduce the problem of stability of derivations to that of ring homo-
morphisms in the context of Banach bimodules over Banach algebras.

Another nice version of stability is the so-called superstability. An equation
E(f) = 0 is said to be superstable if the boundedness of E(f) implies that either
f is bounded or f is a solution of the equation. The most famous result on the
superstability of the exponential Cauchy functional equation is the following [11]:

Suppose that X is a vector space over the rationals and f : X → C is a function
satisfying |f(x+y)−f(x)f(y)| ≤ δ for some δ ≥ 0 and all x, y ∈ X. Then either
|f(x)| ≤ max{4, 4δ} for all x ∈ X, or f is exponential on X.

A very particular case of superstability is hyperstability, considered recently
for various equations, e.g., in [10, 23, 24, 25, 87] (for further references see [28]).
We discuss that issue in the further parts of the paper in a more detailed way.

During the last decades several stability problems of various functional equa-
tions such as the quadratic functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

(cf., e.g., [78, 76]) the Jensen functional equation

2f((x+ y)/2) = f(x) + f(y)

(cf., e.g., [69, 68]) and their generalizations have been investigated in the spirit of
Hyers–Ulam–Aoki–Rassias results (cf., e.g., [16, 28, 27, 36, 63, 67]). They have
several applications in Information Theory, Physics, Economy and Social and
Behaviour Sciences (see [86]).

In most stability theorems for functional equations, the completeness of the
target space of the unknown functions contained in the equation is assumed and
essential. Now, we may ask the question whether the stability of a functional
equation implies this completeness of the target space. During the 25th Inter-
national Symposium on Functional Equations in 1988, this problem was first
considered by Schwaiger [97], who proved that if X is a normed space then the
stability of Cauchy functional equation (1.1) for functions f : Z → X implies the
completeness of X. Forti and Schwaiger proved in [47] that an analogous state-
ment is valid if the domain of f is an abelian group containing an element of
infinite order. In [48], authors prove that a normed space X is complete if there
exists a functional equation of the type

n∑
i=1

aif(φi(x1, . . . , xk)) = 0 (x1, . . . , xk ∈ D)

with given real numbers a1, . . . , an, given mappings φ1 . . . , φn : D
k → D and

unknown function f : D → X, which has a Hyers–Ulam stability property on an
infinite subset D of the integers, see also [81].
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2. The main methods of proof

We can actually distinguish four main methods in the investigations of sta-
bility of functional equations; the other methods can be considered to be their
modifications (cf., [54]). The first method is the direct method in which one uses
an iteration process producing the so-called Hyers type sequences [62]. Another
method is based on sandwich theorems, which are generalizations of the Hahn–
Banach separation theorems (see, e.g., [84]). The foundation of the third method
are fixed point techniques (see [28, 31, 35]) and the fourth technique uses the
invariant means (see [113, 114]).

2.1. Direct Method. The most famous method which has widely been applied
to prove the stability of functional equations is the direct method based on an
iteration process. We show how to use it in the proof of the next theorem (to
obtain the Hyers result on a restricted domain).

Theorem 2.1. Let (X,+) be a commutative semigroup, X0 ⊂ X be a nonempty
set such that 2X0 ⊂ X0, and let Y be a Banach space. Suppose that f : X0 → Y
is a mapping such that

∥f(x+ y)− f(x)− f(y)∥ ≤ ε (2.1)

for some ε > 0 and for all x, y ∈ X0 with x + y ∈ X0. Then there is a unique
mapping T : X0 → Y that is additive on X0 (i.e., f(x + y) = f(x) + f(y) for
x, y ∈ X0 with x+ y ∈ X0) and such that

sup
x∈X0

∥f(x)− T (x)∥ ≤ ε.

Proof. Putting y = x in (2.1) we have

∥f(2x)− 2f(x)∥ ≤ ε, x ∈ X0.

Using induction, one can show that

∥2−nf(2nx)− 2−mf(2mx)∥ ≤ 1

2

n−1∑
k=m

2−kε, x ∈ X0, (2.2)

for all nonnegative integers m,n with n > m. Hence {2−nf(2nx)} is a Cauchy
sequence in Y for each x ∈ X0. Due to the completeness of Y we conclude that
this sequence is convergent. Set T (x) := limn→∞ 2−nf(2nx) for x ∈ X0.

Replacing x by 2nx and y by 2ny in (2.1), we obtain∥∥∥f(2n(x+ y))

2n
− f(2nx)

2n
− f(2ny)

2n

∥∥∥ ≤ ε

2n

for all x, y ∈ X0 with x+y ∈ X0, whence letting n→ ∞ we get that T is additive
on X0. In addition, setting m = 0 in (2.2) we arrive at

∥f(x)− 2−nf(2nx)∥ ≤ 1

2

n−1∑
k=0

2−kε,
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which with n tending to infinity yields

∥f(x)− T (x)∥ ≤ ε, x ∈ X0.

If T ′ : X0 → Y is also a mapping that is additive onX0 and fulfils the inequality

sup
x∈X0

∥f(x)− T ′(x)∥ ≤ ε,

then

∥T (x)− T ′(x)∥ = 2−n(∥T (2nx)− T ′(2nx)∥
≤ 2−n(∥T (2nx)− f(2nx)∥+ ∥f(2nx)− T ′(2nx)∥) ≤ 2−n+1ε

for every x ∈ X0 and n ∈ N (positive integers). Tending with n to infinity, we
get T = T ′. □

2.2. Sandwich Technique. The following lemma [82] provides a necessary and
sufficient condition for the existence of an additive separation function.

Lemma 2.2. Let S be an abelian semigroup and p, q : S → [−∞,∞) be functions.
Then there is an additive function T : S → [−∞,∞) such that p(x) ≤ T (x) ≤
q(x) if and only if the following condition holds:

(A) p(x1) + · · · + p(xm) ≤ q(y1) + · · · + q(yn) for all m,n ∈ N and for all
x1, · · · , xm, y1, · · · , yn ∈ S with x1 + · · ·+ xm = y1 + · · ·+ yn.

We are now ready to show an application of the above lemma (cf. [84]) in
obtaining a stability result that is somewhat different from that of Hyers.

Theorem 2.3. Let S be an abelian semigroup and p, q : S → [−∞,∞) be func-
tions such that (A) is valid. Assume that a function f : S → R satisfies

p(y) ≤ f(x+ y)− f(x) ≤ q(y) (2.3)

for all x, y ∈ S. Then there exists an additive function T : S → [−∞,∞) such
that

p(x) ≤ T (x) ≤ q(x), x ∈ S.

Proof. Let m,n ∈ N and x1, · · · , xm, y1, · · · , yn ∈ S be such that z := x1 + · · ·+
xm = y1 + · · · + yn. Let s ∈ S be an arbitrary fixed element. By the left hand
side inequality of (2.3), we have

p(x1) ≤ f(s+ x1)− f(s)

p(x2) ≤ f(s+ x1 + x2)− f(s+ x1)

· · ·
p(xm) ≤ f(s+ x1 + · · ·+ xm)− f(s+ x1 + · · ·+ xm−1).

Adding up these inequalities we get

p(x1) + · · ·+ p(xm) ≤ f(s+ z)− f(s).

Similarly, applying the right hand side inequality of (2.3), we obtain

f(s+ z)− f(s) ≤ q(x1) + · · ·+ q(xn).
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Thus p(x1) + · · ·+ p(xm) ≤ q(x1) + · · ·+ q(xn). By Lemma 2.2, we conclude the
existence of the required additive separation function. □
Corollary 2.4. Suppose that (S,+) is an abelian semigroup, ε1, ε2 ≥ 0 and
f : S → R is a mapping satisfying −ε2 ≤ f(x + y) − f(x) − f(y) ≤ ε1 for
all x, y ∈ S. Then there is an additive mapping T : S → R such that −ε2 ≤
T (x)− f(x) ≤ ε1 for all x ∈ S.

Proof. Put p(x) = f(x)− ε2 and q(x) = f(x) + ε1 in Theorem 2.3. □

2.3. Fixed Point Method. Now we present the third method used in investi-
gations of the stability of functional equations. For a more detailed survey on
various versions of it we refer to [27]. Here we present only an application of the
following well known fixed point theorem named as the fixed point alternative
(see [37]).

Theorem 2.5. Let (M, d) be a complete generalized metric space and J : M →
M be a strictly contractive mapping with the Lipschitz constant L. Then, for
each given element x ∈ M, either
(A1) d(Jnx, Jn+1x) = ∞ for all n ≥ 0,

or
(A2) there exists a natural number n0 such that:

(A20) d(Jnx, Jn+1x) <∞ for all n ≥ n0;
(A21) the sequence {Jnx} is convergent to a fixed point y∗ of J ;
(A22) y∗ is the unique fixed point of J in the set {y ∈ M : d(Jn0x, y) <∞};
(A23) d(y, y∗) ≤ 1

1−L
d(y, Jy) for all y ∈ U .

Now we present an alternative proof of Theorem 2.1, based on that fixed point
alternative.

Proof. Write M := {g : X0 → Y : g(0) = 0} and let the generalized metric d on
M be defined by

d(g, h) = inf{c ∈ (0,∞) : ∥g(x)− h(x)∥ ≤ cε for x ∈ X0}.
It is easy to see that (M, d) is complete. The mapping J : M → M given by
(Jg)(x) := 1

2
g(2x) for x ∈ X0 is a strictly contractive mapping.

Take c > 0 and g, h ∈ M with d(g, h) ≤ c. Then ∥g(x) − h(x)∥ ≤ cε for
x ∈ X0, whence ∥∥∥1

2
g(2x)− 1

2
h(2x)

∥∥∥ ≤ 1

2
cε, x ∈ X0,

and consequently d(Jg, Jh) ≤ c/2.
Thus we have shown that

d(Jg, Jh) ≤ 1

2
d(g, h), g, h ∈ M.

Hence J is a strictly contractive mapping on M. Putting y = x in (2.1) we obtain∥∥∥1
2
f(2x)− f(x)

∥∥∥ ≤ 1

2
ε, x ∈ X0,
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which means that d(f, Jf) ≤ 1/2.
From the fixed point alternative we deduce the existence of a mapping T : X →

Y , which is a fixed point of J (that is T (2x) = 2T (x) for all x ∈ X0). Since
limn→∞ d(Jnf, T ) = 0, we easily conclude that

lim
n→∞

f(2nx)

2n
= T (x), x ∈ X0.

The mapping T is the unique fixed point of J in the set {g ∈ M : d(f, g) <∞}.
Hence T is the unique fixed point of J such that ∥f(x) − T (x)∥ ≤ Kε for some
K > 0 and for all x ∈ X. Again, by applying the fixed point alternative theorem
we obtain

d(f, T ) ≤ 2d(f, Jf) ≤ 1,

and so
∥f(x)− T (x)∥ ≤ ε, x ∈ X0.

Replacing x, y by 2nx, 2ny, respectively, in (2.1), we get

∥2−nf(2n(x+ y))− 2−nf(2nx)− 2−nf(2ny)∥ ≤ 2−nε

for all x, y ∈ X0 with x + y ∈ X0. Taking the limit as n → ∞ we obtain the
additivity of T on X0. □

2.4. Invariant Mean Method. The idea of applying invariant means to the
stability problems is due to Székelyhidi [113] and [114]. One of the advantages of
this approach is that one is able to prove stability results on groups or semigroups
which are not necessarily abelian, but satisfies an essentially weaker condition of
being amenable (we define this notion below). Before we give the details, let us
recall briefly its history. In 1982 Székelyhidi [113] presented an alternative proof
of a result of Albert and Baker concerning stability of monomials. He was assum-
ing that the domain of investigated mappings is a commutative semigroup, but he
applied the technique of invariant means and therefore the assumptions of com-
mutativity in his result can be replaced by a weaker assumption of amenability.
During The Twenty-Second International Symposium on Functional Equations
in Oberwolfach in 1984, Forti [45] showed that if F{a,b} is a free group generated
by two generators a, b, then there exists a mapping f : F{a,b} → R which satisfies

f(x+ y)− f(x)− f(y) ∈ {−1, 0, 1}, x, y ∈ F{a,b}

and for which there exist no constant ε > 0 and no additive mapping T : F{a,b} →
R such that

|f(x)− T (x)| ≤ ε, x ∈ F{a,b}.

Therefore, if the underlying group is not abelian, then the stability theorem needs
not to hold. During the same meeting Székelyhidi [114] showed that the Cauchy
equation is stable for complex-valued mappings defined on an amenable group.
Note that the free group of two generators is a standard example of a group which
is not amenable. Therefore, one can ask about a deeper relation between the
Hyers-Ulam stability and the amenability of the domain. For further discussion
and some more examples of non-stability results the reader is referred to [9, 46].
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Assume that (S, ·) is an arbitrary semigroup. Let B(S, ) denote the Banach
space of all bounded complex-valued functions on S equipped with the supremum
norm. If f ∈ B(S, ), then by xf and fx we mean the left and right translations
of f given by:

xf(y) = f(xy), fx(y) = f(yx), x, y ∈ S.

