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Abstract. In several works, the theory of strongly continuous groups is used
to build a framework for solving random homogenization problems. Following
this idea, we present a detailed and comprehensive framework enabling one
to solve homogenization problems in algebras with mean value, regardless of
whether they are ergodic or not. We also state and prove a compactness result
for Young measures in these algebras. As an important achievement we study
the homogenization problem associated with a stochastic Ladyzhenskaya model
for incompressible viscous flow, and we present and solve a few examples of
homogenization problems related to nonergodic algebras.

1. Introduction

The theory of strongly continuous N -parameter groups of operators is a very
important tool in solving partial differential equations (PDEs). In [45] (see also
[10]), it is used to solve PDEs in spaces of almost periodic functions. In the
random homogenization theory, one constructs through a dynamical system, a
strongly continuous N -parameters group. One then uses its infinitesimal genera-
tors to build up a framework for solving random homogenization problems. We
refer, e.g., to the works [13, 25, 50] (see also [36]) for an exposition of this idea.

Given an algebra with mean value, the uniform continuity property of its ele-
ments allows the construction [on the generalized Besicovitch spaces associated
to this algebra] of a strongly continuous N -parameters group. We therefore rely
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on the properties of this group to construct as in the random case, a comprehen-
sive and detailed framework for solving deterministic homogenization problems as
well as homogenization problems related to stochastic partial differential equa-
tions (SPDEs). The results obtained generalize the already existing ones, and
provide more clarity and conciseness to the latter. It is very important to precise
that some of these results have already been presented in some of our earlier works
without clear justification. One very important achievement will be to work out
the homogenization problems related to a stochastic Ladyzhenskaya model for
incompressible non-Newtonian fluid, without help of any ergodicity assumption.

For the sake of clarity, let us state two of our main results. The first one deals
with Young measures in algebras with mean value. It reads as.

Theorem 1.1. Let Q be an open bounded subset of RN . Let 1 ≤ p < ∞, and
let A be an algebra with mean value on RN

y . Finally let (uε)ε∈E be a bounded
sequence in Lp(Q; Rm). There exist a subsequence E ′ from E and a family ν =
(νx,s)x∈Q,s∈∆(A) ∈ L∞(Q×∆(A);P(Rm)) such that, as E ′ 3 ε→ 0,∫

Q

Φ

(
x,
x

ε1

, uε(x)

)
dx→

∫
Q

∫
∆(A)

∫
Rm

Φ̂(x, s, λ)dνx,s(λ)dβ(s)dx

for all Φ ∈ Ep, where Ep stands for the space of continuous functions Φ : Q ×
RN ×Rm → R belonging to C(Q×Rm;A) and for which the limit lim|λ|→∞

Φ(x,y,λ)
1+|λ|p

exists uniformly in (x, y) ∈ Q× RN .

The approach used to prove the previous result is based on a result by Valadier
[43] regarding the disintegration of measures.

The next one is an application to homogenization of the so-called sigma-
convergence for stochastic processes’ concept.

Theorem 1.2. Assume p ≥ 3. For each ε > 0 let uε be the unique solution of
the following stochastic PDE:{

duε + (P εuε +Aεuε +B(uε))dt = fdt+ gε(uε)dW, 0 < t < T
uε(0) = u0.

Under assumption (6.26) (see Section 6), the sequence (uε)ε>0 converges in prob-
ability to u0 in L2(QT ) where u0 is the unique strong probabilistic solution of the
following problem:{

du0 + [− div (m∇u0 −M(∇u0)) +B(u0)]dt = fdt+ g̃(u0)dW
u0(0) = u0.

In view of the above result, one might be tempted to believe that the homog-
enization process for SPDEs is summarized in the homogenization of its deter-
ministic part, added to the average of its stochastic part. This is far to be true
in general. Indeed, one can obtain after passing to the limit, a homogenized
equation of a type completely different from that of the initial problem; see e.g.,
[47].

The paper is organized as follows. In Section 2 we give the key tools which
will be used in the following sections, namely we apply the semigroup theory
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to the generalized Besicovitch spaces. Section 3 is devoted to the concept of Σ-
convergence. In Section 4 we prove Theorem 1.1 and we give some of its important
corollaries. Finally, Sections 5 and 6 are devoted to the applications of the results
of the earlier sections to homogenization theory.

In the sequel, unless otherwise specified, the field of scalars acting on vector
spaces is the set of complex numbers and scalar functions are complex-valued.

Finally, let us precise that the present work is a clean version of a more
detailed version which has been posted in ArXiv under the reference ”arXiv:
1207.5397v1”.

2. The semigroup theory applied to the generalized Besicovitch
spaces

2.1. Preliminaries. Let A be an algebra with mean value (algebra wmv, in
short) on RN [25, 14, 35, 52], that is, A is a closed subalgebra of the C*-algebra of
bounded uniformly continuous functions BUC(RN) which contains the constants,
is closed under complex conjugation (u ∈ A whenever u ∈ A), is translation
invariant (u(· + a) ∈ A for any u ∈ A and each a ∈ RN) and is such that each
element possesses a mean value in the following sense:

(MV ) For each u ∈ A, the sequence (uε)ε>0 (where uε(x) = u(x/ε1), x ∈ RN)
weakly ∗-converges in L∞(RN) to some constant function M(u) ∈ C (the
complex field) as ε→ 0, ε1 = ε1(ε) being a positive function of ε tending
to zero with ε.

