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Abstract. In this paper, we explore approximate unitary equivalence of nor-
maloid operators and classify several normaloid type operators including transa-
loid operators, polynomial-normaloid operators and von Neumann operators up
to approximate unitary equivalence. As an application, we explore approxima-
tion of transaloid operators with closed numerical ranges. Among other things,
it is proved that those transaloid operators with closed numerical ranges are
norm dense in the class of transaloid operators.

1. Introduction and preliminaries

Throughout this paper, H will always denote a complex separable Hilbert space
endowed with the inner product 〈·, ·〉. We let B(H) denote the algebra of all
bounded linear operators on H. In this paper, an operator will always mean a
bounded linear operator.

Let T ∈ B(H). We denote by σ(T ) the spectrum of T , and by γ(T ) the spectral
radius of T , that is, γ(T ) = max{|λ| : λ ∈ σ(T )}. Recall that T is said to be
normaloid if ‖T‖ = γ(T ), and T is said to be transaloid if T − λ is normaloid for
all λ ∈ C.

The notion of normaloid operators was introduced by Wintner [20] in terms of
numerical range. The numerical range of T is the nonempty set

W (T ) , {〈Tξ, ξ〉 : ξ ∈ H, ‖ξ‖ = 1}.
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The numerical radius of T ∈ B(H) is

w(T ) , sup{|z| : z ∈ W (T )}.

An operator T is normaloid if and only if w(T ) = ‖T‖ (see [9, Prob. 218]).
The most obvious examples of transaloid operators are hyponormal operators,

which have been extensively studied by many authors. When T is hyponormal
(that is, T ∗T − TT ∗ ≥ 0), it is well known that T − λ is hyponormal and hence
γ(T−λ) = ‖T−λ‖ for all λ ∈ C. So each hyponormal operator is transaloid. Thus
the notion of transaloidity can be viewed as a generalization of hyponormality,
and has been studied by many authors [1, 6, 8, 12, 13, 15, 21].

There are two other related classes of operators. We say that an operator
T ∈ B(H) is polynomial-normaloid (p-normaloid for short) if p(T ) is normaloid
for each polynomial p(·) ([2]). Furthermore, if f(T ) is normaloid for each rational
function f with poles off σ(T ), then T is called a von Neumann operator ([5,
Def. 9.1]). The notion of von Neumann operators is closely related to a notion
of spectral sets due to von Neumann [16]. Each subnormal operator is a von
Neumann operator ([5, Prop. 9.2]).

The main aim of this note is to classify normaloid operators, transaloid op-
erators, p-normaloid operators and von Neumann operators up to approximate
unitary equivalence. Recall that two operators A, B ∈ B(H) are said to be approx-
imately unitarily equivalent, denoted by A ∼=a B, if there exist unitary operators
{Un}∞i=1 such that AUn − UnB → 0 as n → ∞, or equivalently, the closures of
the unitary equivalence classes of A and B coincide. When two operators are
approximately unitarily equivalent, they have many common properties. In par-
ticular, all the above-mentioned normaloid type properties are invariant under
approximate unitary equivalence.

To state our main results, we first introduce some notation and terminology.
Given a convex subset Γ of C, we denote by E(Γ) the set of extreme points of

Γ. Given a compact subset σ of C, the polynomially convex hull of σ, denoted by
σ̂, is defined to be the set of all points w such that for every polynomial p

|p(w)| ≤ max{|p(z)| : z ∈ σ}.

By the Maximum Modulus Theorem (MMT for short) for analytic functions, σ̂ is
obtained from σ by filling any “holes” that may exist in σ. Then one can deduce
that σ̂ equals the complement of the unbounded component of C \ σ.

The main results of this paper are listed as follows.

Theorem 1.1. Let T ∈ B(H). Then T is normaloid if and only if T is approxi-
mately unitarily equivalent to an operator of the form N ⊕A, where N is normal
and ‖A‖ ≤ ‖N‖; in addition, N can be required to satisfy σ(N) = {z ∈ σ(T ) :
|z| = ‖T‖}.

In what follows, we write conv Γ for the convex hull of a set Γ ⊆ C, that is,
the smallest convex set that includes Γ.

Theorem 1.2. An operator T ∈ B(H) is transaloid if and only if T is approxi-
mately unitarily equivalent to an operator of the form N ⊕A, where N is normal
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and A satisfies
‖A− λ‖ ≤ ‖N − λ‖, ∀λ ∈ C;

in addition, N can be required to satisfy σ(N) = E(conv σ(T )).

Theorem 1.3. An operator T ∈ B(H) is p-normaloid if and only if T is approx-
imately unitarily equivalent to an operator of the form N⊕A, where N is normal
and A satisfies

‖p(A)‖ ≤ ‖p(N)‖
for any polynomial p; in addition, N can be required to satisfy σ(N) = ∂σ̂(T ).

Theorem 1.4. An operator T ∈ B(H) is a von Neumann operator if and only if
T is approximately unitarily equivalent to an operator of the form N ⊕ A, where
N is normal and A satisfies

‖f(A)‖ ≤ ‖f(N)‖
for any rational function f with poles off σ(T ); in addition, N can be required to
satisfy σ(N) = ∂σ(T ).

Remark 1.5. By Theorems 1.1, 1.2, 1.3 and 1.4, each normaloid type property is
determined up to approximate unitary equivalence by normal operators, and one
can construct various examples of normaloid operators (see Example 4.5). As
an application of main results, we shall prove that a unilateral weighted shift is
normaloid if and only if T is a von Neumann operator (Theorem 4.6).

The following result is an immediate consequence of our main results.

Corollary 1.6. Let T ∈ B(H) be normaloid. Then the C∗-algebra C∗(T ) gener-
ated by T admits at least one character (that is, multiplicative linear functional)
on it; in particular, if

(i) λ ∈ σ(T ) and |λ| = ‖T‖, or
(ii) T is transaloid and λ ∈ E(conv σ(T )), or

(iii) T is p-normaloid and λ ∈ ∂σ̂(T ), or
(iv) T is a von Neumann operator and λ ∈ ∂σ(T ),

then there exists a character ϕ on C∗(T ) such that ϕ(T ) = λ

Proof. Note that if an operator T has the form N ⊕ A and λ ∈ σ(N), where N
is normal, then the C∗-algebra C∗(T ) generated by T admits a character ϕ on it
such that ϕ(T ) = λ. Then, in view of Theorems 1.1,1.2,1.3 and 1.4, the desired
result follows readily. �

As an application of Theorem 1.2, we explore approximation of transaloid op-
erators with closed numerical ranges.