It is clear that for every f ∈ B(S, ) the functions xf and fx are bounded, i.e.
xf, fx ∈ B(S, ). Frequently, we will abuse the notation and identify constants
with constant mappings belonging to B(S, ).

A positive linear functional M : B(S, ) → such that M(1) = 1 is called left
[right] invariant mean, if M(xf) = M(f) [M(fx) = M(f), resp.] for every f ∈
B(S, ) and every x ∈ S. If M is simultaneously left and right invariant mean,
then we call it simply invariant mean. It is known that if a semigroup admits
both left and right invariant means, then it admits an invariant mean. Moreover,
if S is a group, then S admits a left invariant mean if and only if it admits a
right invariant mean. Finally, semigroup S is called [left/ right] amenable, if it
admits a [left/ right, resp.] invariant mean. It is clear that for groups all the three
notions coincide. The class of amenable groups or semigroups is quite large. In
particular, every abelian semigroup, every finite group and every solvable group
are amenable. Moreover, every subgroup of amenable group is amenable. For
more details concerning these notions the reader is referred to [58].

Now, we present the basic result from [114], which illustrates the technique of
invariant means in stability problems.
Theorem 2.6. Suppose that (S, ·) is a left or right amenable semigroup and
f : S → is a mapping for which there exists ε > 0 such that

|f(xy)− f(x)− f(y)| ≤ ε

for all x, y ∈ G. Then there exists a unique additive mapping T : S → such that

|T (x)− f(x)| ≤ ε

for all x ∈ G.
Proof. We will consider first the case that S is right amenable. Let us note that
for every fixed element x ∈ G the function fx − f belongs to B(S, ). Indeed, for
every y ∈ S we have

|fx(y)− f(y)| = |f(yx)− f(y)|
≤ |f(yx)− f(y)− f(x))|+ |f(x)|
≤ ε+ |f(x)|.

Therefore, the map T : S → is well defined by T (x) = M(fx − f). Next, we will
check that T is additive:

T (x) + T (y) = M(fx − f) +M(fy − f)

= M([fx − f ]y) +M(fy − f)

= M(fxy − fy) +M(fy − f)

= M(fxy − fy + fy − f)

= M(fxy − f) = T (xy).
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Note that above we have used the fact that M is right-invariant. Finally,

|T (x)− f(x)| = |M(fx − f)− f(x)|
= |M(fx − f − f(x))|
≤ ∥M∥∥fx − f − f(x)∥
= sup

y∈G
|f(yx)− f(y)− f(x)| ≤ ε.

In the case that S is left amenable, one can modify the foregoing reasoning and
argue as follows. For every x ∈ G we have xf − f ∈ B(S, ). To see this, fix y ∈ S
and check that

|xf(y)− f(y)| = |f(xy)− f(y)|
≤ |f(xy)− f(x)− f(y))|+ |f(x)|
≤ ε+ |f(x)|.

Therefore, the map T : S → is well defined by T (x) = M(xf − f). Moreover,
using the fact that M is right-invariant we get that T is additive:

T (x) + T (y) = M(xf − f) +M(yf − f)

= M(xf − f) +M(x[yf − f ])

= M(xf − f +xy f −x f)

= M(xyf − f) = T (xy).

Moreover,

|T (x)− f(x)| = |M(xf − f)− f(x)|
= |M(xf − f − f(x))|
≤ ∥M∥∥xf − f − f(x)∥
= sup

y∈G
|f(xy)− f(y)− f(x)| ≤ ε.

The uniqueness of T can be proved in a standard way, as in the proof of Theorem
2.1. □

The technique presented in the foregoing proof has been developed further and
applied to several stability problems (see e.g. [7, 8]). We will mention here two
more contributions, in which the authors deal with conditional stability problems
of approximate additivity almost everywhere or on some large sets.

Gajda [50] dealt with the case when the stability inequality is satisfied almost
everywhere (in an abstract sense) and the unknown mapping takes values in a
vector lattice. Before we formulate Gajda’s result, we need some definitions. If
(G, ·) is a group, then a non-empty family I of subsets of G is called a proper
linearly invariant set ideal (p.l.i. ideal for short), if
(I1) G /∈ I,
(I2) if A,B ∈ I, then A ∪B ∈ I,
(I3) if A ∈ I, B ⊂ G and B ⊂ A, then B ∈ I,
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(I4) if A ∈ I and a ∈ G, then the following sets belong to I:

A · a = {xa : x ∈ A}, a · A = {ax : x ∈ A}, A−1 = {x−1 : x ∈ A}.
We say that some condition C(x) defined for x ∈ G holds I-almost everywhere
(I-a.e. for short), if there exists a set A ∈ I such that C(x) holds for every
x ∈ G \ A. Given a p.l.i. ideal I of subsets of G, we can define a p.l.i. ideal
Ω(I) in the product group G×G in the following way. A set N ∈ G×G belongs
to Ω(I), if we have {y ∈ G : (x, y) ∈ N} ∈ I for I-a.e. x ∈ G. If S is a
subsemigroup of G and I is a p.l.i. ideal of subsets of G, then one can define a
natural p.l.i. ideal of subsets of S as follows:

I|S = {A ∩ S : A ∈ I}.
If (X,≤) is a vector lattice, then we call it boundedly complete, if every non-

empty upper bounded subset of X has a supremum in X.
Now, we are ready to quote Theorem 3.1 from [50].

Theorem 2.7. Assume that (G, ·) is a group and S is a subsemigroup of G such
that S is left amenable and G = S · S−1 = {x · y−1 : x, y ∈ S}. Let I be a p.l.i.
ideal of subsets of G such that S /∈ I. Further, let (X,≤) be a boundedly complete
vector lattice and let V ⊂ X be a non-empty bounded set. Assume that f : S → X
is a mapping such that

f(x+ y)− f(x)− f(y) ∈ V

for Ω(I)-a.e. (x, y) ∈ S × S. Then, there exists a unique additive mapping
T : G→ X such that

inf V ≤ T (x)− f(x) ≤ supV

holds for I-a.e. x ∈ S.

The invariant mean technique has been used by Cabello-Sánchez [30] for a
related conditional stability problem. He studied mappings from a commutative
or amenable group into the real line or into a Banach space which satisfies a
stability inequality on a big subset of the domain. If G is an amenable group,
then a subset B ⊂ G is called big, if there exists an invariant mean M for G such
that M(1B) = 1, where 1B denotes the characteristic function of B. Below we
quote main results from [30]. In the first theorem three stability problems are
covered.

Theorem 2.8. Assume that (G,+) is a commutative group, B ⊆ G is a big
subset of G, ρ : G → R is a nonnegative “control” mapping and K ≥ 0 is a real
constant. Assume further that a mapping f : B → R satisfies one of the following
conditions:

(a) |f(x + y)− f(x)− f(y)| ≤ K(ρ(x) + ρ(y)− ρ(x + y)) for every x, y ∈ B
such that x+ y ∈ B,

(b) |f(x+ y)− f(x)− f(y)| ≤ Kρ(x) for every x, y ∈ B such that x+ y ∈ B,

(c)
∣∣∣∣f ( n∑

i=1

xi

)
−

n∑
i=1

f(xi)

∣∣∣∣ ≤ K
n∑

i=1

ρ(xi) for every xi ∈ B such that
n∑

i=1

xi ∈ B

and for all n ∈ N.
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Then, there exists an additive mapping T : G→ R such that

|f(x)− T (x)| ≤ Kρ(x), x ∈ B.

In the second theorem stability of (b) is extended for mappings defined on an
amenable group and having values into a Banach space.

Theorem 2.9. Assume that (G,+) is an amenable group, B ⊆ G is a big subset
of G, ρ : G→ R is a nonnegative “control” mapping, K ≥ 0 is a real constant and
Y is a Banach space which is complemented in its second dual by a projection π.
Assume further that a mapping f : B → Y satisfies

∥f(x+ y)− f(x)− f(y)∥ ≤ Kρ(x)

for every x, y ∈ B such that x + y ∈ B. Then, there exists an additive mapping
T : G→ Y such that

∥f(x)− T (x)∥ ≤ K∥π∥ρ(x), x ∈ B.

3. Hyperstability

In this section we focus on the issue of hyperstability, a particular case of
superstability. For suitable references, more detailed discussion on similarities
and differences between those two notions and numerous examples of results
obtained for various functional equations we refer to [28]. Here we confine our
considerations only to the additive Cauchy equation.

The following theorem has been proved in [23] (it corresponds to the earlier
results of Aoki, Rassias and Gajda).

Theorem 3.1. Let E1 and E2 be normed spaces, X ⊂ E1 \ {0} be nonempty,
c ≥ 0 and p < 0. Assume that

−X := {−x : x ∈ X} = X (3.1)

and there exists a positive integer m0 with

nx ∈ X, x ∈ X,n ∈ N, n ≥ m0. (3.2)

Then every mapping g : E1 → E2 with

∥g(x+ y)− g(x)− g(y)∥ ≤ c(∥x∥p + ∥y∥p), x, y ∈ X, x+ y ∈ X, (3.3)

is additive on X, i.e.,

g(x+ y) = g(x) + g(y), x, y ∈ X, x+ y ∈ X. (3.4)

In the case X = E1 \ {0}, such outcome follows easily from an earlier (and
more general) [73, Theorem 5].

Modifying accordingly the terminology used in [74] (see also [28]), we can de-
scribe the result contained in Theorem 3.1 as the property of φ-hyperstability
of the conditional equation (3.4) for φ(x, y) ≡ c(∥x∥p + ∥y∥p). A more precise
definition of hyperstability of equation (3.4) can be patterned on [28, Definition
7] and stated as follows.
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Definition 3.2. Let (A,+) be a groupoid (i.e. a nonempty set equipped with
a binary operation +: X × X → X), X ⊂ A be nonempty, (Y, d) be a metric
space, and ε ∈ R+

X2

. We say that equation (3.4) is ε – hyperstable provided every
mapping g : X → Y satisfying the inequality

d(g(x+ y), g(x) + g(y)) ≤ ε(x, y), x, y ∈ X, x+ y ∈ X, (3.5)
fulfils equation (3.4).

Below we present an analogous complementary result on a restricted domain
for p ≥ 0 by using a method suggested by G.L. Forti (it is a modification of the
direct method). To this end we need to recall the following observation (cf. [16,
Theorem 6.1]).

Theorem 3.3. Assume that (Y, d) is a complete metric space, K is a nonempty
set, λ ∈ R+, and f : K → Y , Ψ: Y → Y , a : K → K, h : K → R+ are mappings
such that

d(Ψ ◦ f ◦ a(x), f(x)) ≤ h(x), x ∈ K,

d(Ψ(x),Ψ(y)) ≤ λd(x, y), x, y ∈ Y, (3.6)
and

H(x) :=
∞∑
i=0

λih
(
ai(x)

)
<∞, x ∈ K. (3.7)

Then, for every x ∈ K, the limit

F (x) := lim
n→∞

Ψn ◦ f ◦ an(x)

exists and F : K → Y is the unique mapping such that Ψ ◦ F ◦ a = F and

d(f(x), F (x)) ≤ H(x), x ∈ K.

Now, we are in a position to prove the following complement to Theorem 3.1.

Theorem 3.4. Let E1 and E2 be normed spaces, X ⊂ E1 \ {0} be nonempty,
c ≥ 0 and p ≥ 0, p ̸= 1. Assume that the following two conditions hold.

(i) If p < 1, then 2X := {2x : x ∈ X} ⊂ X.
(ii) If p > 1, then X ⊂ 2X.

Then for every mapping g : X → E2 with

∥g(x+ y)− g(x)− g(y)∥ ≤ c(∥x∥p + ∥y∥p), x, y ∈ X, x+ y ∈ X, (3.8)
there is a unique mapping T : X → E2 that is additive on X and such that

∥f(x)− T (x)∥ ≤ 2c

|2− 2p|
∥x∥p, x ∈ X. (3.9)

Proof. If we take x = y in (3.8) and, moreover, when p > 1, replace x by 1
2
x, then

in either case we arrive at the inequality
∥Ψ ◦ f ◦ a(x)− f(x)∥ ≤ h(x), x ∈ X, (3.10)

where

Ψ(x) :=

{
2x, if p > 1;
1
2
x, if p < 1,

a(x) :=

{
1
2
x, if p > 1;

2x, if p < 1,
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h(x) :=

{
21−pc∥x∥p, if p > 1;

c∥x∥p, if p < 1.