It is known that A (endowed with the sup norm topology) is a commutative
C*-algebra with identity. We denote by ∆(A) the spectrum of A and by G the
Gelfand transformation on A. We recall that ∆(A) (a subset of the topological
dual A′ of A) is the set of all nonzero multiplicative linear functionals on A, and G
is the mapping of A into C(∆(A)) such that G(u)(s) = 〈s, u〉 (s ∈ ∆(A)), where
〈, 〉 denotes the duality pairing between A′ and A. We endow ∆(A) with the
relative weak∗ topology on A′. Then using the well-known theorem of Stone (see
e.g., either [26] or more precisely [19, Theorem IV.6.18, p. 274]) one can easily
show that the spectrum ∆(A) is a compact topological space, and the Gelfand
transformation G is an isometric ∗-isomorphism identifying A with C(∆(A)) (the
continuous functions on ∆(A)) as C*-algebras. Next, since each element of A
possesses a mean value, this yields an application u 7→ M(u) (denoted by M
and called the mean value) which is a nonnegative continuous linear functional
on A with M(1) = 1, and so provides us with a linear nonnegative functional
ψ 7→M1(ψ) = M(G−1(ψ)) defined on C(∆(A)) = G(A), which is clearly bounded.
Therefore, by the Riesz–Markov theorem, M1(ψ) is representable by integration
with respect to some Radon measure β (of total mass 1) in ∆(A), called the
M-measure for A [28]. It is evident that we have

M(u) =

∫
∆(A)

G(u)dβ for u ∈ A.

Next, to any algebra with mean value A are associated the following subspaces:
Am = {ψ ∈ Cm(RN) : Dα

yψ ∈ A for every α = (α1, · · · , αN) ∈ NN with |α| ≤
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m} (where Dα
yψ = ∂|α|ψ/∂yα1

1 · · · ∂yαN
N ). Endowed with the norm ‖|u|‖m =

sup|α|≤m
∥∥Dα

yψ
∥∥
∞, Am is a Banach space. We also define the space A∞ as the

space of ψ ∈ C∞(RN
y ) such that Dα

yψ ∈ A for every α = (α1, · · · , αN) ∈ NN .
Endowed with a suitable locally convex topology defined by the family of norms
‖|·|‖m, A∞ is a Fréchet space.

Let Bp
A (1 ≤ p <∞) denote the Besicovitch space associated to A, that is the

closure of A with respect to the Besicovitch seminorm

‖u‖p =

(
lim sup
r→+∞

1

|Br|

∫
Br

|u(y)|p dy
)1/p

.

It is known that Bp
A is a complete seminormed vector space verifying Bq

A ⊂ Bp
A

for 1 ≤ p ≤ q < ∞. From this last property one may naturally define the space
B∞
A as follows:

B∞
A = {f ∈ ∩1≤p<∞B

p
A : sup

1≤p<∞
‖f‖p <∞}.

We endow B∞
A with the seminorm [f ]∞ = sup1≤p<∞ ‖f‖p, which makes it a

complete seminormed space. We recall that the spaces Bp
A (1 ≤ p ≤ ∞) are not

in general Fréchet spaces since they are not separated in general. The following
properties are worth noticing (see e.g. [31, Section 2] or [35, Section 2]):

(1) The Gelfand transformation G : A → C(∆(A)) extends by continuity
to a unique continuous linear mapping, still denoted by G, of Bp

A into
Lp(∆(A)), which in turn induces an isometric isomorphism G1, of Bp

A/N =
BpA onto Lp(∆(A)) (where N = {u ∈ Bp

A : G(u) = 0}). Furthermore if u ∈
Bp
A ∩ L∞(RN) then G(u) ∈ L∞(∆(A)) and ‖G(u)‖L∞(∆(A)) ≤ ‖u‖L∞(RN ).

(2) The mean value M viewed as defined on A, extends by continuity to
a positive continuous linear form (still denoted by M) on Bp

A satisfying
M(u) =

∫
∆(A)

G(u)dβ (u ∈ Bp
A). Furthermore, M(τau) = M(u) for each

u ∈ Bp
A and all a ∈ RN , where τau(z) = u(z + a) for almost all z ∈ RN .

Moreover for u ∈ Bp
A we have ‖u‖p = [M(|u|p)]1/p.

2.2. The semigroup theory. Let 1 ≤ p ≤ ∞. We consider the N -parameter
group of isometries {T (y) : y ∈ RN} defined by

T (y) : BpA → BpA, T (y)(u+N ) = τyu+N for u ∈ Bp
A.

Since the elements of A are uniformly continuous, {T (y) : y ∈ RN} is a strongly
continuous group of operators in L(BpA,B

p
A) (the Banach space of continuous linear

functionals of BpA into BpA) in the sense of semigroups: T (y)(u + N ) → u + N
in BpA as |y| → 0. To {T (y) : y ∈ RN} is associated the following N -parameter
group {T (y) : y ∈ RN} defined as

T (y) : Lp(∆(A)) → Lp(∆(A))
T (y)G1(u+N ) = G1(T (y)(u+N )) = G1(τyu+N ) for u ∈ Bp

A.

The group {T (y) : y ∈ RN} is also strongly continuous. The infinitesimal gen-
erator of T (y) (resp. T (y)) along the ith coordinate direction, denoted by Di,p

(resp. ∂i,p), is defined as Di,pu = limt→0 t
−1 (T (tei)u− u) in BpA (resp. ∂i,pv =
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limt→0 t
−1
(
T (tei)v − v

)
in Lp(∆(A))), where here we have used the same letter

u to denote the equivalence class of an element u ∈ Bp
A in BpA, ei = (δij)1≤j≤N (δij

being the Kronecker δ). The domain of Di,p (resp. ∂i,p) in BpA (resp. Lp(∆(A))) is
denoted byDi,p (resp. Wi,p). By using the general theory of semigroups [19, Chap.
VIII, Section 1], we easily see that the set Di,p (resp. Wi,p) is a vector subspace of
BpA (resp. Lp(∆(A))). Moreover Di,p : Di,p → BpA (resp. ∂i,p : Wi,p → Lp(∆(A)))
is a linear operator, Di,p (resp. Wi,p) is dense in BpA (resp. Lp(∆(A))), and the
graph of Di,p (resp. ∂i,p) is closed in BpA × B

p
A (resp. Lp(∆(A))× Lp(∆(A))).