The classical Toeplitz-Hausdorff theorem asserts that the numerical range of
an operator is always convex [18, 10]. Note that the numerical range of a finite-
dimensional operator is a continuous image of a compact set, and hence neces-
sarily closed. However, this is not the case in infinite-dimensional space. For
example, the numerical range of the unilateral shift on l2 is the open unit disk.
Since the unilateral shift is hyponormal and hence transaloid, this shows that a
transaloid operator can have a non-closed numerical range.
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On the other hand, given an operator T , it is natural to explore the inclusion
relationship between σ(T ) and W (T ). The convex hull of σ(T ) lies in the closure
of W (T ) (see [17] or [9, Prob. 214]) and W (T )− may be very much larger than
conv σ(T ). So it is natural to ask when an operator T satisfies W (T ) = conv σ(T );
in this case, T has a closed numerical range.

We obtain the following result which asserts that those transaloid operators
with closed numerical ranges are norm dense in the class of transaloid operators.

Theorem 1.7. Let T ∈ B(H) be transaloid. Then, given ε > 0, there exists
compact K ∈ B(H) with ‖K‖ < ε such that T +K is transaloid and W (T +K) =
conv σ(T + K).

Recall that an operator T is said to be convexoid if W (T )− = conv σ(T ). Each
transaloid operator is convexoid (see Lemma 2.8). Note that W (T ) = conv σ(T )
if and only if T is a convexoid operator with closed numerical range.

Remark 1.8. Bourin [3, Prop. 1.3] proved that those operators with closed nu-
merical ranges are norm dense in B(H). However, those operators A ∈ B(H)
satisfying W (A) = conv σ(A) are not norm dense in B(H). Using the upper
semi-continuity of spectrum and the continuity of numerical range [9, Prob. 220],
one can check that the following operator on C2 is not a norm limit of convexoid
operators: [

0 1
0 0

]
.

The following result describes when a transaloid operator is approximately
unitarily equivalent to some operator with closed numerical range.

Theorem 1.9. A transaloid operator T is approximately unitarily equivalent to
some operator with closed numerical range if and only if conv σ(T ) has at most
denumerable extreme points.

In this paper, we concentrate on complex separable infinite-dimensional Hilbert
spaces. Our main results still hold for finite-dimensional Hilbert spaces, and the
proofs follow similar lines.

The rest of this paper is organized as follows. In Section 2, we shall make some
preparation. The proofs of Theorems 1.1 and 1.2 will be provided in Section 3.
Section 4 is devoted to the proofs of Theorems 1.3 and 1.4. In the concluding
section, we shall prove Theorems 1.7 and 1.9.

2. Preparation

For convenience, we first give some familiar notation and terminology.
Let T ∈ B(H). We denote by ker T and ran T the kernel of T and the range

of T respectively. T is called a semi-Fredholm operator, if ran T is closed and
either nul T or nul T ∗ is finite, where nul T , dim ker T and nul T ∗ = dim ker T ∗;
in this case, ind T , nul T − nul T ∗ is called the index of T . In particular, if
−∞ < ind T < ∞, then T is called a Fredholm operator. The Wolf spectrum
σlre(T ) and the essential spectrum σe(T ) are defined by

σlre(T ) , {λ ∈ C : T − λ is not semi-Fredholm}
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and
σe(T ) , {λ ∈ C : T − λ is not Fredholm},

respectively.
If σ is a clopen subset of σ(T ), then there exists an analytic Cauchy domain

Ω such that σ ⊆ Ω and [σ(T ) \ σ] ∩ Ω− = ∅. We let E(σ; T ) denote the Riesz
idempotent of T corresponding to σ, that is,

E(σ; T ) =
1

2πi

∫
Γ

(λ− T )−1dλ,

where Γ = ∂Ω is positively oriented with respect to Ω in the sense of complex
variable theory. In this case, we denote H(σ; T ) = ran E(σ; T ). If λ is an isolated
point of σ(T ), then {λ} is a clopen subset of σ(T ) and we simply write H(λ; T )
instead of H({λ}; T ); if, in addition, dimH(λ; T ) < ∞, then λ is called a normal
eigenvalue of T . Each normal eigenvalue of T lies in the point spectrum σp(T ).
The set of all normal eigenvalues of T will be denoted by σ0(T ). The reader is
referred to [11, Chap. 1] or [4, page 210] for more about normal eigenvalues.

Lemma 2.1 ([4], page 366). Let T ∈ B(H). Then ∂σ(T ) ⊆ [σ0(T ) ∪ σlre(T )].

Corollary 2.2. Let T ∈ B(H). Then σ0(T ) is at most denumerable and each
accumulation point of σ0(T ) lies in σlre(T ).

The following lemma is clear.

Lemma 2.3. If σ is a nonempty compact subset of C, then conv σ, E(conv σ)
are both compact, E(conv σ) ⊆ ∂σ and

max
µ∈σ

|λ− µ| = max
µ∈conv σ

|λ− µ| = max{|λ− µ| : µ ∈ E(conv σ)}, ∀λ ∈ C.

Throughout the following, we let K(H) denote the ideal of compact operators
in B(H).

Definition 2.4. The essential numerical range of an operator T ∈ B(H) is the
nonempty set

We(T ) ,
⋂

K∈K(H)

W (T + K)−.

It is obvious that the essential numerical range is always compact and invari-
ant under compact perturbations. The following result, due to Lancaster [14],
describes the relationship between the numerical range and the essential numer-
ical range of an operator.

Theorem 2.5 ([14]). If A ∈ B(H), then W (A)− = conv (W (A) ∪We(A)).

As a consequence of Theorem 2.5, one can see that the numerical range is
closed if and only if it contains the essential numerical range.

Lemma 2.6 ([7]). Let T ∈ B(H). Then λ ∈ We(T ) if and only if there exists an
orthonormal sequence {en}∞n=1 such that limn〈Ten, en〉 = λ.

Lemma 2.7. If T ∈ B(H), then σe(T ) ⊆ We(T ).
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Proof. For any K ∈ K(H), it is clear that

σe(T ) = σe(T + K) ⊆ σ(T + K) ⊆ W (T + K)−.

It follows readily that σe(T ) ⊆ We(T ). �

Lemma 2.8. If T ∈ B(H) is transaloid, then conv σ(T ) = W (T )− and ‖T‖ =
γ(T ) = w(T ).

Proof. For a proof by contradiction, we assume that conv σ(T ) 6= W (T )−. Since
it is obvious that σ(T ) ⊆ W (T )−, we have conv σ(T ) ( W (T )−. By the convexity
of conv σ(T ) and W (T )−, there exists µ ∈ C such that

sup
z∈W (T )

|µ− z| > sup
z∈σ(T )

|µ− z|,

that is, w(µ− T ) > γ(µ− T ). It follows that ‖µ− T‖ > γ(µ− T ), contradicting
the fact that T is transaloid. This completes the proof. �

Lemma 2.9. If T ∈ B(H) is hyponormal, then We(T ) = conv σlre(T ).