So, the assumptions of Theorem 3.3 are fulfilled with

λ :=

{
2, if p > 1;
1
2
, if p < 1.

Moreover, it is easy to check that

H(x) =
2c

|2− 2p|
∥x∥p, x ∈ X,

where H is given by (3.7). Hence, by Theorem 3.3, there is a unique mapping
T : X → E2 such that T = Ψ ◦ T ◦ a and (3.9) holds. Moreover,

T (x) = lim
n→∞

Ψn ◦ f ◦ an(x), x ∈ X.

It remains to show that T is additive on X.
So, fix z, w ∈ X with z + w ∈ X. Then, by (3.9),

∥Ψn ◦ f ◦ an(x+ y)−Ψn ◦ f ◦ an(x)−Ψn ◦ f ◦ an(y)∥
≤ λn∥f ◦ an(x+ y)− f ◦ an(x)− f ◦ an(y)∥
≤ λnc(∥an(x)∥p + ∥an(y)∥p),

whence, letting n→ ∞, we deduce that T (x+ y) = T (x) + T (y), because

lim
n→∞

λn∥an(z)∥p = 0, z ∈ X.

Since every mapping T0 : X → E2 that is additive on X, fulfils also the con-
dition T0 = Ψ ◦ T0 ◦ a, the statement on uniqueness of T in Theorem 3.4 results
from the analogous statement in Theorem 3.3. □

Theorems 3.1 and 3.4 and some earlier observations allow us to formulate the
subsequent theorem.

Theorem 3.5. Let E1 and E2 be normed spaces and c ≥ 0 and p ̸= 1 be fixed
real numbers. Assume also that f : E1 → E2 is a mapping with

∥f(x+ y)− f(x)− f(y)∥ ≤ c(∥x∥p + ∥y∥p), x, y ∈ E1 \ {0}. (3.11)

If p ≥ 0 and E2 is complete, then there exists a unique additive T : E1 → E2

such that
∥f(x)− T (x)∥ ≤ c∥x∥p

|1− 2p−1|
, x ∈ X0, (3.12)

where

X0 :=

{
E1 \ {0}, if p = 0;

E1, if p ̸= 0;

moreover, if for each x ∈ E1, the mapping fx : R ∋ t 7→ f(tx) is continuous at
least at one point or bounded above or below on a set with positive inner Lebesgue
measure, then T is linear.

If p < 0, then f is additive.
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Proof. Write X := E1 \ {0}. First consider the case p < 0. Then Theorem 3.1
implies that f is additive on X. It remains to show that

f(x+ 0) = f(x) + f(0), x ∈ E1,

i.e., that f(0) = 0. So fix z ∈ X. Then

f(z) = f((z + z)− z) = f(2z) + f(−z) = 2f(z) + f(−z),
which means that f(−z) = −f(z). Consequently, by (3.11),

∥f(0)∥ = ∥f(z − z)− f(z)− f(−z)∥ ≤ 2c∥z∥p, z ∈ X,

whence f(0) = 0.
Now, assume that p > 0. Then, on account of Theorem 3.4, there exists a

unique mapping T0 : X → E2 that is additive on X and such that (3.9) holds.
Define T : E1 → E2 by T (x) = T0(x) for x ∈ X and T (0) = 0.

As before (for f) we show that T (−z) = −T (z) for each z ∈ X, which implies
the additivity of T . Next, by (3.11) and (3.9), we get

∥f(0)∥ ≤ ∥f(z − z)− f(z)− f(−z)∥+ ∥f(z)− T (z)∥+ ∥f(−z)− T (−z)∥
≤ µ∥z∥p, z ∈ X,

with some µ > 0. Hence f(0) = 0, which completes the proof of (3.12).
It remains to consider the case, where for each x ∈ E1 the mapping fx : R ∋

t 7→ f(tx) is continuous at least at one point or bounded above or below on a
set with positive inner Lebesgue measure. Then (3.12) implies that the mapping
R ∋ t 7→ T (tx) is bounded, above or below, on a set with positive inner Lebesgue
measure and, consequently, it is linear. □
Remark 3.6. We cannot have X0 = E1 in (3.12) for p = 0 in the general situation.
For instance, let c > 0, f(x) = 2c for x ∈ E1 \ {0} and f(0) = 6c. Then it is
easily seen that (3.11) holds, T (x) ≡ 0 is the only additive mapping satisfying
(3.12), but

∥f(0)− T (0)∥ = ∥f(0)∥ = 6c > 2c =
c∥0∥0

|1− 2−1|
,

with 00 := 1. However, this can be amended if in the case p = 0 we replace
condition (3.11) by

∥f(x+ y)− f(x)− f(y)∥ ≤ 2c, x, y ∈ D, (3.13)

with some D ⊂ X2 such that (E1 \ {0})2 ⊂ D and {x ∈ E1 : (x, 0) ∈ D} ̸= ∅.
Then, taking y = 0 in (3.13), we have ∥f(0)∥ ≤ 2c, which yields X0 = E1 in
(3.12) also for p = 0.

Remark 3.7. Let E2 be a normed space, X ⊂ R be nonempty, and p > 0. Take
w0 ∈ E2 \ {0}. Define f, T : R → E2 by

f(x) =
|x|p

|1− 2p−1|
w0, T (x) = 0, x ∈ X.

It has been proved in [22] that

| |x+ y|p − |x|p − |y|p| ≤ |1− 2p−1|(|x|p + |y|p), x, y ∈ R.
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Consequently

∥f(x+ y)− f(x)− f(y)∥ ≤ ∥w0∥(|x|p + |y|p), x, y ∈ R.

Moreover,

∥f(x)− T (x)∥ = ∥f(x)∥ = ∥w0∥
|x|p

|1− 2p−1|
, x ∈ R.

This shows that estimations (3.9) and (3.12) are optimal in Theorems 3.4 and
3.5, respectively, when E1 = R.

Moreover, Theorem 3.5 disproves the conjecture of Th.M. Rassias and J. Tabor
[93] stating that this is also the case for p < 0.

Remark 3.8. According to Definition 3.2, the second statement of Theorem 3.5,
for p < 0, can be described as the φ-hyperstability of equation (1.1) for φ(x, y) ≡
c(∥x∥p + ∥y∥p). It seems to be interesting that it is not true without condition
(3.1) (or any suitable hypothesis replacing it). In fact, let p < 0, a ≥ 0, I = (a,∞)
and f, T : I → R be given by T (x) = 0 and f(x) = xp for x ∈ I. Then

|f(x)− T (x)| = xp, x ∈ I.

Next, fix x, y ∈ I. Suppose that x ≤ y. Then

(x+ y)p ≤ (2x)p = 2pxp ≤ xp ≤ xp + yp

and, consequently,

|f(x+ y)− f(x)− f(y)| = xp + yp − (x+ y)p ≤ xp + yp.

Without condition (3.1) we “only” have the following (see [25, Theorem 1.3]).

Theorem 3.9. Let E1 and E2 be normed spaces, X ⊂ E1 \ {0} be nonempty,
E2 be complete, c ≥ 0 and p < 0. Assume that there is m0 ∈ N such that (3.2)
holds and f : X → E2 is a mapping satisfying (3.3). Then there exists a unique
mapping T : X → E2 with

T (x+ y) = T (x) + T (y), x, y ∈ X, x+ y ∈ X, (3.14)

∥f(x)− T (x)∥ ≤ c∥x∥p, x ∈ X. (3.15)

The example in Remark 3.8 shows that for p < 0 estimation (3.15) is optimal
under the assumptions of Theorem 3.9. However, with a somewhat different
(though still natural) form of the function φ, φ-hyperstability still holds even
without (3.1). Namely, in [24, Theorem 1.3] the subsequent result has been
proved.

Theorem 3.10. Let E1 and E2 be normed spaces, X ⊂ E1 \ {0} be nonempty,
c ≥ 0 and p, q be real numbers with p + q < 0. Assume that there is an m0 ∈ N
such that (3.2) holds. Then every g : X → E2, satisfying the inequality

∥g(x+ y)− g(x)− g(y)∥ ≤ c∥x∥p∥y∥q, x, y ∈ X, x+ y ∈ X, (3.16)

is additive on X.
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Theorem 3.10 corresponds to the investigations in [89], where results analogous
to those in Theorem 3.5 have been proved, with the factor ∥x∥p + ∥y∥p replaced
by ∥x∥p · ∥y∥q for p, q ∈ R with p + q ̸= 1. For information on investigations of
condition (1.4) with functions φ of some other forms we refer to [16, 28].

Clearly, in connection with those outcomes, presented above, a natural question
arises: when for a mapping T0 : E1 → E2 that is additive on X ⊂ E1, there is
an additive T : E1 → E2 with T (x) = T0(x) for x ∈ X? For some information
on this issue we refer the reader to, e.g., [71, Theorem 1.1, Chapter XVIII], [96,
Chapter 4], and [109, pp. 143-144].

4. Stability of the inhomogeneous Cauchy equation

One may ask whether analogous results to those presented in the preceding
sections can be proved for the inhomogeneous Cauchy equation

g(x+ y) = g(x) + g(y) + d(x, y), (4.1)
with a suitably defined function d. The equation has drawn attention of several
authors and been studied already for various spaces and forms of d (see [38, 26]
for references). Some general results (with suitable examples) concerning that
issue have been presented in [26]. In particular, the following theorem has been
proved.

Theorem 4.1. Let E1 and E2 be normed spaces, d : E2
1 → E2 and c, p ∈ R.

Assume that (4.1) admits a solution f0 : E1 → E2. Then the following three
statements are valid.

(a) If p ≥ 0, p ̸= 1, and E2 is complete, then for every mapping f : E1 → E2,
satisfying

∥f(x+ y)− f(x)− f(y)− d(x, y)∥ ≤ c(∥x∥p + ∥y∥p), x, y ∈ E1 \ {0}, (4.2)
there exists a unique solution g : E1 → E2 of (4.1) such that

∥f(x)− g(x)∥ ≤ c∥x∥p∣∣2p−1 − 1
∣∣ , x ∈ E1 \ {0}. (4.3)

Moreover, that estimate is optimal when E1 = R; namely there exists a
mapping f : R → E2 such that

∥f(x+ y)− f(x)− f(y)− d(x, y)∥ ≤ c(|x|p + |y|p), x, y ∈ R,

∥f(x)− f0(x)∥ =
c|x|p∣∣2p−1 − 1

∣∣ , x ∈ R. (4.4)

(b) If p < 0, then every f : E1 → E2 satisfying (4.2) is a solution of (4.1).
(c) If E1 = E2 = R, then for each real c0 > 0 there is f : R → R such that

|f(x+ y)− f(x)− f(y)− d(x, y)| ≤ c0(|x|+ |y|), x, y ∈ R, (4.5)
and, for each solution h : R → R of (4.1), we have

sup
x∈R\{0}

|f(x)− h(x)|
|x|

= ∞ (4.6)
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Below we show how to obtain a similar outcome for the situation described in
Theorem 1.3.

Theorem 4.2. Suppose that (G,+) is an abelian semigroup, D ⊂ G is nonempty,
2D ⊂ D, E is a Banach space, d : G2 → E, φ : G×G→ [0,∞) satisfies (1.7) and
equation (4.1) admits a solution g : G→ E. Let f : D → E fulfil the inequality

∥f(x+ y)− f(x)− f(y)− d(x, y)∥ ≤ φ(x, y)

for all x, y ∈ D with x+ y ∈ D. Then there is a unique mapping T : D → E with

T (x+ y) = T (x) + T (y) + d(x, y), x, y ∈ D, x+ y ∈ D, (4.7)

∥f(x)− T (x)∥ ≤ φ̃(x, x), x ∈ D.

Proof. Write f0 := f − g. Then

∥f0(x+ y)− f0(x)− f0(y)∥ ≤ φ(x, y), x, y ∈ D, x+ y ∈ D,

whence by Theorem 1.3 there exists a unique mapping T0 : D → E that is additive
on D (i.e., T0(x+ y) = T0(x) + T0(y) for x, y ∈ D with x+ y ∈ D) and

∥f0(x)− T0(x)∥ ≤ φ̃(x, x), x ∈ D.

Let T : = T0 + g. Then it is easily seen that (4.7) holds and

∥f(x)− T (x)∥ ≤ φ̃(x, x), x ∈ D.

Assume that T ′ : D → E is also a solution of (4.7) with

∥f(x)− T ′(x)∥ ≤ φ̃(x, x), x ∈ D.