In the sequel we denote by % the canonical mapping of Bp
A onto BpA, that is,

%(u) = u +N for u ∈ Bp
A. This being so, it is a fact that, for any 1 ≤ i ≤ N , if

u ∈ A1 then %(u) ∈ Di,p and

Di,p%(u) = %

(
∂u

∂yi

)
. (2.1)

From (2.1) we deduce that Di,p ◦ % = % ◦ ∂/∂yi, which means that Di,p is a
generalization of the usual partial derivative.

One can naturally define higher order derivatives by settingDα
p = Dα1

1,p◦···◦D
αN
N,p

(resp. ∂αp = ∂α1
1,p◦· · ·◦∂

αN
N,p) for α = (α1, · · · , αN) ∈ NN with Dαi

i,p = Di,p◦· · ·◦Di,p,
αi-times. Now, let

B1,p
A = ∩Ni=1Di,p = {u ∈ BpA : Di,pu ∈ BpA ∀1 ≤ i ≤ N}

and

DA(RN) = {u ∈ B∞A : Dα
∞u ∈ B∞A ∀α ∈ NN}.

It can be shown that DA(RN) is dense in BpA, 1 ≤ p <∞. We also have that B1,p
A

is a Banach space under the norm

‖u‖B1,p
A

=

(
‖u‖pp +

N∑
i=1

‖Di,pu‖pp

)1/p

(u ∈ B1,p
A );

this comes from the fact that the graph of Di,p is closed.
The counter-part of the above properties also holds with

W 1,p(∆(A)) = ∩Ni=1Wi,p in place of B1,p
A

and

D(∆(A)) = {u ∈ L∞(∆(A)) : ∂α∞u ∈ L∞(∆(A)) ∀α ∈ NN} in that of DA(RN).

We have the following relation between Di,p and ∂i,p.

Lemma 2.1. Let u ∈ Di,p. Then G1(u) ∈ Wi,p and G1(Di,pu) = ∂i,pG1(u).

Proof. We have∥∥t−1(T (tei)u− u)−Di,pu
∥∥
p

=
∥∥G1(t

−1(T (tei)u− u))− G1(Di,pu)
∥∥
Lp(∆(A))

=
∥∥t−1(G1(T (tei)u)− G1(u))− G1(Di,pu)

∥∥
Lp(∆(A))

=
∥∥t−1(T (tei)G1(u)− G1(u))− G1(Di,pu)

∥∥
Lp(∆(A))

.
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Since u ∈ Di,p we have ‖t−1(T (tei)u− u)−Di,pu‖p → 0 as t→ 0. Therefore∥∥t−1(T (tei)G1(u)− G1(u))− G1(Di,pu)
∥∥
Lp(∆(A))

→ 0 as t→ 0,

so that G1(u) ∈ Wi,p with ∂i,pG1(u) = G1(Di,pu). �

Let u ∈ Di,p (p ≥ 1, 1 ≤ i ≤ N). Then we easily see that Di,1u = Di,pu,
so that Di,p is the restriction to BpAP (RN) of Di,1. Therefore, for all u ∈ Di,∞
we have u ∈ Di,p (p ≥ 1) and Di,∞u = Di,pu ∀1 ≤ i ≤ N . We also have that
DAP (RN) = %(AP∞(RN)) (see [32, Lemma 2]). The following properties also
hold true:

(i)
∫

∆(A)
∂α∞ûdβ = 0 for all u ∈ DA(RN) and α ∈ NN ;

(ii)
∫

∆(A)
∂i,pûdβ = 0 for all u ∈ Di,p and 1 ≤ i ≤ N ;

(iii) Di,p(uφ) = uDi,∞φ+φDi,pu for all (φ, u) ∈ DA(RN)×Di,p and 1 ≤ i ≤ N .

It emerges from (iii) above that∫
∆(A)

φ̂∂i,pûdβ = −
∫

∆(A)

û∂i,∞φ̂dβ ∀(u, φ) ∈ Di,p ×DA(RN).

This suggests us to define the concept weak derivatives of continuous linear func-
tionals defined on A. Before we can do that, let us endow DA(RN) = %(A∞) with
its natural topology defined by the family of norms

Nn(u) = sup
|α|≤n

sup
y∈RN

|Dα
∞u(y)| , n ∈ N.

In this topology, DA(RN) is a Fréchet space. We denote by D′A(RN) the topo-
logical dual of DA(RN). We endow it with the strong dual topology. One can
now define the weak derivative of f ∈ D′A(RN) as follows: for any α ∈ NN , Dαf
stands for the generalized derivative of order α of f defined by the formula

〈Dαf, φ〉 = (−1)|α| 〈f,Dα
∞φ〉 for all φ ∈ DA(RN).

Since DA(RN) is dense in BpA (1 ≤ p < ∞), it is immediate that BpA ⊂ D′A(RN)
with continuous embedding, so that one may define the weak derivative of any
f ∈ BpA, and it verifies the following functional equation:

〈Dαf, φ〉 = (−1)|α|
∫

∆(A)

f̂∂α∞φ̂dβ for all φ ∈ DA(RN).