Proof. Without loss of generality, we assume that σ0(T ) = {λi : i = 1, 2, 3, · · · }.
Since T is hyponormal, T can be written as

T =


λ1I1

λ2I2

λ3I3

. . .
A


M1

M2

M3
...

M0

,

where Mi = ker(T − λi), Ii is the identity operator on Mi for i ≥ 1 and M0 =
(∨i≥1Mi)

⊥. Here ∨ denotes closed linear span. Obviously, dim Mi < ∞, A−λi is
invertible for each i ≥ 1 and it follows from Corollary 2.2 that dist(λi, σlre(T )) →
0. For each i ≥ 1, we can find µi ∈ σlre(T ) such that dist(λi, σlre(T )) = |λi − µi|.
Then there exists a compact operator K such that

T + K = (⊕∞i=1µiIi)⊕ A.

One can check that σ0(T + K) = ∅ and it follows from Lemma 2.1 that ∂σ(T +
K) ⊆ σlre(T + K). Noting that T + K is still hyponormal, we have

W (T + K)− = conv σ(T + K) = conv ∂σ(T + K)

⊆ conv σlre(T + K) = conv σlre(T ).

Hence We(T ) = We(T + K) ⊆ conv σlre(T ). In view of Lemma 2.7, we obtain
conv σlre(T ) = We(T ). �

Given T ∈ B(H) and a subspace M of H, we let TM denote the compression
of T to M . Here subspace means closed linear manifold.

Lemma 2.10 ([7], Thm. 5.1). Let T ∈ B(H). If M is a subspace of H with
dim M⊥ < ∞, then We(TM) = We(T ).

Lemma 2.11 ([11], Prop. 4.28). Let T ∈ B(H) be hyponormal and N be a
normal operator with σ(N) ⊆ σlre(T ). Then T ∼=a T ⊕N .
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Lemma 2.12. Let T ∈ B(H). If λ ∈ σlre(T ) and ‖T‖ = |λ|, then there exists
K ∈ K(H) such that T + K = λI ⊕ A, where I is the identity operator on some
infinite-dimensional subspace M of H and A ∈ B(M⊥).

Proof. Since λ ∈ σlre(T ), by Lemma 2.7, we have λ ∈ We(T ). It follows from
Lemma 2.6 that there exists an orthonormal sequence {en}∞n=1 such that |〈Ten, en〉−
λ| < 1

2n for all n ≥ 1. Denote M = ∨{ei : i ≥ 1}. Then T can be written as

T =


a1,1 a1,2 a1,3 · · · B1

a2,1 a2,2 a2,3 · · · B2

a3,1 a3,2 a3,3 · · · B3
...

...
...

. . .
...

C1 C2 C3 · · · A


e1

e2

e3
...

M⊥

,

where Bi : M⊥ → ∨{ei} and Ci : ∨{ei} → M⊥ are both of rank one for i ≥ 1.
Note that ai,j = 〈Tej, ei〉 for all i, j ≥ 1. Hence |an,n − λ| < 1

2n for all n ≥ 1.
Now fix an n ≥ 1. Then it is obvious that{

‖Bn‖2 + |an,n|2 +
∞∑

i=n+1

|an,i|2
} 1

2 ≤ ‖T‖ = |λ|.

It follows that

‖Bn‖2 +
∞∑

i=n+1

|an,i|2 ≤ |λ|2 − |an,n|2

≤ (|λ| − |an,n|)(|λ|+ |an,n|)
≤ |λ− an,n|(2|λ|+ |λ− an,n|)
≤ |λ− an,n|(2|λ|+ 1)

<
2|λ|+ 1

2n
.

Similarly one can prove that

‖Cn‖2 +
∞∑

i=n+1

|ai,n|2 ≤
2|λ|+ 1

2n
.

Thus the following operator

K1 = −


0 a1,2 a1,3 · · · B1

a2,1 0 a2,3 · · · B2

a3,1 a3,2 0 · · · B3
...

...
...

. . .
...

C1 C2 C3 · · · 0


e1

e2

e3
...

M⊥

is compact and

T + K1 =


a1,1

a2,2

. . .
A


e1

e2
...

M⊥

.
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Noting that |an,n − λ| → 0, there exists compact K2 ∈ K(H) such that

T + K1 + K2 =


λ

λ
. . .

A


e1

e2
...

M⊥

.

This completes the proof. �

Let A be a C∗-algebra and ρi be a ∗-representation of A on Hi(i = 1, 2). ρ1

and ρ2 are said to be approximately unitarily equivalent, denoted by ρ1
∼=a ρ2, if

there exist unitary operators Un : H1 → H2 (n = 1, 2, · · · ) such that

Unρ1(a)− ρ2(a)Un → 0, ∀a ∈ A.

The following result is Voiculescu’s non-commutative Weyl-von Neumann The-
orem [19].

Lemma 2.13. If A is a separable C∗-subalgebra of B(H) and ρ is a ∗-representation
of A on Hρ such that A∩K(H) ⊆ ker ρ, then id ∼=a id⊕ρ, where id is the identity
representation of A.

3. Proofs of Theorems 1.1 and 1.2

We first prove several auxiliary results.

Theorem 3.1. Let T ∈ B(H) be normaloid. If N is a normal operator on some
Hilbert space with σ(N) ⊆ {z ∈ σlre(T ) : |z| = ‖T‖}, then T ∼=a T ⊕N .

Proof. Denote Γ = {z ∈ σlre(T ) : |z| = ‖T‖}. We claim that T ∼=a T ⊕ λI for
any λ ∈ Γ, where I is the identity operator on H.

Let A denote the C∗-subalgebra of B(H) generated by T, I and all compact
operators on H. Then A is separable. If λ ∈ Γ, then |λ| = ‖T‖ and, by Lemma
2.12, there exists K ∈ K(H) such that T + K = λI1⊕A, where I1 is the identity
operator on some infinite-dimensional subspace M of H and A ∈ B(M⊥). So
each operator X in A can be written as

X =

[
αI1 + K1,1 K1,2

K2,1 ∗

]
M
M⊥,

where K1,1, K1,2 and K2,1 are all compact. For such X, we define ρ(X) = αI. It
is easy to see that ρ is a unital ∗-representation of A on H and K(H) ⊆ ker ρ. By
Lemma 2.13, we have id ∼=a id⊕ ρ. Note that ρ(T ) = λI. We have T ∼=a T ⊕ λI.
This proves the claim.