Write T ′
0 := T ′ − g. Then T ′

0 is additive on D and

∥f0(x)− T ′
0(x)∥ ≤ φ̃(x, x), x ∈ D,

which means that T0 = T ′
0 and, consequently, T = T ′. □

The assumption that equation (4.1) admits a solution g : G → E cannot be
omitted (see [26, Remark 2.3 and Example]). Clearly, the assumption means
that

d(x, y) = h(x+ y)− h(x)− h(y), x, y ∈ G, (4.8)

with some mapping h : G→ E (i.e., d is a coboundary), which is equivalent (see,
e.g., [111]) to the fact that d is a symmetric cocycle, i.e., for every x, y, z ∈ G

d(x, y) = d(y, x), d(x+ y, z) + d(x, y) = d(x, y + z) = d(y, z). (4.9)

Condition (4.8) shows that we can find numerous natural examples of functions
d with which equation (4.1) has a solution. For more information and further
references on cocycles we refer to [111].



CONDITIONAL STABILITY OF THE HOMOMORPHISM EQUATION 299

5. Stability of functional equations on generalized spheres

In this part of the paper we give results concerning stability of functional
equations for functions from X into Y with condition γ(x) = γ(y) for defined
below X, Y and γ. A classical example of such function γ in a normed space X
is, simply, a norm in X, whence the name “generalized spheres”.

Below we give two sets of assumptions for function γ: first – which has more
algebraic nature, and second – with more topological nature. Even though there
are functions which satisfy both sets of conditions (e.g., a norm in at least three-
dimensional inner product space with orthogonality defined by a standard way
by means of an inner product), none of the families satisfying one of the sets of
assumptions is contained in the second one.

Consider two sets of conditions:
(a) Let X be a real linear space, dimX ≥ 2, Z arbitrary nonempty set and

let γ : X → Z be a function such that:
(a)1 for all linearly independent x, y ∈ X there exist linearly independent

u, v ∈ lin {x, y} such that γ(u+ v) = γ(u− v);
(a)2 for all x, y ∈ X, if γ(x + y) = γ(x − y) then γ(αx + y) = γ(αx − y)

for α ∈ R;
(a)3 for all x ∈ X and λ ∈ R+ := (0,∞), there exists y ∈ X such that

γ(x+ y) = γ(x− y) and γ((λ+ 1)x) = γ((1− λ)x+ 2y).
(b) Let (X,+), (Z,+) be topological groups and let ≺⊂ Z×Z be a connected

binary relation on Z (i.e., for all x, y ∈ Z we have x≺ y or y≺ x or x = y)
with conditions:
(b)1 for all x ∈ Z relation 0 ≺ x implies −x ≺ 0;
(b)2 sets {x ∈ Z : x ≺ 0} and {x ∈ Z : 0 ≺ x} are disjoint and open in

Z.
Moreover, let γ : X → Z be a continuous function satisfying
(b)3 for all x, y ∈ X, if γ(x) ≺ γ(y), then the set {t ∈ X : γ(x + t) =

γ(x− t) = γ(y)} is nonempty and connected.
For further investigations let us make some notations for our assumptions:
(I) X is a real linear space with dimX ≥ 2, (Y,+) is a real Banach space, Z

is a nonempty set, and γ : X → Z is an even function satisfying (a).
(II) X is a real linear space with dimX ≥ 2, (Y,+) is a real Banach space,

(Z,+) is a topological group equipped with a binary connected relation
≺⊂ Z×Z with properties (b)1, (b)2 and γ : X → Z is an even continuous
function, satisfying (b)3.

In order to make the above assumptions more clear, we give some examples
(see [57]). Observe that any constant function γ trivially satisfies each of sets of
conditions (a), (b). A conditional equation becomes then simply an unconditional
one. It is also easy to see that if γ satisfies (a), so do function ϕ◦γ for any injection
ϕ.

Example 5.1. Let X be a real inner product space, dimX ≥ 2, Z = R and
γ(x) := ∥x∥ for x ∈ X. Then function γ satisfies (a).
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Example 5.2. Let X,Z be real linear spaces and let A : X2 → Z be a bilinear
and symmetric mapping such that

⋄ for any λ ∈ R and x ∈ X there exists y ∈ X with A(x, y) = 0 and
A(y, y) = λA(x, x);

⋄ for any linearly independent vectors x, y ∈ X there exist linearly indepen-
dent vectors u, v ∈ lin {x, y} such that A(u, v) = 0.

Then γ : X → Z defined as γ(x) := A(x, x) for all x ∈ X satisfies (a).

Example 5.3. Let X be a real linear normed space with dimX ≥ 3. If Z = R,
≺⊂ R × R stands for <, and γ : X → R be defined as γ(x) := ∥x∥ for x ∈ X,
then such γ and relation ≺ satisfy (b) (see Szab [112]).

Example 5.4. Let X be a real linear space. Assume that H is a real inner
product space with dimH ≥ 3, and L : X → H is a linear surjection. Let
Z := R, ≺ :=< and γ : X → R be defined by γ(x) := ∥L(x)∥ for all x ∈ X. Then
(b) holds.

It is worth mentioning that, in fact, in (b) the connectedness of the set {t ∈ X :
γ(x + t) = γ(x − t) = γ(y)} and the continuity of function γ are used only (see
Ger and Sikorska [57]) for the existence of a solution t of the following system of
equations

γ(t) = γ(y),

γ(2x− t) = γ(y),

γ(y + t) = γ(2x+ y − t),

(5.1)

for all x, y such that γ(x) ≺ γ(y). In many instances we may obtain a solution
of such system directly.

5.1. Cauchy equation. In [57], it was shown that under assumptions (I) or (II),
f : X → Y is a solution of a conditional equation (1.11) if and only if f is additive,
and if γ satisfies

γ(x) = γ(y) =⇒ γ (2x) = γ (2x) (γ)2
and for f : X → Y and ε ≥ 0 we have

γ(x) = γ(y) =⇒ ∥f(x+ y)− f(x)− f(y)∥ ≤ ε,

then there exists a uniquely determined additive function g : X → Y such that
∥f(x)− g(x)∥ ≤ ε for all x ∈ X.

In order to give more clear statements of the next results me make still some
notations.

Let D be a nonempty subset of X×X. Consider functions φ : X×X → [0,∞)
and γ : X → Z such that either

1o (i) series
∞∑
n=1

2−nφ(2n−1x, 2n−1x) is convergent for all x ∈ X; denote this

sum by Φ(x);
(ii) lim

n→∞
2−nφ(2nx, 2ny) = 0 for all (x, y) ∈ D;

(iii) function γ satisfies the condition (γ)2;
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or

2o (i) series
∞∑
n=1

2n−1φ(2−nx, 2−nx) is convergent for all x ∈ X; denote this

sum by Φ(x);
(ii) lim

n→∞
2nφ(2−nx, 2−ny) = 0 for all (x, y) ∈ D;

(iii) function γ satisfies the condition

γ(x) = γ(y) =⇒ γ
(
1
2
x
)
= γ

(
1
2
y
)
. (γ)1/2

First stability result reads as follows (see Sikorska [103]).

Theorem 5.5. Let (X,+) be a uniquely 2-divisible abelian group, Y let be a
real Banach space, and Z a given nonempty set. Let, moreover, D := {(x, y) ∈
X ×X : γ(x) = γ(y)}, φ : X ×X → [0,∞) and γ : X → Z satisfies either 1o, or
2o. If f : X → Y fulfils

γ(x) = γ(y) =⇒ ∥f(x+ y)− f(x)− f(y)∥ ≤ φ(x, y), (5.2)

then there exists a uniquely determined solution g : X → Y of (1.11) such that

∥f(x)− g(x)∥ ≤ Φ(x), x ∈ X.

A general statement of the theorem allows us to apply it for various functions
φ. The most often used in the literature forms are φ(x, y) := ε(∥x∥p + ∥y∥p) and
φ(x, y) := ε∥x+ y∥p. Below we give such immediate application of Theorem 5.5.

Corollary 5.6. Let X be a real normed space, Y be a real Banach space and
f : X → Y satisfies the condition

∥x∥ = ∥y∥ =⇒ ∥f(x+ y)− f(x)− f(y)∥ ≤ ε∥x∥p

for some ε > 0 and p > 1. Then there exists a uniquely determined function
g : X → Y satisfying (1.8) and such that

∥f(x)− g(x)∥ ≤ ε∥x∥p

2p − 2
, x ∈ X.

Moreover, if we use results in [26], the we can obtain the following even more
general result.

Corollary 5.7. Let X be a real normed space, Y be a real Banach space, d : X2 →
Y be a symmetric cocycle and f : X → Y satisfies the condition

∥x∥ = ∥y∥ =⇒ ∥f(x+ y)− f(x)− f(y)− d(x, y)∥ ≤ ε∥x∥p

for some ε > 0 and p > 1. Then there exists a uniquely determined function
g : X → Y satisfying the equation

∥x∥ = ∥y∥ =⇒ g(x+ y) = g(x) + g(y) + d(x, y) (5.3)

and such that

∥f(x)− g(x)∥ ≤ ε∥x∥p

2p − 2
, x ∈ X.
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Proof. The reasoning is actually analogous as for Theorem 4.2, but for the con-
venience of readers we present it here. Let h : X → Y be a solution of the
equation

h(x+ y) = h(x) + h(y) + d(x, y)

and f0 := f − h. Then

∥x∥ = ∥y∥ =⇒ ∥f0(x+ y)− f0(x)− f0(y)∥ ≤ ε∥x∥p,

whence by Corollary 5.6 there exists a unique solution T0 : X → E of (1.8) with

∥f0(x)− T0(x)∥ ≤ ε∥x∥p

2p − 2
, x ∈ X.

Let T : = T0 + g. Then it is easily seen that T is a solution of (5.3) and

∥f(x)− T (x)∥ ≤ ε∥x∥p

2p − 2
, x ∈ X.

Assume that T ′ : D → E is also a solution of (5.3) with

∥f(x)− T ′(x)∥ ≤ ε∥x∥p

2p − 2
, x ∈ X.

Write T ′
0 := T ′ − g. Then T ′

0 is a solution to (1.8) and

∥f0(x)− T ′
0(x)∥ ≤ ε∥x∥p

2p − 2
, x ∈ X,

which means that T0 = T ′
0 and, consequently, T = T ′. □

Making additional assumptions in Theorem 5.5, we obtain not only the exis-
tence but also the form of function g. Namely, we have

Theorem 5.8. Assume (I) or (II). If D := {(x, y) ∈ X × X : γ(x) = γ(y)},
φ : X ×X → [0,∞), γ satisfy 1o or 2o, and f : X → Y satisfies for all x, y ∈ X
condition (5.2), then there exists a uniquely determined additive function a : X →
Y such that

∥f(x)− a(x)∥ ≤ Φ(x), x ∈ X.

5.2. Pexider equation. It is interesting to study an alternative of (1.11), where
we consider three functions f, g, h instead of the only f in the successor of the
implication. We start this part with giving solutions of the conditional Pexider
equation of the form

γ(x) = γ(y) =⇒ f(x+ y) = g(x) + h(y) (5.4)

under assumptions (I) or (II), although in case of solutions of the equation it is
enough to assume about Y that it is an abelian group uniquely 2-divisible (see
Sikorska [104, Theorem 3.1]).
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Theorem 5.9. Assume (I) or (II), and in case (II) also (γ)1/2 or (γ)2. If
f, g, h : X → Y satisfy for all x, y ∈ X condition (5.4), then for all x ∈ X,

f(x) = A(x) + α + β,

g(x) = A(x) + δ(x) + α,

h(x) = A(x)− δ(x) + β,

(5.5)

where α := g(0), β := h(0), A : X → Y is additive, δ : X → Y is an even function
with the properties δ(0) = 0 and

γ(x) = γ(y) =⇒ δ(x) = δ(y), (5.6)

i.e., δ = Λ ◦ γ for some Λ: Z → Y such that Λ(γ(0)) = 0.
Conversely, each triple of functions f, g, h given by formulas (5.5) with arbi-

trary constants α, β ∈ Y , arbitrary additive function A : X → Y and arbitrary
δ : X → Y satisfying (5.6) is a solution of (5.4).

The form (5.5) of solutions of equation (5.4) is significantly different from the
usually expected one for a solution of the Pexider equation (i.e., A+ α+ β, A+
α, A+ β, respectively; cf., section 6.2 of this paper).

In what follows we deal with the Hyers-Ulam stability of (5.4) (cf., [104, The-
orem 4.1]).

Theorem 5.10. Assume (I) or (II) with γ which satisfies also (γ)2 and let ε > 0.
If f, g, h : X → Y fulfil for all x, y ∈ X the condition

γ(x) = γ(y) =⇒ ∥f(x+ y)− g(x)− h(y)∥ ≤ ε,

then there exist a uniquely determined additive function A : X → Y , an even
function δ : X → Y with δ(0) = 0,

γ(x) = γ(y) =⇒ δ(x) = δ(y),

and positive constants k, l such that for all x ∈ X we have

∥f(x)− f(0)− A(x)∥ ≤ kε,

∥g(x)− g(0)− A(x)− δ(x)∥ ≤ lε, (5.7)

∥h(x)− h(0)− A(x) + δ(x)∥ ≤ lε.