In particular, for f ∈ Di,p we have

−
∫

∆(A)

f̂∂i,pφ̂dβ =

∫
∆(A)

φ̂∂i,pf̂dβ ∀φ ∈ DA(RN),

so that we may identify Di,pf with Dαif , αi = (δij)1≤j≤N , δij the Kronecker
delta. Conversely, if f ∈ BpA is such that there exists fi ∈ BpA with 〈Dαif, φ〉 =

−
∫

∆(A)
f̂iφ̂dβ for all φ ∈ DA(RN), then f ∈ Di,p and Di,pf = fi.

Now, in order to deal with the homogenization theory, we need to define the
space of correctors. Before we can do this, however, we need some further notions.

A function f ∈ B1
A is said to be invariant if for any y ∈ RN , T (y)f = f . It is

immediate that the above notion of invariance is the well-known one relative to
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dynamical systems. An algebra with mean value will therefore said to be ergodic
if every invariant function f is constant in B1

A. As in [13, Lemma 2.3 (a)] one
can show that f ∈ B1

A is invariant if and only if Di,1f = 0 for all 1 ≤ i ≤ N . We
denote by IpA the set of f ∈ B1

A that are invariant. The set IpA is a closed vector
subspace of BpA satisfying the following property:

f ∈ IpA if and only if Di,pf = 0 for all 1 ≤ i ≤ N . (2.2)

The above property is due to the fact that Di,p is the restriction to BpA of Di,1.
So the mapping

u 7→ ‖u‖#,p :=

(
N∑
i=1

‖Di,pu‖pp

)1/p

considered as defined on DA(RN), is a norm on the subspace DA(RN)/IpA of
DA(RN) consisting of functions u ∈ DA(RN) that agree on IpA. Unfortunately,
under this norm, DA(RN)/IpA is a normed vector space which is in general not

complete. We denote by B1,p
#A its completion with respect to ‖·‖#,p. Moreover, as

DA(RN) is dense in B1,p
A and further ‖u‖#,p = 0 if and only if u ∈ IpA, we have

that B1,p
#A is also the completion of B1,p

A /IpA with respect to ‖·‖#,p. We denote by

Jp the canonical embedding of B1,p
A /IpA into its completion B1,p

#A (which allows us

to viewed B1,p
A /IpA as a subspace of B1,p

#A). The following properties are due to the
theory of completion of uniform spaces (see [12, Chap. II]):

(P1) The gradient operator Dp = (D1,p, · · · , DN,p) : DA(RN)/IpA → (BpA)N

extends by continuity to a unique mapping Dp : B1,p
#A → (BpA)N with the

properties
Di,p = Di,p ◦ Jp

and

‖u‖#,p =

(
N∑
i=1

∥∥Di,pu
∥∥p
p

)1/p

for u ∈ B1,p
#A.

(P2) The space DA(RN)/IpA (and hence B1,p
A /IpA) is dense in B1,p

#A: in fact by

the embedding Jp, DA(RN)/IpA is viewed as a subspace of B1,p
#A (as said

above), and by the theory of completion, Jp(DA(RN)/IpA) ≡ DA(RN)/IpA
is dense in B1,p

#A.

Moreover the mapping Dp is an isometric embedding of B1,p
#A onto a closed sub-

space of (BpA)N , so that B1,p
#A is a reflexive Banach space. By duality we define

the divergence operator divp′ : (Bp
′

A )N → (B1,p
#A)′ (p′ = p/(p− 1)) by

〈divp′ u, v〉 = −
〈
u,Dpv

〉
for v ∈ B1,p

#A and u = (ui) ∈ (Bp
′

A )N , (2.3)

where
〈
u,Dpv

〉
=
∑N

i=1

∫
∆(A)

ûi∂i,pv̂dβ. The operator divp′ just defined extends

the natural divergence operator defined in DA(RN) since Di,pf = Di,p(Jpf) for

all f ∈ DA(RN) where here, we write f under the form f = (f − f) + f with
f ∈ IpA and we know that in that case, Di,pf = Di,p(f − f), so that Di,p(Jpf) =

Di,p(Jp(f − f)).
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Now if in (2.3) we take u = Dp′w with w ∈ Bp
′

A being such that Dp′w ∈ (Bp
′

A )N

then this allows us to define the Laplacian operator on Bp
′

A , denoted here by ∆p′ ,
as follows:

〈∆p′w, v〉 = 〈divp′(Dp′w), v〉 = −
〈
Dp′w,Dpv

〉
for all v ∈ B1,p

#A.

If in addition v = Jp(φ) with φ ∈ DA(RN)/IpA then 〈∆p′w, Jp(φ)〉 = −〈Dp′w,Dpφ〉,
so that, for p = 2, we get

〈∆2w, J2(φ)〉 = 〈w,∆2φ〉 for all w ∈ B2
A and φ ∈ DA(RN)/I2

A. (2.4)

Remark 2.2. If the algebra A is ergodic, then the space B1,p
#A is just the one defined

in [31, 35] as the completion of B1,p
A /C = {u ∈ B1,p

A : M(u) = 0} with respect to
‖·‖#,p. Indeed in that case the elements of IpA are constant functions.

We end this subsection with some notations. Let f ∈ BpA. We know that Dαif
exists (in the weak sense) and that Dαif = Di,pf if f ∈ Di,p. So we can drop

the subscript p and therefore denote Di,p (resp. ∂i,p) by ∂/∂yi (resp. ∂i). Thus,

Dy will stand for the gradient operator (∂/∂yi)1≤i≤N and divy for the divergence

operator divp. We will also denote the operator Di,p by ∂/∂yi, and the canonical
mapping Jp will be merely denote by J , so that in property (P1), we will have

∂

∂yi
=

∂

∂yi
◦ J (in the above notations). (2.5)

This will lead to the notation Dp = (∂/∂yi)1≤i≤N . Finally, we will denote the
Laplacian operator on BpA by ∆y.