Since σ(N) ⊆ Γ, it follows that Γ is a nonempty compact set. Without loss of
generality, we may assume that {λi : i = 1, 2, · · · } is a dense subset of Γ. Then,
by the preceding claim, we have

T ∼=a T ⊕ λ1I ∼=a T ⊕ λ2I ⊕ λ1I ∼=a · · · ∼=a T ⊕ (⊕n
i=1λiI)

for each n ≥ 1.
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Given an ε > 0, {B(λi, ε)}∞i=1 is an open cover of Γ. Here B(λi, ε) , {z ∈ C :
|z− λi| < ε}. Then there exists k ≥ 1 such that {B(λi, ε)}k

i=1 is an open cover of
Γ. Then there exists Y ∈ B(H(∞)) with ‖Y ‖ < ε such that

T ⊕ (⊕∞i=1λiI) + Y ∼= T ⊕ (⊕k
i=1λiI) ∼=a T.

Here ∼= denotes unitary equivalence. It follows that T ⊕ (⊕∞i=1λiI) ∼=a T . Note
that

σ(⊕∞i=1λiI) = σlre(⊕∞i=1λiI) = Γ.

Since N is a normal operator with σ(N) ⊆ Γ, by Lemma 2.11, we have

N ⊕ (⊕∞i=1λiI) ∼=a ⊕∞i=1λiI.

We deduce that

T ⊕N ∼=a

(
T ⊕ (⊕∞i=1λiI)

)
⊕N

∼=a T ⊕
(
(⊕∞i=1λiI)⊕N

)
∼=a T ⊕ (⊕∞i=1λiI) ∼=a T.

This completes the proof. �

By the latter half of the above proof, one can see the following result.

Corollary 3.2. Let T ∈ B(H) and Γ be a compact subset of C. If T ∼=a T ⊕ λI
for any λ ∈ Γ and N is a normal operator on some Hilbert space with σ(N) = Γ,
where I is the identity operator on H, then T ∼=a T ⊕N .

The following lemma is well known. For the reader’s convenience, we write
down its proof.

Lemma 3.3. Let T ∈ B(H). If λ ∈ W (T ) and |λ| = ‖T‖, then λ ∈ σp(T ) and
ker(T − λ) reduces T .

Proof. Since λ ∈ W (T ), there exists a unit vector e ∈ H such that 〈Te, e〉 = λ.
Thus T can be written as

T =

[
λ E
F G

]
e

{e}⊥.

Since |λ| = ‖T‖, it follows immediately that E, F are both zero. So λ ∈ σp(T ).
Arbitrarily choose a unit vector f ∈ ker(T − λ). Then T admits the following

matrix representation

T =

[
λ E1

0 G1

]
f

{f}⊥.

Using a similar argument as above, one can deduce that E1 = 0 and hence ∨{f}
reduces T . Since f ∈ ker(T − λ) is arbitrary, it follows that ker(T − λ) reduces
T . �

Corollary 3.4. Let T ∈ B(H) be transaloid. If λ ∈ σ0(T ) ∩ E(conv σ(T )), then
λ ∈ σp(T ) and ker(T − λ) reduces T .
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Proof. Since λ is an extreme point of conv σ(T ), we can find µ ∈ C such that

|µ− λ| = max{|µ− z| : z ∈ conv σ(T )}
= max{|µ− z| : z ∈ σ(T )}
= γ(µ− T ).

Noting that T is transaloid, we have |µ−λ| = ‖µ−T‖. On the other hand, since
λ ∈ σ0(T ) ⊆ σp(T ), we have µ − λ ∈ σp(µ − T ) ⊆ W (µ − T ). By Lemma 3.3,
ker((µ− T )− (µ− λ)) reduces T − µ, that is, ker(T − λ) reduces T . �

Corollary 3.5. Let T ∈ B(H). If λ ∈ σ0(T ) and there exists z0 ∈ C \ σ(T ) such
that

|(λ− z0)
−1| = ‖(T − z0)

−1‖,
then λ ∈ σp(T ) and ker(T − λ) reduces T .

Proof. Note that

(T − z0)
−1 − (λ− z0)

−1 = (T − z0)
−1(λ− T )(λ− z0)

−1.

Then ker((T − z0)
−1 − (λ − z0)

−1) = ker(T − λ). Since λ ∈ σ0(T ), we have
λ ∈ σp(T ) and

(λ− z0)
−1 ∈ σp((T − z0)

−1) ⊆ W ((T − z0)
−1).

Then it follows from Lemma 3.3 that ker((T−z0)
−1−(λ−z0)

−1) reduces (T−z0)
−1.

That is, ker(T − λ) reduces T . �

Now we can give the proof of Theorem 1.1.

Proof of Theorem 1.1. “⇐=”. Since N must satisfy ‖N‖ = γ(N), we have

‖T‖ = ‖N‖ = γ(N) ≤ γ(T ) ≤ ‖T‖.
So ‖T‖ = γ(T ). This proves the sufficiency.

“=⇒”. Choose a λ ∈ σ(T ) satisfying |λ| = γ(T ). Since T is normaloid, we
have |λ| = ‖T‖. It is obvious that λ ∈ ∂σ(T ).

If λ ∈ σlre(T ), then, by Theorem 3.1, T ∼=a λI ⊕ T , as desired.
If λ /∈ σlre(T ), then, by Lemma 2.1, λ ∈ σ0(T ) ⊆ σp(T ). So λ ∈ W (T ). It

follows from Lemma 3.3 that ker(T − λ) reduces T . Hence T can be written as

T =

[
λI1 0
0 A

]
M
M⊥,

where M = ker(T − λ) and I1 is the identity operator on M . This completes the
proof. �

The rest of this section is devoted to the proof of Theorem 1.2. Still, we need
several auxiliary results.

If T ∈ B(H) is hyponormal and N is a normal operator with σ(N) ⊆ σlre(T ),
then T ∼=a T ⊕ N (see [11, Prop. 4.28]). The following result extends this to
certain transaloid operators.

Theorem 3.6. Let T ∈ B(H) be transaloid. If N is a normal operator with its
spectrum contained in σlre(T ) ∩ E(conv σ(T )), then T ∼=a T ⊕N .
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Proof. Denote Γ = σlre(T ) ∩ E(conv σ(T )). By Corollary 3.2, it suffices to prove
that T ∼=a T ⊕ λI for any λ ∈ Γ, where I is the identity operator on H.