Since ∥f(0)− g(0)− h(0)∥ ≤ ε, on account of (5.7) we have approximations of
functions f, g, h by A+ α + β, A+ δ + α, A− δ + β, respectively, for α := g(0),
β := h(0), and whence the Pexider equation (5.4) is stable in the Hyers-Ulam
sense.

Function δ in the above theorem is not uniquely determined. We define it with
help of the axiom of choice. However, in some particular instances it can be
defined by a precise formula (see Sikorska [104, Remark 4.2]).

Studying general stability, we present a result concerning the conditional equa-
tion of the form

γ(x) = γ(y) =⇒ f(x+ y) = g(x) + g(y)



304 J. BRZDĘK, W. FECHNER, M.S. MOSLEHIAN, J. SIKORSKA

in a special case (for the results in more general form see Sikorska [104, Theorem
5.1 – Theorem 5.6]).

Corollary 5.11. Let X be a real inner product space with dimX ≥ 2 and let
Y be a real Banach space. If functions f, g : X → Y satisfy for all x, y ∈ X the
condition

∥x∥ = ∥y∥ =⇒ ∥f(x+ y)− g(x)− g(y)∥ ≤ ε ∥x+ y∥p ,
where p > 1 and ε is some non-negative constant, then there exists a uniquely
determined additive function A : X → Y such that for all x ∈ X,

∥f(x)− f(0)− A(x)∥ ≤
(

12

1− 21−p
+ 1

)
ε∥x∥p,

∥g(x)− g(0)− A(x)∥ ≤ 6 · 2p

1− 21−p
ε∥x∥p.

5.3. Some applications. Results concerning stability in the sense of Hyers-
Ulam, or more generally in the sense of Bourgin, may be applied to separation
problems, that is, to so called “sandwich theorems” (see, e.g., Kranz [70], Gajda
and Kominek [51]).

We start with quite general result (see Fechner [41]).

Theorem 5.12. Assume that (S,+) is a semigroup, D ⊂ S × S, p : S → R and
q : S → R satisfy

(x, y) ∈ D =⇒ p(x+ y) ≤ p(x) + p(y), (5.8)

(x, y) ∈ D =⇒ q(x+ y) ≥ q(x) + q(y), (5.9)
q ≤ p and ∥p− q∥sup < +∞. If for every x ∈ S implies that

(x, x) ∈ D (5.10)

and the conditional Cauchy equation (1.13) is stable on D, then there exists a
solution f : S → R of (1.13) such that q ≤ f ≤ p.

Proof. Fix (x, y) ∈ D arbitrarily and check that

p(x+ y)− p(x)− p(y) ≤ 0

and

p(x+ y)− p(x)− p(y) ≥ q(x+ y)− p(x)− p(y)

≥ q(x+ y)− q(x)− q(y)− 2∥p− q∥sup.
Thus, after letting ε := 2∥p− q∥sup we arrive at

(x, y) ∈ D =⇒ |p(x+ y)− p(x)− p(y)| ≤ ε.

From our assumptions it follows that there exist a δ > 0 and a solution f : S → R
of (1.13) such that ∥p− f∥sup ≤ δ.

Now, by the use of (5.10) jointly with (1.13), (5.8) and (5.9) we obtain

f(2x) = 2f(x), p(2x) ≤ 2p(x), q(2x) ≥ 2q(x), x ∈ S.
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On the other hand, we have

q(x)− δ ≤ p(x)− δ ≤ f(x) ≤ p(x) + δ, x ∈ S,

and thus

2nq(x)− δ ≤ q (2nx)− δ ≤ f (2nx) = 2nf(x) ≤ p (2nx) + δ

≤ 2np(x) + δ, x ∈ S.

Divide this estimations side by side by 2n to get

q(x) +
1

2n
δ ≤ f(x) ≤ p(x) +

1

2n
δ, x ∈ S.

Now, tend with n to +∞ to deduce that

q(x) ≤ f(x) ≤ p(x), x ∈ S.

□

By Theorem 5.5 we get (see Fechner [41]).

Corollary 5.13. Assume that (S,+) is abelian semigroup, Z is a nonempty set,
and γ : S → Z satisfies the condition (γ)2. Further, let p : S → R and q : S → R
satisfy

γ(x) = γ(y) =⇒ p(x+ y) ≤ p(x) + p(y),

γ(x) = γ(y) =⇒ q(x+ y) ≥ q(x) + q(y).

q ≤ p and ∥p − q∥sup < +∞. Then there exists a solution f : S → R of (1.12)
such that q ≤ f ≤ p.

Now, basing on Theorem 5.8 for some special case of φ we give two other “sand-
wich” results (see Fechner and Sikorska [44] for this and more general results).

Corollary 5.14. Assume that X is a real inner product space with dimX ≥ 2,
r > 1, λ ≥ 0, p : X → R and q : X → R satisfy conditions q ≤ p,

∥x∥ = ∥y∥ =⇒ p(x+ y) ≤ p(x) + p(y),

∥x∥ = ∥y∥ =⇒ q(x+ y) ≥ q(x) + q(y),
(5.11)

and at least one from the approximations

|q(x)− p(x)| ≤ λ∥x∥r, x ∈ X,

|q(x)− p(−x)| ≤ λ∥x∥r, x ∈ X.
(5.12)

Then there exists a unique additive function A : X → R such that q ≤ A ≤ p.

Corollary 5.15. Assume that X is a real inner product space with dimX ≥ 2,
r ∈ (0, 1), λ ≥ 0, p : X → R and q : X → R satisfy relations p ≤ q, (5.11) and
at least one from the approximations (5.12). Then there exists a unique additive
function A : X → R such that p ≤ A ≤ q.
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5.4. Exponential equation. Let X be a real linear normed space, and Y a
semigroup with a neutral element. We will consider f : X → Y satisfying a
conditional equation of the form

∥x∥ = ∥y∥ =⇒ f(x+ y) = f(x)f(y). (5.13)

In the case, where the target space is a group (not necessarily abelian), the form
of solutions of (5.13) is known (see Alsina and Garcia-Roig [3], Szabó [112], Ger
and Sikorska [57], Brzdęk [18]). Namely, such solutions (under some assumptions
on the dimension of X) satisfy equation

f(x+ y) = f(x)f(y), x, y ∈ X (5.14)

unconditionally. An additional assumption allows us to solve the equation in
the class of functions with values in semigroups. The key result is the following
lemma (see Sikorska [106]).

Lemma 5.16. Let X be a real normed space, dimX ≥ 2, (Y, ·) be an abelian
semigroup with a neutral element, and let I ⊂ Y stand for a subgroup of all
invertible elements in Y . If f : X → Y satisfies (5.13), then either f(X) ⊂ I or
f(X) ∩ I = ∅.

Usually, a result as above is one of the main tool while proving facts concerning
exponential functions. In our case it allows us to extend the result for functions
with values in a group to semigroups.

Theorem 5.17. Let X be a real normed space with dimX ≥ 2, (Y, ·) be an
abelian semigroup with a neutral element. Assume that f : X → Y is a solution
of (5.13) and there exists x0 ∈ X such that f(x0) is invertible in Y . If one of the
following conditions is satisfied:

(i) X is an inner product space,
(ii) dimX ≥ 3,

then f satisfies (5.14).

The example below (cf., Brzdęk [18]) shows that Theorem 5.17 is not true in
case where dimX = 1. Indeed, consider a function f : R → R given by the
formula

f(x) =

 1, if x = 0,
a2

n
, if x ∈ (2n, 2n+1] , n ∈ N,

f(−x)−1, if x < 0,

for arbitrary a > 0 and a ̸= 1, which satisfy (5.13), but does not satisfy (5.14).
The case where dimX = 2 and the norm in X does not come from any inner
product, remains open.

Next result concerns Hyers-Ulam stability of (5.13). The forms of inequalities
appearing in the assumptions of the theorem have their motivation in Ger’s [53],
and consideration of conditional forms was suggested by Chudziak (in case of
the Gołąb-Schinzel equation) in [34]. Below we join these two approaches (see
Sikorska [106]).
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Theorem 5.18. Let X be a real normed space with dimX ≥ 2. If f : X → K,
where K ∈ {R, }, satisfies(

∥x∥ = ∥y∥, f(x)f(y) ̸= 0
)

=⇒
∣∣∣∣ f(x+ y)

f(x)f(y)
− 1

∣∣∣∣ ≤ ε (5.15)

and (
∥x∥ = ∥y∥, f(x+ y) ̸= 0

)
=⇒

∣∣∣∣f(x)f(y)f(x+ y)
− 1

∣∣∣∣ ≤ ε (5.16)

with some nonnegative constant ε < 1 and f does not vanish on X, then there
exists a uniquely determined function g : X → (0,∞) satisfying (5.13) and

1

1 + ε
≤

∣∣∣∣f(x)g(x)

∣∣∣∣ ≤ 1 + ε, x ∈ X. (5.17)

Moreover, if K = R, then for all x ∈ X,∣∣∣∣f(x)g(x)
− 1

∣∣∣∣ ≤ ε and
∣∣∣∣ g(x)f(x)

− 1

∣∣∣∣ ≤ ε.

If we assume that X is an inner product space or dimX ≥ 3, then g in Theorem
5.18 is (unconditionally) exponential, that is, it satisfies (5.14).

In the case when (X,+) is a cancellative abelian semigroup and f : X → \{0}
satisfies (5.15) and (5.16) unconditionally, Ger and Šemrl [55] proved that the
expression

∣∣∣f(x)g(x)
− 1

∣∣∣ may be approximated by a constant (depending on ε) with
property that it converges to zero while ε tends to zero. It remains open, whether
similar approximation can be achieved in case of Theorem 5.18 (and later on, in
Theorem 5.23).

The results concerning orthogonally exponential function on general spheres
come from Sikorska [105]. We start with solutions of a suitable equation.

γ(x) = γ(y) =⇒ f(x+ y) = f(x)f(y). (5.18)

Assume that X is a real linear space, dimX ≥ 2, and an even function γ has
properties (a)1–(a)3 (see beginning of section 5).

First we give solutions of (5.18).

Theorem 5.19. Let (Y, ·) be an abelian semigroup with a neutral element. If
f : X → Y is a solution of (5.18) and there exist x0 ∈ X \ {0} such that f(x0) is
invertible in Y, then f is a group homomorphism.

Next theorem brings results concerning stability of (5.18).

Theorem 5.20. If f : X → K satisfies[
γ(x) = γ(y), f(x)f(y) ̸= 0

]
=⇒

∣∣∣∣ f(x+ y)

f(x)f(y)
− 1

∣∣∣∣ ≤ ε

and [
γ(x) = γ(y), f(x+ y) ̸= 0

]
=⇒

∣∣∣∣f(x)f(y)f(x+ y)
− 1

∣∣∣∣ ≤ ε
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for some nonnegative ε < 1 and f does not vanish on X, then there exists a
uniquely determined function g : X → (0,∞) such that for all x, y ∈ X,

γ(x) = γ(y) =⇒ g(x+ y) = g(x)g(y),

and for all x ∈ X,∣∣∣∣f(x)g(x)
− 1

∣∣∣∣ ≤ ε+ 2 and
∣∣∣∣ g(x)f(x)

− 1

∣∣∣∣ ≤ ε+ 2.

Moreover, if K = R, the for all x ∈ X,∣∣∣∣f(x)g(x)
− 1

∣∣∣∣ ≤ ε and
∣∣∣∣ g(x)f(x)

− 1

∣∣∣∣ ≤ ε.

Similarly as in the classical version of the Cauchy equation, we may consider
a pexiderized version of the exponential equation, namely a conditional equation
of the form

∥x∥ = ∥y∥ =⇒ f1(x+ y) = f2(x)f3(y) (5.19)
(see Sikorska [106]).

Assume that X is a real normed space with dimX ≥ 2. We start with giving
solutions of (5.19).

Theorem 5.21. Let (Y, ·) be a uniquely 2-divisible abelian semigroup with a neu-
tral element. Assume that f1, f2, f3 : X → Y are solutions of (5.19) and there
exists x0 ∈ X such that f1(x0) is invertible in Y . If one of the following conditions
is fulfilled:

(i) X is an inner product space,
(ii) dimX ≥ 3,

then there exists a uniquely determined exponential function g : X → I (that is, g
satisfies (5.14)), an even function δ : X → I constant on spheres (i.e., δ(x) = δ(y)
whenever ∥x∥ = ∥y∥) and α, β ∈ I such that

f1 = αβg, f2 = αgδ, f3 = βgδ−1.