3. The Σ-convergence

This section deals with two concepts of Σ-convergence: the usual one [28] which
is revisited, and its generalization to stochastic processes.

3.1. The Σ-convergence revisited. In all that follows Q is an open subset of
RN (integer N ≥ 1) and A is an algebra wmv on RN

y . The notations are the one
of the preceding section.

Definition 3.1. A sequence (uε)ε>0 ⊂ Lp(Q) (1 ≤ p <∞) is said to:

(1) weakly Σ-converge in Lp(Q) to some u0 ∈ Lp(Q;BpA) if as ε→ 0, we have∫
Q

uε(x)f

(
x,
x

ε1

)
dx→

∫∫
Q×∆(A)

û0(x, s)f̂(x, s)dxdβ (3.1)

for every f ∈ Lp
′
(Q;A) (1/p′ = 1 − 1/p), where û0 = G1 ◦ u0 and f̂ =

G1 ◦ (% ◦ f) = G ◦ f . We express this by writing uε → u0 in Lp(Q)-weak Σ;
(2) strongly Σ-converge in Lp(Q) to some u0 ∈ Lp(Q;BpA) if it is weakly Σ-

convergent towards u0 and further satisfies the following condition:

‖uε‖Lp(Q) → ‖û0‖Lp(Q×∆(A)) . (3.2)

We denote this by uε → u0 in Lp(Q)-strong Σ.
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Throughout the paper the letter E will denote any ordinary sequence E = (εn)
(integers n ≥ 0) with 0 < εn ≤ 1 and εn → 0 as n → ∞. Such a sequence will
be termed a fundamental sequence. The following result is proved exactly as its
homologue in [31, Theorem 3.1].

Theorem 3.2. Any bounded sequence (uε)ε∈E in Lp(Q) (where E is a fundamen-
tal sequence and 1 < p <∞) admits a subsequence which is weakly Σ-convergent
in Lp(Q).

The next result can be proven as in [14, Theorem 4.10].

Theorem 3.3. Any uniformly integrable sequence (uε)ε∈E in L1(Q) admits a
subsequence which is weakly Σ-convergent in L1(Q).

We recall that a sequence (uε)ε>0 in L1(Q) is said to be uniformly integrable
if (uε)ε>0 is bounded in L1(Q) and further supε>0

∫
X
|uε| dx → 0 as |X| → 0 (X

being an integrable set in Q with |X| denoting the Lebesgue measure of X).

Remark 3.4. (1) By the above definition, the uniqueness of the limit of such a
sequence is ensured. (2) By [28] it is immediate that for any u ∈ Lp(Q;A), the
sequence (uε)ε>0 is strongly Σ-convergent to %(u).

The next result will be of capital interest in the homogenization process.

Theorem 3.5 ([37, Theorem 6]). Let 1 < p, q < ∞ and r ≥ 1 be such that
1/r = 1/p+ 1/q ≤ 1. Assume (uε)ε∈E ⊂ Lq(Q) is weakly Σ-convergent in Lq(Q)
to some u0 ∈ Lq(Q;BqA), and (vε)ε∈E ⊂ Lp(Q) is strongly Σ-convergent in Lp(Q)
to some v0 ∈ Lp(Q;BpA). Then the sequence (uεvε)ε∈E is weakly Σ-convergent in
Lr(Q) to u0v0.

The following result will be of great interest in practise. It is a mere consequence
of the preceding theorem.

Corollary 3.6. Let (uε)ε∈E ⊂ Lp(Q) and (vε)ε∈E ⊂ Lp
′
(Q)∩L∞(Q) (1 < p <∞

and p′ = p/(p− 1)) be two sequences such that:

(i) uε → u0 in Lp(Q)-weak Σ;
(ii) vε → v0 in Lp

′
(Q)-strong Σ;

(iii) (vε)ε∈E is bounded in L∞(Q).

Then uεvε → u0v0 in Lp(Q)-weak Σ.

The next result gives the characterization of the Σ-limit of sequences involving
gradients.

Theorem 3.7 ([18, Theorem 3.3]). Let 1 < p < ∞. Let (uε)ε∈E be a bounded
sequence in W 1,p(Ω). Then there exist a subsequence E ′ of E, and a couple
(u0, u1) ∈ W 1,p(Ω; IpA)× Lp(Ω;B1,p

#A) such that, as E ′ 3 ε→ 0,

(i) uε → u0 in Lp(Q)-weak Σ;
(ii) ∂uε/∂xi → ∂u0/∂xi + ∂u1/∂yi in Lp(Q)-weak Σ, 1 ≤ i ≤ N .
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3.2. The Σ-convergence for stochastic processes. In order to deal with ho-
mogenization problems related to stochastic PDEs we need to give a suitable
notion of Σ-convergence adapted to stochastic processes. In all that follows, Q
and T are as above.

Let (Ω,F ,P) be a probability space. The expectation on (Ω,F ,P) will through-
out be denoted by E. Let us first recall the definition of the Banach space of
bounded F -measurable functions. Denoting by F (Ω) the Banach space of all
bounded functions f : Ω → R (with the sup norm), we define B(Ω) as the closure
in F (Ω) of the vector space H(Ω) consisting of all finite linear combinations of
the characteristic functions 1X of sets X ∈ F . Since F is an σ-algebra, B(Ω) is
the Banach space of all bounded F -measurable functions. Likewise we define the
space B(Ω;Z) of all bounded (F , BZ)-measurable functions f : Ω → Z, where
Z is a Banach space endowed with the σ-algebra of Borelians BZ . The tensor
product B(Ω) ⊗ Z is a dense subspace of B(Ω;Z): this follows from the obvi-
ous fact that B(Ω) can be viewed as a space of continuous functions over the
gamma-compactification [51] of the measurable space (Ω,F), which is a compact
topological space. Next, for X a Banach space, we denote by Lp(Ω,F ,P;X) the
space of X-valued random variables u such that ‖u‖X is Lp(Ω,F ,P)-integrable.