Now fix a λ ∈ Γ. Then it is obvious that λ ∈ ∂σ(T ). Since λ is an extreme
point of conv σ(T ), we can find µ ∈ C such that

|µ− λ| = max{|µ− z| : z ∈ conv σ(T )}
= max{|µ− z| : z ∈ σ(T )}
= γ(µ− T ).

Noting that T is transaloid, we have |µ−λ| = ‖µ−T‖. Since λ ∈ σlre(T ) and hence
µ−λ ∈ σlre(µ−T ), it follows from Theorem 3.1 that (µ−T ) ∼=a (µ−T )⊕(µ−λ)I,
that is, T ∼=a T ⊕ λI. By Corollary 3.2, this completes the proof. �

Remark 3.7. For a transaloid operator T , it can happen that σlre(T )∩E(conv σ(T ))
= ∅. In this case, it is possible that there exists no normal operator N satisfying
T ∼=a T⊕N . In the following we shall give an example of such operator (Example
3.8). This shows that the result of Theorem 3.6 is sharp.

By Lemma 2.9, each hyponormal operator A satisfies We(A) = conv σlre(A).
For transaloid operators, this is not the case. Here is an example.

Example 3.8. Let I be the identity operator on H and set

A =

[
0 I
0 0

]
H
H.

Then σ(A) = σlre(A) = {0} and W (A) = We(A) = {z ∈ C : |z| ≤ 1
2
}. Let N be

the diagonal operator diag{2i,
√

3−i,−
√

3−i} on C3. Set T = A⊕N . It is obvious
that We(T ) = We(A) = W (A) and σlre(T ) = {0}. So We(T ) 6= conv σlre(T ). It
remains to check that T is transaloid.

Since the closed unit disk D− is contained in Γ , conv {2i,
√

3 − i,−
√

3 − i},
we have

‖A− λ‖ ≤ 1 + |λ|
= max{|u− λ| : µ ∈ D−}
≤ max{|u− λ| : µ ∈ Γ}

= max{|2i− λ|, |
√

3− i− λ|, | −
√

3− i− λ|}
= γ(N − λ) = ‖N − λ‖, ∀λ ∈ C.

Then ‖T − λ‖ = ‖N − λ‖ = γ(N − λ) ≤ γ(T − λ). So T is transaloid. �

Proposition 3.9. Let T be the transaloid operator defined in Example 3.8. Then
there exists no normal operator P such that T ∼=a T ⊕ P .

Proof. For a proof by contradiction, we assume that P is a normal operator on
some Hilbert space satisfying T ∼=a T ⊕ P . Thus σ(P ) ⊆ σ(T ⊕ P ) = σ(T ).
Noting that σ(T ) = {0, 2i,

√
3 − i,−

√
3 − i}, we may assume that P = P1 ⊕ P2,

where σ(P1) ⊆ {0} and σ(P2) ⊆ {2i,
√

3 − i,−
√

3 − i}. This is because P is
normal.
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Note that T = N ⊕ A, T ⊕ P = (N ⊕ P2)⊕ (A⊕ P1) and

σ(N) = σ(N ⊕ P2) = {2i,
√

3− i,−
√

3− i}, σ(A) = σ(A⊕ P1) = {0}.

Since T ∼=a T ⊕P , it follows that N ∼=a N ⊕P2 and A ∼=a A⊕P1. Noting that N
acts on a finite-dimensional Hilbert space, one can deduce that P2 is absent and
hence P = P1.

One can observe that the C∗-algebra C∗(A) generated by A is ∗-isomorphic to
M2(C). Thus C∗(A) admits no character on it. However, C∗(A⊕ P1) admits at
least one character on it since P1 is normal. On the other hand, it follows from
A ∼=a A⊕ P1 that C∗(A) is ∗-isomorphic to C∗(A⊕ P1). This is a contradiction,
and we complete the proof. �

Now we are ready to give the proof of Theorem 1.2.

Proof of Theorem 1.2. Denote Γ = σlre(T ) ∩ E(conv σ(T )).
“=⇒”. By Corollary 2.2, σ0(T )∩E(conv σ(T )) is at most denumerable. With-

out loss of generality, we assume that σ0(T ) ∩ E(conv σ(T )) = {λi : i ≥ 1}. By
Corollary 3.4, T can be written as T = N1 ⊕ A, where N1 is a diagonal normal
operator with eigenvalues {λi : i ≥ 1} and σ(A) ⊆ σ(T ).

Choose a normal operator N2 on H with σ(N2) = σe(N2) = Γ. Then, by
Theorem 3.6, T ∼=a T ⊕N2. Set N = N1 ⊕N2. Thus N is normal and

T ∼=a T ⊕N2 = A⊕N1 ⊕N2 = A⊕N.

Since E(conv σ(T )) ⊆ ∂σ(T ), it follows from Lemma 2.1 that E(conv σ(T )) =
Γ ∪ {λi : i ≥ 1}. Then σ(N) = E(conv σ(T )). Now it suffices to prove that
‖A− λ‖ ≤ ‖N − λ‖ for all λ ∈ C.

For λ ∈ C, since N, T are both transaloid, we have

‖A− λ‖ ≤ ‖T − λ‖ = γ(T − λ)

= max{|µ− λ| : µ ∈ σ(T )}
= max{|µ− λ| : µ ∈ E(conv σ(T ))}
= max{|µ− λ| : µ ∈ σ(N)}
= γ(N − λ) = ‖N − λ‖.

“⇐=”. If two operators X, Y are approximately unitarily equivalent, then it is
obvious that σ(X) = σ(Y ) and γ(X) = γ(Y ). For λ ∈ C, since N is transaloid,
we have

‖T − λ‖ ≥ γ(T − λ)

= γ(N ⊕ A− λ)

≥ γ(N − λ)

= ‖N − λ‖
= max{‖N − λ‖, ‖A− λ‖}
= ‖N ⊕ A− λ‖ = ‖T − λ‖,

that is, γ(T − λ) = ‖T − λ‖. So T is transaloid. �
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4. Proofs of Theorems 1.3 and 1.4

Lemma 4.1. Let T ∈ B(H) be p-normaloid. If f is analytic in an open set

containing σ̂(T ), then f(T ) is normaloid; in particular, (T − z)−1 is normaloid

for any z /∈ σ̂(T ).

Proof. Note that C \ σ̂(T ) is connected. By the Runge theorem, there exist

polynomials {pn} converge to f uniformly on a neighborhood of σ̂(T ). Thus, by
[11, Prop. 1.7], pn(T ) → f(T ). Since the set of normaloid operators is closed,
one can deduce that f(T ) is normaloid. �

By the Runge theorem, using a similar argument as above, one can see the
following corollary.