Studying stability of (5.19) for f1, f2, f3 : X → K, we consider conditions(
∥x∥ = ∥y∥, f2(x)f3(y) ̸= 0

)
=⇒

∣∣∣∣ f1(x+ y)

f2(x)f3(y)
− 1

∣∣∣∣ ≤ ε (5.20)

and (
∥x∥ = ∥y∥, f1(x+ y) ̸= 0

)
=⇒

∣∣∣∣f2(x)f3(y)f1(x+ y)
− 1

∣∣∣∣ ≤ ε (5.21)

for some ε ≥ 0.
Similarly as in the previous case, the key-result is the following lemma.

Lemma 5.22. If f1, f2, f3 : X → K satisfy conditions (5.20) and (5.21) with
some nonnegative ε < 1, then either f1(X) = {0}, or 0 ̸∈ f1(X).

Theorem 5.23. Let f1, f2, f3 : X → K satisfy (5.20) and (5.21) with some non-
negative ε < 1 and let f1 does not vanish on X. If one of the following conditions
is fulfilled:
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(i) X is an inner product space,
(ii) dimX ≥ 3,

then there exist functions g1, g2, g3 : X → (0,∞) and positive constants c1, c2, c3
such that for all x, y ∈ X,

∥x∥ = ∥y∥ =⇒ g1(x+ y) = g2(x)g3(y)

and for all x ∈ X, i ∈ {1, 2, 3},
1

(1 + ε)ci
≤

∣∣∣∣fi(x)gi(x)

∣∣∣∣ ≤ (1 + ε)ci . (5.22)

In particular, there exist an additive function A : X → R, an even function
δ : X → R constant on spheres and vanishing at zero, and positive constants
α, β such that for all x ∈ X

g1(x) = exp
(
A(x) + α + β

)
,

g2(x) = exp
(
A(x) + δ(x) + α

)
,

g3(x) = exp
(
A(x)− δ(x) + β

)
.

Moreover, if K = R, then f1 is of a constant sign, and for all x ∈ X,∣∣∣∣µf1(x)g1(x)
− 1

∣∣∣∣ ≤ (1 + ε)c1 − 1 and
∣∣∣∣ g1(x)µf1(x)

− 1

∣∣∣∣ ≤ (1 + ε)c1 − 1

for some µ ∈ {−1, 1}.

It follows from (5.22) that∣∣∣∣fi(x)gi(x)
− 1

∣∣∣∣ ≤ ∣∣∣∣fi(x)gi(x)

∣∣∣∣+ 1 ≤ (1 + ε)ci + 1, x ∈ X, i ∈ {1, 2, 3},

which means that the approximating constant tends to 2, while ε tending to zero
(see also (5.17)). Constants c1, c2, c3 in the assertion of Theorem 5.23 can be
derived from Sikorska [104] (see also Sikorska [106]).

6. General orthogonal stability

In this part of the paper we present results concerning conditional functional
equations with condition (x, y) ∈ D = {(x, y) : x ⊥ y}. The orthogonality rela-
tion will be understood either as the Birkhoff orthogonality (or, more generally,
orthogonality relation in an orthogonality space), or as a generalization of the
James orthogonality, i.e., with D = {(x, y) : γ(x+ y) = γ(x− y)}.

6.1. Cauchy equation. We start this part with presenting a stability result
concerning (1.12). In [57] it was shown that under some assumptions on γ, every
odd solution of (1.12) is additive.

In what follows, we give results on a general stability of equation (1.12) (see
Sikorska [103]).

For the next theorems, instead of conditions (I) and (II), consider:
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(I)’ X is a real linear space with dimX ≥ 2, (Y,+) is a real Banach space, Z
is a nonempty set, and γ : X → Z is an even function satisfying (a)3 with
λ = 1,

(II)’ X is a real linear space with dimX ≥ 2, (Y,+) is a real Banach space,
(Z,+) is a topological group equipped with a binary connected relation
≺⊂ Z×Z, γ : X → Z is even and the following conditions hold: for every
x ∈ X we have γ(0) ≺ γ(x) or γ(0) = γ(x) and for every x ∈ X there
exists y ∈ X such that γ(x) = γ(y) and γ(x+ y) = γ(x− y).

Moreover, for a given nonempty set D ⊂ X × X, consider still the following
properties of functions φ : X ×X → [0,∞) and γ : X → Z:

3o (i) series
∞∑
n=0

41−nφ(2n−1x, 2n−1x) is convergent for every x ∈ X; denote

its sum by Ψ(x);
(ii) lim

n→∞
4−nφ(2nx, 2ny) = 0 for all (x, y) ∈ D;

(iii) function γ satisfies (γ)2;
and

4o (i) series
∞∑
n=1

4nφ(2−nx, 2−nx) is convergent for every x ∈ X; denote its

sum by Ψ(x);
(ii) lim

n→∞
4nφ(2−nx, 2−ny) = 0 for all (x, y) ∈ D;

(iii) function γ satisfies condition (γ)1/2.

Theorem 6.1. Assume (I)’ or (II)’. Let D := {(x, y) ∈ X × X : γ(x + y) =
γ(x − y)}, φ : X ×X → [0,∞) and γ satisfy one of the conditions 1o or 2o and
one of the conditions 3o or 4o, and in each case assume that

(iv) there exists M ≥ 1 such that for all x, y ∈ X, if γ(2x) = γ(2y) and
γ(x+ y) = γ(x− y), then

max {φ(x, y), φ(x,−y), φ(x+ y, x− y), φ(x+ y, y − x)} ≤Mφ(x, x).

If f : X → Y fulfils for all x, y ∈ X condition

γ(x+ y) = γ(x− y) =⇒ ∥f(x+ y)− f(x)− f(y)∥ ≤ φ(x, y), (6.1)

then there exists a uniquely determined function g : X → Y satisfying (1.12) and
such that

∥f(x)− g(x)∥ ≤ 1

2
M

[
3Φ(x) + 3Φ(−x) + Ψ(x) + Ψ(−x)

]
, x ∈ X.

The above theorem is a pure stability result, that is, it gives a positive answer
for a question about the existence of an approximation function satisfying con-
dition γ(x + y) = γ(x − y). It does not tell, however, anything about the form
of solutions of such conditional equation. In a general situation, we do not know
the form of solutions of (1.12). However, if we assume (I) or (II) and oddness
of f , (cf., [103, Theorem 2.3]) we get the approximation by an additive function.
Also in a special case γ := ∥ · ∥, on account of Szabó’s results [112], the form of
an approximating function is known.
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Remark 6.2. If X is a real linear normed space, dimX ≥ 3, γ := ∥ · ∥ and
φ(x, y) := ε(∥x∥p + ∥y∥p), then we obtain a result concerning the generalized
stability of orthogonal additivity with orthogonality relation defined in the sense
of James (see Sikorska [102, Theorem 2.9]). Similar approach is used in case of
orthogonal additivity with the Birkhoff orthogonality relation (see [102, Theorem
2.4]).

Although, the method of splitting a function into its odd and even parts works
almost in all situations, and also condition (iv) is given in quite general form,
in some particular situations one can proceed in a different way what leads usu-
ally to much better approximations. We show it on an example of the Birkhoff
orthogonality and φ(x, y) = ε (∥x∥p + ∥y∥p) with p < 1.

Theorem 6.3. Assume X is a real normed space with dimX ≥ 2 and with
Birkhoff orthogonality, and Y is a real Banach space. If f : X → Y satisfies

x ⊥ y =⇒ ∥f(x+ y)− f(x)− f(y)∥ ≤ ε (∥x∥p + ∥y∥p) (6.2)

with some ε ≥ 0 and p < 1, then there exists an orthogonally additive function
g : X → Y such that

∥f(x)− g(x)∥ ≤ 1

1− 2p−1
α ε∥x∥p, x ∈ Xp,

where Xp stands for X if p ≥ 0 (with 00 := 1) and X \ {0} if p < 0 and

α =

{
1
2
(4 + 3 · 2p + 2 · 3p + 4p) if p ≥ 0

2 + 3 · 2−p if p < 0.
(6.3)

Proof. Let us observe first some properties of vectors which are orthogonal in
the Birkhoff sense. Assume that for two vectors x and y we have x ⊥ y and
x+y ⊥ x−y. From the definition of the orthogonality, if x ⊥ y, then ∥x∥ ≤ ∥x+y∥
and ∥x∥ ≤ ∥x − y∥ (for λ = 1 and λ = −1, respectively), and, analogously, if
x + y ⊥ x − y then ∥x + y∥ ≤ ∥2x∥ and ∥x + y∥ ≤ ∥2y∥. From these relations
and the triangle inequality we have additionally: ∥y∥ ≤ 3∥x∥, ∥x − y∥ ≤ 4∥x∥,
∥x∥ ≤ 2∥y∥.

In the case when p is a nonnegative real number, we have the approximations

∥y∥p ≤ 3p∥x∥p, ∥x+ y∥p ≤ 2p∥x∥p, ∥x− y∥p ≤ 4p∥x∥p, (6.4)

otherwise,

∥y∥p ≤ 2−p∥x∥p, ∥x+ y∥p ≤ ∥x∥p, ∥x− y∥p ≤ ∥x∥p. (6.5)

Take now x ∈ X. There exists y ∈ X such that x ⊥ y and x + y ⊥ x− y. As
in [43] it was done in case ε now we obtain approximations

∥3f(2x)− 8f(x)− f(−2x)∥ ≤ 4ε (∥x+ y∥p + ∥x− y∥p)

+ 8ε (∥x∥p + ∥y∥p) + 8ε

(∥∥∥∥x+ y

2

∥∥∥∥p

+

∥∥∥∥x− y

2

∥∥∥∥p)
.
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By means of (6.4) or (6.5), in respective cases we obtain∥∥∥∥f(x)− 3

8
f(2x) +

1

8
f(−2x)

∥∥∥∥ ≤ α ε∥x∥p, x ∈ Xp, (6.6)

where α is given by (6.3).
Using induction we get∥∥∥∥f(x)− 2n + 1

2 · 4n
f(2nx) +

2n − 1

2 · 4n
f(−2nx)

∥∥∥∥ ≤ 2n(p−1) − 1

2p−1 − 1
α ε∥x∥p, x ∈ Xp, n ∈ N.

A standard procedure allows us to define

g(x) := lim
n→∞

[
2n + 1

2 · 4n
f(2nx)− 2n − 1

2 · 4n
f(−2nx)

]
, x ∈ Xp,

and to obtain the desired approximation. □
One can easily observe that setting p := 0 in the above theorem gives a result

from [43]. In fact, the orthogonality relation which appears in [43] is defined
quite generally, so that the results can be used also in case of condition defined
by means of function γ. Namely, we have the following.

Theorem 6.4. Assume (I)’ or (II)’ and let γ satisfy (γ)2. If f : X → Y satisfies
for some ε > 0 and all x, y ∈ X the condition

γ(x+ y) = γ(x− y) =⇒ ∥f(x+ y)− f(x)− f(y)∥ ≤ ε,

then there exists a function g : X → Y fulfilling (1.12) and such that

∥f(x)− g(x)∥ ≤ 5ε, x ∈ X.

Using above results we may prove various kinds of “sandwich” theorems, where
we separate orthogonally subadditive and orthogonally superadditive functions.
We give here one example (cf., Fechner and Sikorska [42, Proposition 3]). More
examples and more general forms of the theorem can be found in [42].

Theorem 6.5. Let X be a real normed space, dimX ≥ 2, with Birkhoff orthog-
onality. Assume that p, q : X → R satisfy

x ⊥ y =⇒ p(x+ y) ≤ p(x) + p(y),

x ⊥ y =⇒ q(x+ y) ≥ q(x) + q(y)

and
q(x) ≤ p(x) for all x ∈ X.

If p(x)− q(x) ≤ c∥x∥r for all x ∈ X, where c, r are positive constants and r > 2,
then there exists a unique orthogonally additive mapping f : X → R such that
with some positive constant d,

q(x)− d∥x∥r ≤ f(x) ≤ p(x) + d∥x∥r for all x ∈ X.

With some additional assumptions imposed on functions p and q we get the
approximation q ≤ f ≤ p in the above theorem (see [42, Theorem 3]).

Some other results on orthogonally superadditive functions can be found in
Fechner [40].
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6.2. Pexider equation. In what follows we present results concerning a condi-
tional Pexider equation with a condition γ(x+ y) = γ(x− y) (see Sikorska [104]).
We start with solutions of the equation.

Theorem 6.6. Let (X,+), (Y,+) be abelian groups, Z a given nonempty set,
and γ : X → Z an even function. If f, g, h : X → Y are solutions of

γ(x+ y) = γ(x− y) =⇒ f(x+ y) = g(x) + h(y), (6.7)

then there exist a uniquely determined solution F : X → Y of (1.12) and constants
α, β ∈ Y such that

f(x) = F (x) + α + β, x ∈ X,

g(x) = F (x) + α, x ∈ X,

h(x) = F (x) + β, x ∈ X.