This being so, we still recall some preliminary as in the preceding subsection.
Let Ay and Aτ be two algebras wmv on RN

y and Rτ respectively, and let A = Ay�
Aτ be their product [28, 31, 49]. We know that A is the closure in BUC(RN+1

y,τ )
of the tensor product Ay ⊗ Aτ . We denote by ∆(Ay) (resp. ∆(Aτ ), ∆(A))
the spectrum of Ay (resp. Aτ , A). The same letter G will denote the Gelfand
transformation on Ay, Aτ and A, as well. Points in ∆(Ay) (resp. ∆(Aτ )) are
denoted by s (resp. s0). The M -measure on the compact space ∆(Ay) (resp.
∆(Aτ )) is denoted by βy (resp. βτ ). We know that ∆(A) = ∆(Ay)×∆(Aτ ) and
the M -measure on ∆(A) is the product measure β = βy ⊗ βτ . Points in Ω are
as usual denoted by ω. Unless otherwise stated, random variables will always
be considered on the probability space (Ω,F ,P). We keep using the previous
notations.

Definition 3.8. A sequence of random variables (uε)ε>0 ⊂ Lp(Ω,F ,P;Lp(QT ))
(1 ≤ p <∞) is said to weakly Σ-converge in Lp(QT ×Ω) to some random variable
u0 ∈ Lp(Ω,F ,P;Lp(QT ;BpA)) if as ε→ 0, we have∫

QT×Ω
uε(x, t, ω)f

(
x, t, x

ε
, t
ε
, ω
)
dxdtdP

→
∫∫

QT×Ω×∆(A)
û0(x, t, s, s0, ω)f̂(x, t, s, s0, ω)dxdtdPdβ (3.3)

for every f ∈ Lp
′
(Ω,F ,P;Lp

′
(QT ;A)) (1/p′ = 1 − 1/p), where û0 = G1 ◦ u0 and

f̂ = G1 ◦ (% ◦ f) = G ◦ f . We express this by writing uε → u0 in Lp(QT ×Ω)-weak
Σ.

In order to simplify the notation, we will henceforth denote Lp(Ω,F ,P;X)
merely by Lp(Ω;X) if it is understood from the context and there is no fear of
confusion.

The proofs of the following results are copied on that of their counterparts in
[33] (see especially Theorems 2 and 3 therein).
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Theorem 3.9. Let 1 < p < ∞. Let (uε)ε∈E ⊂ Lp(Ω;Lp(QT )) be a sequence of
random variables verifying the following boundedness condition:

sup
ε∈E

E ‖uε‖pLp(QT ) <∞.

Then there exists a subsequence E ′ from E such that the sequence (uε)ε∈E′ is
weakly Σ-convergent in Lp(QT × Ω).

Theorem 3.10. Let 1 < p < ∞. Let (uε)ε∈E ⊂ Lp(Ω;Lp(0, T ;W 1,p(Q))) be a
sequence of random variables which satisfies the following estimate:

sup
ε∈E

E ‖uε‖pLp(0,T ;W 1,p(Q)) <∞.

Then there exist a subsequence E ′ of E and a couple of random variables (u0, u1)
with u0 ∈ Lp(Ω;Lp(0, T ;W 1,p(Q; IpA))) and u1 ∈ Lp(Ω;Lp(QT ;BpAτ

(Rτ ;B1,p
#Ay

)))

such that, as E ′ 3 ε→ 0,

uε → u0 in Lp(QT × Ω)-weak Σ

and
∂uε
∂xi

→ ∂u0

∂xi
+
∂u1

∂yi
in Lp(QT × Ω)-weak Σ, 1 ≤ i ≤ N .

Theorem 3.10 will be very useful in the last section of this work.

4. Young measures generated by an algebra with mean value

In this section we assume that the algebra A is separable. This assumption is
not fundamental, but it is made just to simplify the presentation of the foregoing
section.

Let Ep (1 ≤ p < ∞) denote the space of continuous functions Φ : Q × RN ×
Rm → R satisfying the following conditions:

(C1) Φ ∈ C(Q× Rm;A)

(C2) lim|λ|→∞
Φ(x,y,λ)
1+|λ|p exists uniformly in (x, y) ∈ Q× RN .

Let K = R̂m be the Alexandroff one point compactification of Rm: R̂m =
Rm ∪{∞}. Each element Φ of Ep extends to a unique element Ψ of C(Q×K;A)
as follows:

Ψ(x, y, λ) =

{
Φ(x,y,λ)
1+|λ|p if (x, y, λ) ∈ Q× RN × Rm

lim|λ|→∞
Φ(x,y,λ)
1+|λ|p if λ = ∞.

Besides Ψ verifies the property that there exists c > 0 (depending on Φ) such
that

|Ψ(x, y, λ)| ≤ c(1 + |λ|p) ∀(x, y, λ) ∈ Q× RN ×K.

On the other hand, the Gelfand transformation G being an isometric isomorphism
of A onto C(∆(A)), we construct an isometric isomorphism of C(Q×K;A) onto
C(Q × K; C(∆(A))) = C(Q × ∆(A) × K) (which is separable), so that Ep is
separable.
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Equipped with the norm

‖Φ‖ = sup
x∈Q,y∈RN ,λ∈Rm

|Φ(x, y, λ)|
1 + |λ|p

,

Ep is a Banach space. We denote by P(Rm) the space of probability measures on
Rm. This being so, we have the following result.