Corollary 4.2. Let T ∈ B(H) be a von Neumann operator. If f is analytic in
an open set containing σ(T ), then f(T ) is normaloid; in particular, (T − z)−1 is
normaloid for any z ∈ C \ σ(T ).

Theorem 4.3. Let T ∈ B(H) be p-normaloid. If N is a normal operator with

its spectrum contained in σlre(T ) ∩ ∂σ̂(T ), then T ∼=a T ⊕N .

Proof. Denote Γ = σlre(T ) ∩ ∂σ̂(T ). By Corollary 3.2, it suffices to prove that
T ∼=a T ⊕ λI for any λ ∈ Γ, where I is the identity operator on H.

Now we fix a λ0 ∈ Γ. Denote by Ω the unbounded component of C \ σ(T ). So

C\Ω = σ̂(T ). Since λ0 ∈ ∂σ̂(T ) = ∂Ω, we can choose {zn}∞n=1 ⊆ Ω such that zn →
λ0. For each n ≥ 1, we can find λn ∈ σ(T ) such that dist(zn, σ(T )) = |zn − λn|.
It is obvious that λn ∈ ∂σ(T ) and λn → λ0 since dist(zn, σ(T )) ≤ |zn − λ0| → 0.

For each n ≥ 1, since zn ∈ Ω = C\σ̂(T ), by Lemma 4.1, (T−zn)−1 is normaloid.
Then

‖(T − zn)−1‖ = γ((T − zn)−1) = max
{ 1

|z − zn|
: z ∈ σ(T )

}
=

1

dist(zn, σ(T ))
=

1

|λn − zn|
.

Note that 1
λn−zn

∈ σ((T − zn)−1) for n ≥ 1.

Case 1. There exist n1 < n2 < n3 < · · · such that λnk
∈ σlre(T ). If this holds,

then 1
λnk

−znk
∈ σlre((T − znk

)−1). Then by Theorem 3.1 we have

(T − znk
)−1 ∼=a (T − znk

)−1 ⊕ (λnk
− znk

)−1I, ∀k ≥ 1.

It follows immediately that T ∼=a T ⊕ λnk
I for all k ≥ 1. Since λnk

→ λ0, one
can see T ∼=a T ⊕ λ0I.

Case 2. There exists m > 0 such that λn /∈ σlre(T ) for n ≥ m. Since λn ∈
∂σ(T ), it follows from Lemma 2.1 that λn ∈ σ0(T ) for n ≥ m. Noting that
‖(T − zn)−1‖ = 1

|λn−zn| , it follows from Corollary 3.5 that ker(T − λn) reduces

T for n ≥ m. Noting that λn → λ0 ∈ σlre(T ), we may directly assume that
{λn : n ≥ m} are pairwise distinct. So T can be written as

T = A⊕ diag{λm, λm+1, λm+2, · · · }.
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In view of the convergence λn → λ0, one can see

λ0 ∈ σlre(diag{λm, λm+1, λm+2, · · · }).

Then, by Lemma 2.11, we have

diag{λm, λm+1, λm+2, · · · } ∼=a diag{λm, λm+1, λm+2, · · · } ⊕ λ0I

and hence

T = A⊕ diag{λm, λm+1, λm+2, · · · }
∼=a A⊕

(
diag{λm, λm+1, λm+2, · · · } ⊕ λ0I

)
∼=

(
A⊕ diag{λm, λm+1, λm+2, · · · }

)
⊕ λ0I

= T ⊕ λ0I.

Thus we complete the proof in either case. �

Using Corollary 4.2 and a similar argument as in the proof of Theorem 4.3, one
can prove the following result. We omit its proof.

Theorem 4.4. Let T ∈ B(H) be a von Neumann operator. If N is a normal
operator with its spectrum contained in σlre(T ) ∩ ∂σ(T ), then T ∼=a T ⊕N .

Now we can give the proof of Theorem 1.3.

Proof of Theorem 1.3. “⇐=”. Since each normal operator is normaloid, for each
polynomial p, we have

‖p(T )‖ = ‖p(N)‖ = γ(p(N)) ≤ γ(p(T )) ≤ ‖p(T )‖.

Thus T is p-normaloid.

“=⇒”. Let Ω = C \ σ̂(T ). It is obvious that ∂Ω = ∂σ̂(T ) ⊆ ∂σ(T ). Set Γ0 =
∂Ω∩ σ0(T ) and Γ1 = ∂Ω∩ σlre(T ). By Lemma 2.1, we have ∂Ω = Γ0 ∪ Γ1. Since
σ0(T ) is at most denumerable, we may directly assume that Γ0 = {λ1, λ2, λ3, · · · }.

For each n ≥ 1, since λn ∈ σ0(T )∩∂Ω, we can find zn ∈ Ω such that |zn−λn| <
dist(zn, σ(T ) \ {λn}). Then

γ((T − zn)−1) = max
{
|(λ− zn)−1| : λ ∈ σ(T )

}
=

1

dist(zn, σ(T ))
=

1

|λn − zn|
.

On the other hand, since T is p-normaloid, it follows from Lemma 4.1 that (T −
zn)−1 is normaloid. Hence

‖(T − zn)−1‖ = γ((T − zn)−1) =
1

|λn − zn|
.

Since λn ∈ σ0(T ), it follows from Corollary 3.5 that ker(T − λn) reduces T . It is
obvious that {λn : n ≥ 1} are pairwise distinct. Then T can be written as

T = A⊕ diag{λ1, λ2, λ3, · · · }. (4.1)
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Choose a normal operator N1 on H with σ(N1) = Γ1. Then, by Theorem 4.3,
we have T ∼=a T ⊕N1. It follows that

T ∼=a T ⊕N1 = A⊕ diag{λ1, λ2, λ3, · · · } ⊕N1.

Set N = diag{λ1, λ2, λ3, · · · }⊕N1. Then N is normal. Since Γ1 ∪{λn : n ≥ 1} =
∂Ω is compact, one can deduce that {λn : n ≥ 1}− ⊆ ∂Ω and

σ(N) = σ(N1) ∪ {λn : n ≥ 1}− = ∂Ω = ∂σ̂(T ).

It remains to check that ‖p(N)‖ ≥ ‖p(A)‖ for each polynomial p. Note that

‖p(A)‖ ≤ ‖p(T )‖ = γ(p(T )) by (4.1)

= max{|p(z)| : z ∈ σ(T )}

≤ max{|p(z)| : z ∈ σ̂(T )} by MMT

= max{|p(z)| : z ∈ ∂σ̂(T )}
= max{|p(z)| : z ∈ σ(N)}
= γ(p(N)) = ‖p(N)‖,

that is, ‖p(A)‖ ≤ ‖p(N)‖. This completes the proof. �

The proof of Theorem 1.4 follows similar lines as that of Theorem 1.3.