Basing on Theorem 6.4, we go on with Hyers-Ulam stability of (6.7).

Theorem 6.7. Assume (I)’ or (II)’ and let γ satisfy (γ)2. If f, g, h : X → Y
satisfy for some ε > 0 and all x, y ∈ X a condition

γ(x+ y) = γ(x− y) =⇒ ∥f(x+ y)− g(x)− h(y)∥ ≤ ε,

then there exists a uniquely determined function F : X → Y satisfying (1.12) and
such that

∥f(x)− g(0)− h(0)− F (x)∥ ≤ 15ε, x ∈ X,

∥g(x)− g(0)− F (x)∥ ≤ 16ε, x ∈ X,

∥h(x)− h(0)− F (x)∥ ≤ 16ε, x ∈ X.

The part devoted to the conditional Pexider equation we finish with generalized
stability result.

Theorem 6.8. Assume (I)’ or (II)’. Let ψ : X ×X → [0,∞) be a given function
and φ(x, y) := ψ(x, y)+ψ(x, 0)+ψ(0, y) for all x, y ∈ X. Assume moreover, that
φ and γ satisfy one of the conditions 1o or 2o and one of the conditions 3o or 4o,
and condition (iv) (see Theorem 6.1). If f, g, h : X → Y satisfy for all x, y ∈ X

γ(x+ y) = γ(x− y) =⇒ ∥f(x+ y)− g(x)− h(y)∥ ≤ ψ(x, y),

then there exist a uniquely determined function F : X → Y satisfying (1.12) and
such that

∥f(x)−g(0)−h(0)−F (x)∥ ≤ 1

2
M

[
3Φ(x) + 3Φ(−x) + Ψ(x) + Ψ(−x)

]
,

∥g(x)−g(0)−F (x)∥ ≤ 1

2
M

[
3Φ(x) + 3Φ(−x) + Ψ(x) + Ψ(−x)

]
+ ψ(x, 0),

∥h(x)−h(0)−F (x)∥ ≤ 1

2
M

[
3Φ(x) + 3Φ(−x) + Ψ(x) + Ψ(−x)

]
+ ψ(0, x),

for all x ∈ X, where Φ and Ψ are defined in 1o(i) or 2o(i) and in 3o(i) or 4o(i),
respectively.
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6.3. Exponential equation. In what follows we put our attention to stability
problem for a conditional exponential equation. We will investigate the equation
both in classical and pexiderized forms.

Let (X,+) be a groupoid with a neutral element 0 and let (Y, ·) be a semigroup
with a neutral element. Consider a function f : X → Y satisfying a quite general
conditional equation of the form

(x, y) ∈ D =⇒ f(x+ y) = f(x)f(y), (6.8)

where D is a nonempty subset of X ×X. Later on we will specify the properties
of D.

Denote hypotheses:
(H) If φ : X → R satisfies (6.8), then either φ(X \ {0}) = {0}, or 0 ̸∈ φ(X).
(C) If φ : X → R, then the conditional equation φ(x + y) = φ(x) + φ(y) for

all (x, y) ∈ D is stable in a sense, that if

(x, y) ∈ D =⇒ |φ(x+ y)− φ(x)− φ(y)| ≤ ε

for some ε ≥ 0, then there exist a function ψ : X → R and a positive
constant c such that ψ(x + y) = ψ(x) + ψ(y) for all (x, y) ∈ D and
|φ(x)− ψ(x)| ≤ cε for all x ∈ X.

(P) If φ1, φ2, φ3 : X → R, then the conditional equation φ1(x+ y) = φ2(x) +
φ3(y) for all (x, y) ∈ D is stable in a sense, that if

(x, y) ∈ D =⇒ |φ1(x+ y)− φ2(x)− φ3(y)| ≤ ε

for some ε ≥ 0, then there exist functions ψ1, ψ2, ψ3 : X → R and positive
constants c1, c2, c3 such that ψi(x+ y) = ψi(x) + ψi(y) dla (x, y) ∈ D and
|φi(x)− ψi(x)| ≤ ciε for all x ∈ X, i ∈ {1, 2, 3}.

With various sets X and D we get various solutions of (6.8). We give here
some known examples.

⋄ For X = Rn and D = X ×X results can be found in [1] or [2].
⋄ If (X, (·|·)) is a real inner product space, and D = {(x, y) ∈ X×X :
(x|y) = 0}, then solutions can be found in [13].

⋄ If (X,⊥) is an orthogonality space, and D = {(x, y) ∈ X × X : x ⊥ y},
the results are collected in [20].

⋄ If (X, ∥ · ∥) is a real normed space, dimX ≥ 2 and D = {(x, y) ∈ X ×X :
∥x+ y∥ = ∥x− y∥}, then see [21].

Similar results may be also found in [12, 17, 19].

We will deal now with stability of (6.8). Namely, consider a function f : X → K
with K ∈ {R, } fulfilling inequalities[

(x, y) ∈ D, f(x)f(y) ̸= 0
]

=⇒
∣∣∣∣ f(x+ y)

f(x)f(y)
− 1

∣∣∣∣ ≤ ε (6.9)

and [
(x, y) ∈ D, f(x+ y) ̸= 0

]
=⇒

∣∣∣∣f(x)f(y)f(x+ y)
− 1

∣∣∣∣ ≤ ε (6.10)

for some ε ≥ 0 (see Sikorska [105]).
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Let K ∈ {R, }. Similarly, as before, the main results will be preceded by a
key-result for further considerations.

Lemma 6.9. Under the assumption (H), if f : X → K satisfies (6.9) and (6.10)
for some nonnegative constant ε < 1, then either f(X \{0}) = {0}, or 0 ̸∈ f(X).

Theorem 6.10. Assume (H) i (C). If f : X → K satisfies (6.9) and (6.10) for
some nonnegative constant ε < 1 and f does not vanish on X \ {0}, then there
exist g : X → (0,∞) satisfying (6.8) and a positive constant c such that for all
x ∈ X, ∣∣∣∣f(x)g(x)

− 1

∣∣∣∣ ≤ (1 + ε)c + 1 and
∣∣∣∣ g(x)f(x)

− 1

∣∣∣∣ ≤ (1 + ε)c + 1. (6.11)

Moreover, if (X,+) is a uniquely 2-divisible abelian group, K = R and D is such
that

⋄ for every x ∈ X there exist y ∈ X such that (x, y) ∈ D and (x+y, x−y) ∈
D,

⋄ if (x, y) ∈ D, then (±x,±y) ∈ D,
then for all x ∈ X,∣∣∣∣f(x)g(x)

− 1

∣∣∣∣ ≤ (1 + ε)c − 1 and
∣∣∣∣ g(x)f(x)

− 1

∣∣∣∣ ≤ (1 + ε)c − 1.

In case where (X,+) is a cancellative abelian semigroup, Y = \{0} and D =
X×X, Ger and Šemrl [55] showed that expressions in (6.11) may be approximated
by constants with a property that if considered as functions of variable ε, they
tend to zero while ε tends to zero. In case of Theorem 6.10 it is an open problem
whether in a complex case the approximation can be strengthened (cf., comments
after Theorem 5.18).

As an immediate consequence of the above result we have a corollary.

Corollary 6.11. Assume that (X,⊥) is an orthogonality space or a normed linear
space with dimX ≥ 3 and with James orthogonality. If f : X → K satisfies[

x ⊥ y, f(x)f(y) ̸= 0
]

=⇒
∣∣∣∣ f(x+ y)

f(x)f(y)
− 1

∣∣∣∣ ≤ ε

and [
x ⊥ y, f(x+ y) ̸= 0

]
=⇒

∣∣∣∣f(x)f(y)f(x+ y)
− 1

∣∣∣∣ ≤ ε

for some nonnegative ε < 1, and f does not vanish outside zero, then there exists
a unique function g : X → (0,∞) satisfying for all x, y ∈ X conditions

x ⊥ y =⇒ g(x+ y) = g(x)g(y),∣∣∣∣f(x)g(x)
− 1

∣∣∣∣ ≤ (1 + ε)5 + 1 and
∣∣∣∣ g(x)f(x)

− 1

∣∣∣∣ ≤ (1 + ε)5 + 1.

Moreover, if K = R, then for all x ∈ X,∣∣∣∣f(x)g(x)
− 1

∣∣∣∣ ≤ (1 + ε)5 − 1 and
∣∣∣∣ g(x)f(x)

− 1

∣∣∣∣ ≤ (1 + ε)5 − 1.
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If we define D := {(x, y) : γ(x + y) = γ(x − y)}, on account of Brzdęk and
Sikorska [29] and Theorem 6.4 we may formulate

Corollary 6.12. Let X be a linear space, dimX ≥ 2, Z be a nonempty set, and
γ : X → Z be an even function fulfilling (a). If f : X → K satisfies[

γ(x+ y) = γ(x− y), f(x)f(y) ̸= 0
]

=⇒
∣∣∣∣ f(x+ y)

f(x)f(y)
− 1

∣∣∣∣ ≤ ε

and [
γ(x+ y) = γ(x− y), f(x+ y) ̸= 0

]
=⇒

∣∣∣∣f(x)f(y)f(x+ y)
− 1

∣∣∣∣ ≤ ε

for some nonnegative ε < 1 and f(x0) ̸= 0 for some x0 ̸= 0, then there exists
exactly one g : X → (0,∞) such that, for all x, y ∈ X,

γ(x+ y) = γ(x− y) =⇒ g(x+ y) = g(x)g(y),

and ∣∣∣∣f(x)g(x)
− 1

∣∣∣∣ ≤ δ + 1 and
∣∣∣∣ g(x)f(x)

− 1

∣∣∣∣ ≤ δ + 1,

where δ = (1 + ε)5.
Moreover, if K = R, then for all x ∈ X,∣∣∣∣f(x)g(x)

− 1

∣∣∣∣ ≤ δ − 1 ≤ 31ε and
∣∣∣∣ g(x)f(x)

− 1

∣∣∣∣ ≤ δ − 1 ≤ 31ε.

The next part of the paper we devote to the pexiderized form of (6.8), that is,
to equation of the form

(x, y) ∈ D =⇒ f1(x+ y) = f2(x)f3(y). (6.12)

Let (X,+) be a groupoid with a neutral element 0 and let D ⊂ X × X has
the property that (x, 0), (0, x) ∈ D for all x ∈ X. The last condition excludes
applying the results in the case where γ(x) = γ(y) (cf., section 5.4).

We start again with giving solutions of the equation.

Theorem 6.13. Assume (H). Let (Y, ·) be an abelian semigroup with a neutral
element. If f1, f2, f3 : X → Y are solutions of (6.12) and there exists x0 ∈ X\{0}
such that f1(x0) is invertible in Y , then there exist a uniquely determined solution
g : X → I of (6.8) and unique constants α, β ∈ I such that

f1 = αβg, f2 = αg, f3 = βg.

Studying stability of (6.12), for f1, f2, f3 : X → K we will consider[
(x, y) ∈ D, f2(x)f3(y) ̸= 0

]
=⇒

∣∣∣∣ f1(x+ y)

f2(x)f3(y)
− 1

∣∣∣∣ ≤ ε (6.13)

and [
(x, y) ∈ D, f1(x+ y) ̸= 0

]
=⇒

∣∣∣∣f2(x)f3(y)f1(x+ y)
− 1

∣∣∣∣ ≤ ε (6.14)

for some ε ≥ 0.



CONDITIONAL STABILITY OF THE HOMOMORPHISM EQUATION 317

Theorem 6.14. Assume (H) and (P). If f1, f2, f3 : X → K satisfy (6.13) and
(6.14) for some nonnegative ε < 1 and f1 does not vanish on X \ {0}, then there
exist functions g1, g2, g3 : X → (0,∞) and positive constants c1, c2, c3 such that

(x, y) ∈ D =⇒ g1(x+ y) = g2(x)g3(y),

and for all x ∈ X and i ∈ {1, 2, 3},∣∣∣∣fi(x)gi(x)
− 1

∣∣∣∣ ≤ (1 + ε)ci + 1 and
∣∣∣∣gi(x)fi(x)

− 1

∣∣∣∣ ≤ (1 + ε)ci + 1. (6.15)

Moreover, if K = R, then there exist µ1, µ2, µ3 ∈ {−1, 1} such that for all x ∈ X,
i ∈ {1, 2, 3},∣∣∣∣µifi(x)

gi(x)
− 1

∣∣∣∣ ≤ (1 + ε)ci − 1 and
∣∣∣∣ gi(x)µifi(x)

− 1

∣∣∣∣ ≤ (1 + ε)ci − 1. (6.16)

Similarly as before, from the above theorem it follows a result concerning sta-
bility in the case when X is an orthogonality space or a normed linear space of
dimension greater than or equal 3 with James orthogonality (see Sikorska [105]).