Theorem 4.1. Let Q be an open bounded subset of RN . Let 1 ≤ p <∞, and let
A be an algebra wmv on RN

y . Finally let (uε)ε∈E (E being a fundamental sequence)
be a bounded sequence in Lp(Q; Rm). There exist a subsequence E ′ from E and a
family ν = (νx,s)x∈Q,s∈∆(A) ∈ L∞(Q×∆(A);P(Rm)) such that, as E ′ 3 ε→ 0,∫

Q

Φ

(
x,
x

ε1

, uε(x)

)
dx→

∫
Q

∫
∆(A)

∫
Rm

Φ̂(x, s, λ)dνx,s(λ)dβ(s)dx (4.1)

for all Φ ∈ Ep.

Proof. For fixed Ψ0 ∈ C(Q×K;A), let us define µε (ε ∈ E) as follows:〈
µε, Ψ̂0

〉
=

∫
Q

Ψ0

(
x,
x

ε1

, uε(x)

)
dx.

We have ∣∣∣〈µε, Ψ̂0

〉∣∣∣ ≤ ∫
Q

sup
y,λ

|Ψ0 (x, y, λ)| dx.

G being an isometric isomorphism of A onto C(∆(A)) and as Ψ0 (x, ·, λ) ∈ A, we

have supy∈RN |Ψ0 (x, y, λ)| = sups∈∆(A)

∣∣∣Ψ̂0 (x, s, λ)
∣∣∣, hence∣∣∣〈µε, Ψ̂0

〉∣∣∣ ≤ ∫
Q

sup
s,λ

∣∣∣Ψ̂0 (x, s, λ)
∣∣∣ dx =

∥∥∥Ψ̂0

∥∥∥
L1(Q;C(∆(A)×K))

.

Thus µε (continuous functional on the subspace {tΨ̂0 : t ∈ R} of L1(Q; C(∆(A)×
K))) extends (in a non unique way) to a continuous linear form on L1(Q; C(∆(A)×
K)), denoted by µ̃ε, and satisfying

‖µ̃ε‖L∞(Q;M(∆(A)×K)) ≤ 1 (ε ∈ E)

where M(∆(A) × K) (the dual space of C(∆(A) × K)) is the space of Radon
measures defined on the compact space ∆(A)×K. Because of the Banach-Alaoglu
theorem, there exist a subsequence E ′(Ψ0) of E and some µ ∈ L∞(Q;M(∆(A)×
K)) such that, as E ′(Ψ0) 3 ε→ 0,

µ̃ε → µ in L∞(Q;M(∆(A)×K))-weak ∗ .
In particular we have, as E ′(Ψ0) 3 ε→ 0,∫

Q

Ψ0

(
x,
x

ε1

, uε(x)

)
dx→

∫
Q

∫
∆(A)×K

Ψ̂0(x, s, λ)dµx(s, λ)dx. (4.2)

Ep being separable, let {Ψk : k ∈ N} be a countable dense subset of Ep. For
simplification we put E = (εn)n∈N. We have in hand a family {E ′(Ψk) : k ∈
N} of subsequences of E obtained by repeating the argument used to get (4.2)
and satisfying the following relation: E ′(Ψk+1) ⊂ E ′(Ψk) for each k ∈ N. By
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the well-known diagonal process we construct a subsequence E ′ from the family
{E ′(Ψk) : k ∈ N} satisfying, as E ′ 3 ε→ 0,∫

Q

Ψk

(
x,
x

ε1

, uε(x)

)
dx→

∫
Q

∫
∆(A)×K

Ψ̂k(x, s, λ)dµx(s, λ)dx ∀k ∈ N. (4.3)

By a mere routine we get (4.3) by replacing Ψk with any Ψ in Ep. It is evident
that, for a.e. x ∈ Q, µx is a probability measure: in fact, taking in (4.3) Ψ ≡ 1,
we are led (by the uniqueness of the limit) to

∫
∆(A)×K dµx(s, λ) = 1.

Next, using the same argument as the one used in the proof of [42, Theorem
7] we see that the boundedness of (uε)ε∈E in Lp(Q; Rm) implies that µ (thus
constructed) is supported by Q×∆(A)× Rm, so that∫

Q

∫
∆(A)×K

Ψ̂(x, s, λ)dµx(s, λ)dx =

∫
Q

∫
∆(A)×Rm

Ψ̂(x, s, λ)dµx(s, λ)dx

for all Ψ ∈ C(Q; C(K;A)). Thus, by [42, Theorem 3], µ is the weak ∗-limit of
(µ̃ε)ε∈E′ in L∞(Q;M(∆(A) × Rm)) and thereby, defines a family of probability
measures (µx)x∈Q with µx ∈M(∆(A)×Rm). Let νx denote the projection of µx
onto ∆(A). Let us show that νx = β. For that, let p1 denote the projection of
∆(A) × Rm onto ∆(A): p1(s, λ) = s, (s, λ) ∈ ∆(A) × Rm. We have the obvious
equality∫

∆(A)×Rm

(g ◦ p1)(s, λ)dµx(s, λ) =

∫
∆(A)

g(s)dνx(s) (g ∈ C(∆(A))). (4.4)

This being so, let h ∈ A, and let ϕ ∈ K(Q) (the space continuous functions on
RN with compact support contained in Q). Set

Φ(x, y, λ) = ϕ(x)h(y) (x ∈ Q, y ∈ RN , λ ∈ Rm).