Proof of Theorem 1.4. Since each normal operator is a von Neumann operator,
the sufficiency is clear. We need only prove the necessity.

“=⇒”. Set Γ0 = ∂σ(T ) ∩ σ0(T ) and Γ1 = ∂σ(T ) ∩ σlre(T ). By Lemma 2.1,
we have ∂σ(T ) = Γ0 ∪ Γ1. Since σ0(T ) is at most denumerable, without loss of
generality, we assume that Γ0 = {λ1, λ2, λ3, · · · }.

For each n ≥ 1, since λn ∈ σ0(T ), we can find zn ∈ C \ σ(T ) such that
|zn − λn| < dist(zn, σ(T ) \ {λn}). Then

γ((T − zn)−1) = max
{
|(λ− zn)−1| : λ ∈ σ(T )

}
=

1

dist(zn, σ(T ))
=

1

|λn − zn|
.

On the other hand, since T is a von Neumann operator, it follows from Corollary
4.2 that (T − zn)−1 is normaloid and hence

‖(T − zn)−1‖ = γ((T − zn)−1) =
1

|λn − zn|
.

Since λn ∈ σ0(T ), it follows from Corollary 3.5 that ker(T−λn) reduces T . Noting
that {λn : n ≥ 1} are pairwise distinct, T can be written as

T = A⊕ diag{λ1, λ2, λ3, · · · }. (4.2)

Choose a normal operator N1 on H with σ(N1) = Γ1. Then, by Theorem 4.4,
we have T ∼=a T ⊕N1. It follows that

T ∼=a T ⊕N1 = A⊕ diag{λ1, λ2, λ3, · · · } ⊕N1.
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Set N = diag{λ1, λ2, λ3, · · · } ⊕N1. Then N is normal and

σ(N) = σ(N1) ∪ {λn : n ≥ 1} = ∂σ(T ).

It remains to check that ‖f(N)‖ ≥ ‖f(A)‖ for each rational function f with poles
off σ(T ). Note that

‖f(A)‖ ≤ ‖f(T )‖ = γ(f(T )) by (4.2)

= max{|f(z)| : z ∈ σ(T )} by MMT

= max{|f(z)| : z ∈ ∂σ(T )}
= max{|f(z)| : z ∈ σ(N)}
= γ(f(N)) = ‖f(N)‖,

that is, ‖f(A)‖ ≤ ‖f(N)‖. This completes the proof. �

Example 4.5. Let A ∈ B(H). Using A, we shall construct several normaloid
operators. Denote r = ‖A‖. Set N1 = r ∈ B(C) and N2 = diag{2ri, (

√
3 −

i)r,−(
√

3 + i)r} ∈ B(C3). Let N3 be a normal operator with σ(N3) = {z ∈ C :
|z| = r} and N4 be a normal operator with σ(N4) = {z ∈ C : |z| ≤ r}.

For 1 ≤ i ≤ 4, set Ti = A⊕Ni. Compute to see that ‖N1‖ = r = ‖A‖ and

‖A− λ‖ ≤ ‖A‖+ |λ| = r + |λ|
= max{|λ− z| : |z| = r}

≤ max{|λ− 2ri|, |λ− (
√

3− i)r|, |λ + (
√

3 + i)r|}
= γ(N2 − λ) = ‖N2 − λ‖, ∀λ ∈ C.

By Theorems 1.1 and 1.2, T1 is normaloid and T2 is transaloid.
For each polynomial p, using the von Neumann inequality ([16]), we have

‖p(A)‖ ≤ max{|p(z)| : |z| ≤ r}
= max{|p(z)| : |z| = r}
= γ(p(N3)) = ‖p(N3)‖.

By Theorem 1.3, T3 is p-normaloid.
Note that σ(T4) = {z ∈ C : |z| ≤ r}. For each rational function f with poles

off σ(T4), using the von Neumann inequality again, we have

‖f(A)‖ ≤ max{|f(z)| : |z| ≤ r}
= γ(f(N4)) = ‖f(N4)‖.

By Theorem 1.4, T4 is a von Neumann operator. �

Note that the above-mentioned operator A can be arbitrary. Thus one can
construct various normaloid operators with prescribed properties.

The rest of this section is devoted to describing when a unilateral weighted
shift is a von Neumann operator.

Theorem 4.6. Let T ∈ B(H) be a unilateral weighted shift with weights {wi}∞i=1.
Then the following are equivalent:

(i) T is normaloid;
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(ii) T is transaloid;
(iii) T is p-normaloid;
(iv) T is a von Neumann operator;
(v) supn≥1 |wn| = limk supi≥0 |wi+1wi+2 · · ·wi+k|1/k.

Proof. Since “(iv)=⇒(iii)=⇒(ii)=⇒(i)⇐⇒(v)” are obvious, we need only prove
that “(i)=⇒(iv)”.

Assume that T is normaloid. Then γ(T ) = ‖T‖. Since the spectrum of each
weighted shift has circular symmetry, it follows from [11, Thm. 3.40] that σ(T ) =
{z ∈ C : |z| ≤ ‖T‖}. In view of Lemma 2.1, one can deduce that ∂σ(T ) = {z ∈
C : |z| = ‖T‖} ⊆ σlre(T ). Choose a normal operator N on H with σ(N) = {z ∈
C : |z| = ‖T‖}. Then σ(N) ⊆ σlre(T ) and, by Theorem 3.1, we have T ∼=a T ⊕N .

Given a rational function f with poles off σ(T ), it follows from the von Neu-
mann inequality that

‖f(T )‖ ≤ max{|f(z)| : |z| ≤ ‖T‖}
= max{|f(z)| : |z| = ‖T‖}
= γ(f(N)) = ‖f(N)‖.

By Theorem 1.4, T is a von Neumann operator. �

From the above proof, one can see the following result.

Corollary 4.7. Let T ∈ B(H). If σ(T ) = {z ∈ C : |z| ≤ δ} for some δ ≥ 0, then
T is normaloid if and only if T is a von Neumann operator.

5. Proofs of Theorems 1.7 and 1.9

We first give an auxiliary result.

Proposition 5.1. Let T ∈ B(H) be normal. Then, given ε > 0, there exists
K ∈ K(H) with ‖K‖ < ε such that T + K is normal and

W (T )− ⊆ W (T + K) = conv σ(T + K).

Proof. Fix an ε > 0. Let Γ = E(conv σlre(T )). It is obvious that Γ ⊆ σlre(T ) is a
nonempty compact set. For given ε > 0, we can find a1, a2, · · · , an ∈ Γ such that

Γ ⊆
n⋃

i=1

B(ai,
ε

3
).