The next result concerns the case where D := {(x, y) : γ(x+ y) = γ(x− y)}.

Corollary 6.15. Let X be a linear space, dimX ≥ 2, Z be a nonempty set, and
γ : X → Z be an even function fulfilling (a). Let f1, f2, f3 : X → K satisfy[

γ(x+ y) = γ(x− y), f2(x)f3(y) ̸= 0
]

=⇒
∣∣∣∣ f1(x+ y)

f2(x)f3(y)
− 1

∣∣∣∣ ≤ ε,

[
γ(x+ y) = γ(x− y), f1(x+ y) ̸= 0

]
=⇒

∣∣∣∣f2(x)f3(y)f1(x+ y)
− 1

∣∣∣∣ ≤ ε

for some nonnegative ε < 1 and f(x0) ̸= 0 for some x0 ̸= 0. Then there exist
functions g1, g2, g3 : X → (0,∞) such that

γ(x+ y) = γ(x− y) =⇒ g1(x+ y) = g2(x)g3(y)

and for all x ∈ X, i ∈ {1, 2, 3}, (6.15) is fulfilled with c1 = 15 and c2 = c3 = 16.
Moreover, if K = R, then there are µ1, µ2, µ3 ∈ {−1, 1} such that for all x ∈ X,

i ∈ {1, 2, 3}, inequalities (6.16) hold with c1 = 15 and c2 = c3 = 16.

7. Fuzzy Stability

The results of the following three sections are actually not of conditional type,
but we present them here very briefly to stimulate investigations of their various
conditional versions.

Mirmostafaei and Moslehian [75] exhibit three reasonable notions of approx-
imately additive functions in fuzzy normed spaces and prove that under some
suitable conditions, an approximately additive function f from a space X into
a fuzzy Banach space Y can be approximated in a fuzzy sense by an additive
mapping T : X → Y . Let us give our notion of a fuzzy norm.
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Definition 7.1. Let X be a real linear space. A function N : X×R → [0, 1] (the
so-called fuzzy subset) is said to be a fuzzy norm on X if for all x, y ∈ X and all
s, t ∈ R,

(N1) N(x, c) = 0 for c ≤ 0;
(N2) x = 0 if and only if N(x, c) = 1 for all c > 0;
(N3) N(cx, t) = N(x, t

|c|) if c ̸= 0;
(N4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, .) is a non-decreasing function on R and limc→∞N(x, c) = 1.
(N6) if x ̸= 0, then N(x, .) is a (upper semi)continuous function on R.
The pair (X,N) is called a fuzzy normed linear space. One may regard N(x, t)

to be the measure of the probability that the statement ‘the norm of x is less
than or equal to the real number t’ is true. Note that the fuzzy normed linear
space (X,N) is exactly a Menger probabilistic normed linear space (X,N,∆)
when ∆ = min; see [33].

Example 7.2. Let (X, ∥ · ∥) be a normed linear space. Then

N(x, t) =

{
t

t+∥x∥ t > 0, x ∈ X

0 t ≤ 0, x ∈ X

is a fuzzy norm on X.

Example 7.3. Let (X, ∥ · ∥) be a normed linear space. Then

N(x, t) =


0 t ≤ 0
t

∥x∥ 0 < t ≤ ∥x∥
1 t > ∥x∥

is a fuzzy norm on X.

Definition 7.4. Let (X,N) be a fuzzy normed linear space. Let {xn} be a
sequence in X. Then {xn} is said to be convergent if there exists x ∈ X such
that limn→∞N(xn − x, t) = 1 for all t > 0. In that case, x is called the limit of
the sequence {xn} and we denote it by N − limxn = x. A sequence {xn} in X
is called Cauchy if for each ε > 0 and each t > 0 there exists n0 such that for all
n ≥ n0 and all p > 0, we have N(xn+p−xn, t) > 1−ε. If each Cauchy sequence is
convergent, then the fuzzy norm is said to be complete and each complete fuzzy
normed space is called a fuzzy Banach space.

The first fuzzy stability theorem reads as follows.

Theorem 7.5. [75] Let X be a linear space and (Y,N) be a fuzzy Banach space.
Let φ : X ×X → [0,∞) be a control function such that

φ̃(x, y) =
∞∑
n=0

2−nφ(2nx, 2ny) <∞, x, y ∈ X. (7.1)

Let f : X → Y be a uniformly approximately additive function with respect to φ
in the sense that

lim
t→∞

N(f(x+ y)− f(x)− f(y), tφ(x, y)) = 1 (7.2)
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uniformly on X ×X. Then the limit T (x) := N − limn→∞
f(2nx)

2n
exists for each

x ∈ X and defines an additive mapping T : X → Y such that, for every δ > 0
and α > 0 with

N(f(x+ y)− f(x)− f(y), δφ(x, y)) > α, x, y ∈ X, (7.3)
we have

N

(
T (x)− f(x),

δ

2
φ̃(x, x)

)
> α, x ∈ X.

Later many mathematicians investigated the stability of various functional
equations in some fuzzy senses and we refer to [33] for further information.

8. Stability in non-Archimedean normed spaces

By a non-Archimedean field we mean a field K equipped with a function (the
so-called valuation) | · | from K into [0,∞) such that |r| = 0 if and only if r = 0,
|rs| = |r| |s|, and |r + s| ≤ max{|r|, |s|} for all r, s ∈ K. Evidently |n| ≤ 1 for all
n ∈ N. Given a vector space X over a field K equipped with a non-Archimedean
non-trivial valuation | · |, a function ∥·∥ : X → [0,∞) is called a non-Archimedean
norm if it satisfies the following conditions:

(i) ∥x∥ = 0 if and only if x = 0;
(ii) ∥rx∥ = |r|∥x∥ for r ∈ K, x ∈ X;
(iii) the strong triangle inequality ∥x+ y∥ ≤ max{∥x∥, ∥y∥} for x, y ∈ X.

Then (X, ∥ · ∥) is called a non-Archimedean normed space. By a complete non-
Archimedean normed space we mean one in which every Cauchy sequence is
convergent and every such a space we call a non-Archimedean Banach space.

To construct an example, fix a prime number p. For any nonzero rational
number x, there exists a unique integer nx ∈ Z such that x = a

b
pnx , where a and

b are integers not divisible by p. Then |x|p := p−nx defines a non-Archimedean
norm on Q. The completion of Q with respect to the metric d(x, y) = |x− y|p is
denoted by Qp, which is called the p-adic number field.

In [6], the authors investigated stability of approximately additive mappings
f : Qp → R. They showed that if f : Qp → R is a continuous mapping for which
there exists a fixed ϵ such that |f(x+ y)− f(x)− f(y)| ≤ ϵ for all x, y ∈ Qp, then
there exists a unique additive mapping T : Qp → R such that |f(x)−T (x)| ≤ ϵ for
all x ∈ Qp. In [79], the stability of Cauchy functional equation was investigated
in the context of non-Archimedean normed spaces as follows.

Theorem 8.1. Let X be a non-Archimedean Banach space, N0 denote the set of
nonnegative integers, (H,+) be a commutative semigroup and φ : H×H → [0,∞)
be a function such that

lim
n→∞

φ(2nx, 2ny)

|2|n
= 0, x, y ∈ H. (8.1)

and

φ̃(x) := sup
j∈N0

φ(2jx, 2jx)

|2|j
, x ∈ X. (8.2)
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Suppose that f : H → X is a mapping satisfying

∥f(x+ y)− f(x)− f(y)∥ ≤ φ(x, y), x, y ∈ H. (8.3)

Then there exists a unique additive mapping T : H → X such that

∥f(x)− T (x)∥ ≤ 1

|2|
φ̃(x), x ∈ H. (8.4)

That theorem has been formulated in [79] with some additional assumptions,
which can be easily derived from (8.1).

Corollary 8.2. Let ρ : [0,∞) → [0,∞) be a function satisfying

ρ(|2|) < |2|, ρ(|2|t) ≤ ρ(|2|)ρ(t), t ≥ 0.

Let δ > 0, let H be a non-Archimedean normed space and let f : H → X fulfill
the inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ δ (ρ(∥x∥) + ρ(∥y∥)) , x, y ∈ H.

Then there exists a unique additive mapping T : H → X such that

∥f(x)− T (x)∥ ≤ 2

|2|
δρ(∥x∥), x ∈ H. (8.5)

Remark 8.3. The classical example of such function ρ is the mapping ρ(t) ≡ tp,
when p > 1 and |2| < 1.

For some further examples of results and references on that subject we refer to
[16, pp. 22–25].

9. Perturbation

An investigation of approximate homomorphisms of Banach algebras in the
framework of the perturbation theory was given in [65]. A pair (A ,B) of Banach
algebras is said to be AMNM (abbreviation for Approximately Multiplicative
implies Near Multiplicative) if for each ε > 0 and K > 0, there is δ > 0 such that
for every linear bounded operator T : A → B satisfying ∥T (ab) − T (a)T (b)∥ ≤
δ∥a∥∥b∥ (a, b ∈ A ) (the so-called δ-multiplicativity) and ∥T∥ ≤ K, there is a
bounded homomorphism S : A → B such that ∥T − S∥ ≤ ε; see also [99]. For
example,

(i) every pair of finite-dimensional Banach algebras is AMNM;
(ii) If A = L1(G) with G locally compact abelian group, then (A ,C) is

AMNM;
(iii) If A is an amenable Banach algebra and B is a dual space, then (A ,B)

is AMNM.
The pair (L1(0, 1),C) is not however AMNM.

In addition, Šemrl [98] showed that if = CR(U),B = CR(V ) for some compact
Hausdorff spaces U, V and a δ-multiplicative map T : A → B satisfies ∥T (a+b)−
T (a)−T (b)∥ ≤ δ(∥a∥+∥b∥) (a, b ∈ A ), then there exists a linear homomorphism
S : A → B such that ∥T − S∥ ≤ ε, where ε→ 0 as δ → 0.
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Furthermore, the perturbation of mappings can be related to the Hyers–Ulam
stability. Let X,Y be normed linear spaces. A mapping T : X → Y is said to
have the Hyers–Ualm stability if there exists a constant K ≥ 0 such that

(i) For any y in the range R(T ) of T , ε > 0 and x ∈ X with ∥T (x)− y∥ ≤ ε,
there exists a x0 ∈ X such that T (x0) = y and ∥x− x0∥ ≤ Kε.

Such a constant K ≥ 0 is called a Hyers–Ulam stability constant for T . We
denote by KT the infimum of all the Hyers–Ulam stability constants for T . If T
is linear then the condition (i) is equivalent to the following condition.

(ii) For any ε ≥ 0 and x ∈ X with ∥Tx∥ ≤ ε there exists an x0 ∈ X such that
Tx0 = 0 and ∥x− x0∥ ≤ Kε.

If N (T ) := {x ∈ X : Tx = 0}, then condition (ii) is equivalent to
(iii) For any x ∈ X there exists a x0 ∈ N (T ) such that ∥x− x0∥ ≤ K∥Tx∥.
In [61] the authors proved the following result.

Theorem 9.1. Let T be a closed operator from the subspace D(T ) of a Hilbert
space H into a Hilbert space K . The following assertions are equivalent:

(i) T has the Hyers–Ulam stability;
(ii) T has closed range.

Moreover, if one of the conditions above is true, then KT = γ(T )−1, where γ(T ) =
sup{γ > 0 : ∥Tx∥ ≥ γ∥x∥, x ∈ D(T ) ∩ (N (T ))⊥}.

Let X be a Banach space, M,N be closed linear subspaces of X and set
δ(M,N) := inf{ dist(x,N)

dist(x,M∩N)
: x ∈ M,x /∈ N}(≤ 1), when N \M ̸= ∅. If M ⊆ N ,

then we set δ(M,N) = 1. Let A and T be operators with their domains in X
such that D(T ) ⊆ D(A), and

∥Ax∥ ≤ a∥x∥+ b∥Tx∥, x ∈ D(T ), (9.1)

where a, b are nonnegative constants. Then A is called T -bounded with T -bounds
a, b. A bounded operator A is clearly T -bounded for any T with D(T ) ⊆ D(A).
The following perturbation results is presented in [80].

Theorem 9.2. In the setting of Hilbert space operators, suppose that A is a T -
bounded operator with T -bounds smaller than 1. If T is a closed operator and
S := T + A, then the following assertions are equivalent:

(i) S has the Hyers–Ulam stability;
(ii) S has closed range.

Moreover, if A is closed, A and T have the Hyers–Ulam stability and R(S) =
R(A)+R(T ), then conditions (i) and (ii) are equivalent with each of the following
two assertions:

(iii) δ(R(A),R(T )) > 0;
(iv) δ(R(A)⊥,R(T )⊥) > 0.
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