For each 1 ≤ i ≤ n, we can choose complex numbers µ3i, µ3i−1, µ3i−2 with

|ai − µ3i| = |ai − µ3i−1| = |ai − µ3i−2| =
2ε

3

such that B(ai,
ε
3
) ⊆ conv {µ3i, µ3i−1, µ3i−2}. For 1 ≤ i ≤ n, set λ3i = λ3i−1 =

λ3i−2 = ai.
Since each λi lies in σlre(T ), it follows from Lemma 2.11 that

T ∼=a T ⊕ diag{λ1, λ2, · · · , λ3n}.
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Then, by [11, Prop. 4.21 (iv)], there exists K1 ∈ K(H) with ‖K1‖ < ε
3

such that

T + K1
∼=


λ1

. . .
λ3n

T


e1
...

e3n

H

,

where {ei : 1 ≤ i ≤ 3n} is an orthonormal basis of C3n. Note that |λi − µi| = 2ε
3

for each 1 ≤ i ≤ 3n. There exists K2 ∈ K(H) with ‖K2‖ = 2ε
3

such that

T + K1 + K2
∼=


µ1

. . .
µ3n

T

 , R.

Set K = K1+K2. Then K ∈ K(H) and ‖K‖ < ε. Also R ∼= T +K are normal and
W (T ) ⊆ W (R) = W (T + K). So it remains to check that conv σ(R) = W (R).
Since R is still normal, by Lemma 2.8, we have W (R)− = conv σ(R). So it suffices
to prove W (R) = W (R)−. By Theorem 2.5, we need only check We(R) ⊆ W (R).

By Lemmas 2.9 and 2.10, we have

We(R) = We(T ) = conv σlre(T ) = conv Γ

⊆ conv
(
∪n

i=1 B(ai,
ε

3
)
)

⊆ conv {µi : 1 ≤ i ≤ 3n}
⊆ W (R).

This completes the proof. �

Now we are going to give the proofs of Theorems 1.7 and 1.9.

Proof of Theorem 1.7. By Theorem 1.2, T is approximately unitarily equivalent
to an operator with the form N ⊕ A, where N is normal and

‖A− λ‖ ≤ ‖N − λ‖, ∀λ ∈ C. (5.1)

Without loss of generality, we may directly assume that T = N ⊕ A, where
N ∈ B(H1), A ∈ B(H2) and H = H1 ⊕H2.

Claim. W (A) ⊆ W (N)−.
In fact, if not, then, by the convexity of W (N)− and W (A), we can find some

λ ∈ C such that

sup{|µ− λ| : µ ∈ W (A)} > sup{|µ− λ| : µ ∈ W (N)−},

that is, ‖A − λ‖ ≥ w(A − λ) > w(N − λ) = ‖N − λ‖. This contradicts the
hypothesis. So we have proved the claim.

By Proposition 5.1, for any ε > 0, we can choose a compact operator K1 on
H1 with ‖K1‖ < ε such that N + K1 is normal and

W (N)− ⊆ W (N + K1) = conv σ(N + K1). (5.2)
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Set

K =

[
K1 0
0 0

]
H1

H2
.

Then K ∈ K(H), ‖K‖ < ε and

T + K =

[
N + K1 0

0 A

]
H1

H2
.

In view of Claim and (5.2), we obtain

W (T + K) = conv (W (N + K1) ∪W (A))

= W (N + K1)

= conv σ(N + K1)

⊆ conv σ(T + K).

So W (T + K) is closed. By [9, Prob. 214], conv σ(T + K) ⊆ W (T + K)−. Hence
conv σ(T + K) = W (T + K).

Now fix a λ ∈ C. Since N + K1 is normal, it follows from Lemma 2.8 that
w(N + K1 − λ) = ‖N + K1 − λ‖. Thus

‖A− λ‖ ≤ ‖N − λ‖ by (5.1)

= w(N − λ) by (5.2)

≤ w(N + K1 − λ)

= ‖N + K1 − λ‖.
Noting that N+K1 is normal, it follows from Theorem 1.2 that T+K is transaloid.
This completes the proof. �

Proof of Theorem 1.9. Denote Γ = E(conv σ(T )). Then Γ ⊆ ∂σ(T ).
“=⇒”. Suppose that B ∈ B(H) satisfies B ∼=a T and W (B) = W (B)−. Since

T is transaloid, B ∼=a T implies that B is transaloid and σ(B) = σ(T ). Then
Γ = E(conv σ(B)) and it follows from Lemma 2.8 that conv σ(B) = W (B).

We claim that each λ ∈ Γ is an eigenvalue of B and ker(B − λ) reduces B.
Assuming this claim, it follows that ker(B − λ1) is orthogonal to ker(B − λ2)
for distinct λ1, λ2 ∈ Γ. Since H is separable, one can see that Γ is at most
denumerable.

Fix a λ ∈ Γ. Then λ ∈ σ(B) ⊆ W (B). Noting that λ is an extreme point of
conv σ(B), there exists µ ∈ C such that

|λ− µ| = max{|z − µ| : z ∈ σ(B)}.
That is, |λ − µ| = γ(B − µ). Since B is transaloid, we have |λ − µ| = ‖B − µ‖.
Noting that λ−µ ∈ W (B−µ), it follows from Lemma 3.3 that λ−µ ∈ σp(B−µ)
and ker(B − λ) reduces B − λ. That is, λ ∈ σp(B) and ker(B − λ) reduces B.
This proves the necessity.

“⇐=”. Since ∂σ(T ) ⊆ σ0(T ) ∪ σlre(T ) and Γ is at most denumerable, without
loss of generality, we may assume that

Γ ∩ σ0(T ) = {αi : i ≥ 1}, Γ ∩ σlre(T ) = {βi : i ≥ 1}.
So Γ = {αi, βi : i ≥ 1}.
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By Corollary 3.4, T can be written as

T = diag{α1, α2, α3, · · · } ⊕ A.

It is obvious that σ(A) ⊆ σ(T ).
On the other hand, since each βi lies in σlre(T )∩E(conv σ(T )), it follows from

Theorem 3.6 that

T ∼=a T ⊕ diag{β1, β2, β3, · · · }
= A⊕ diag{α1, α2, α3, · · · } ⊕ diag{β1, β2, β3, · · · } , C.

Now it remains to check that W (C) = W (C)−.
Note that C is transaloid. Then, by Lemma 2.8, we have

W (C)− = conv σ(C)

= conv σ(T ) since T ∼=a C

= conv Γ

= conv {αi, βi : i ≥ 1}
⊆ W (C). since αi, βi ∈ σp(C)

This completes the proof. �
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