Then Φ ∈ C(Q; C(K;A)) and so, as E ′ 3 ε→ 0,∫
Q

ϕ(x)h

(
x

ε1

)
dx→

∫
Q

∫
∆(A)×Rm

ϕ(x)ĥ(s)dµx(s, λ).

On the other hand, we have, as E ′ 3 ε→ 0,∫
Q

ϕ(x)h

(
x

ε1

)
dx→

∫
Q

∫
∆(A)

ϕ(x)ĥ(s)dβ(s)dx.

We deduce that∫
∆(A)×Rm

ĥ(s)dµx(s, λ) =

∫
∆(A)

ĥ(s)dβ(s) a.e. x ∈ Q,

or, taking into account (4.4),∫
∆(A)

ĥ(s)dνx(s) =

∫
∆(A)

ĥ(s)dβ(s).

Since the above equality holds for every h ∈ A, we deduce that νx = β a.e. x ∈ Q
(hence νx is homogeneous, i.e. is independent of x). Thus, using the Valadier’s
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result on disintegration of measures [43, Theorem 2], there exists a probability
measure νx,s (s ∈ ∆(A)) on Rm such that

µx = νx,s ⊗ β.

We are therefore led to (4.1) for all Φ ∈ Ep. This completes the proof of the
theorem. �

Theorem 4.1 yields the following

Definition 4.2. The family of probability measures {νx,s}x∈Q,s∈∆(A) is called the
Young measure associated with (uε)ε∈E at length scale ε1.

The concept of Young measures is weaker than the one of weak Σ-limit as
shown by the following result.

Corollary 4.3. Let 1 < p <∞. The function u0 ∈ Lp(Q; (BpA)m) defined by

G1(u0)(x, s) =

∫
Rm

λdνx,s(λ) ((x, s) ∈ Q×∆(A))

is the weak Σ-limit of (uε)ε∈E′.

Proof. Let g ∈ K(Q;A). Set

Φi(x, y, λ) = g(x, y)λi ((x, y, λ) ∈ Q× RN × Rm) (1 ≤ i ≤ m),

where λ = (λi)1≤i≤m. Then Φi is continuous onQ×RN×Rm (so is of Carathéodory’s
type on Q× RN × Rm). Besides, as |λi| ≤ 1 + |λ|p for all λ ∈ Rm, we have∣∣∣∣Φi

(
x,
x

ε1

, uε(x)

)∣∣∣∣ ≤ c(1 + |uε(x)|p)

where c = supx∈Q,y∈RN |g(x, y)| < ∞. The sequence (Φi(·, ·/ε1, uε))ε∈E′ is there-
fore uniformly integrable since p > 1. We deduce from [44, Theorem 17] that, as
E ′ 3 ε→ 0,∫

Q

g

(
x,
x

ε1

)
uiε(x)dx→

∫
Q

∫
∆(A)

∫
Rm

ĝ(x, s)λidνx,s(λ)dβ(s)dx

where uiε is the ith component of uε, 1 ≤ i ≤ m. But by the definition of the weak
Σ-limit, if ui0 ∈ Lp(Q;BpA) is the weak Σ-limit of (uiε)ε∈E′ , then, as E ′ 3 ε→ 0,∫

Q

g

(
x,
x

ε1

)
uiε(x)dx→

∫
Q

∫
∆(A)

ĝ(x, s)ûi0(x, s)dβ(s)dx,

hence, comparing the above convergence results, we deduce that

ûi0(x, s) =

∫
Rm

λidνx,s(λ),

which completes the proof. �

Remark 4.4. Due to the preceding corollary, it is now clear that Theorem 3.9
generalizes Theorem 3.2 of the preceding section.

The next result is very useful in practice.
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Theorem 4.5. Let (uε)ε∈E be a bounded sequence in Lp(Q; Rm) (1 ≤ p < ∞)
with associated Young measure (νx,s)x∈Q,s∈∆(A). The following properties hold:

(i) Let Φ : Q × RN × Rm → [0,+∞) be a Carathéodory integrand, i.e.,
Φ(·, y, ·) is continuous for all y ∈ RN and Φ(x, ·, λ) is measurable for all
(x, λ) ∈ Q× Rm. Assume further that

Φ(x, ·, λ) ∈ B1
A ∀(x, λ) ∈ Q× Rm.

Then∫
Q

∫
∆(A)

∫
Rm

Φ̂(x, s, λ)dνx,s(λ)dβ(s)dx ≤ lim inf
E3ε→0

∫
Q

Φ

(
x,
x

ε1

, uε(x)

)
dx.

(ii) If in addition to (i), the sequence (Φ(·, ·/ε1, uε))ε∈E is uniformly integrable,

then Φ̂(x, s, ·) is νx,s-integrable for a.e. (x, s) ∈ Q×∆(A). Besides there
exists χ ∈ L1(Q;B1

A) such that

G1(χ)(x, s) =

∫
Rm

Φ̂(x, s, λ)dνx,s(λ) a.e. (x, s) ∈ Q×∆(A) (4.5)

and

Φ(·, ·/ε1, uε) → χ in L1(Q)-weak Σ. (4.6)

(iii) The barycenter (x, s) 7→
∫

Rm λdνx,s(λ) belongs to Lp(Q×∆(A); Rm).

Proof. Thanks to the density of A in B1
A, (i) is a direct consequence of [44,

Theorem 16]. As for (ii), the integrability of Φ̂(x, s, ·) is a consequence of [44,
Theorem 17] (see also [42, 4, 3]). Let us check (4.5) and (4.6). Let g ∈ K(Q;A);
define Ψ : Q × RN × Rm → R by Ψ(x, y, λ) = g(x, y)Φ(x, y, λ). Then Ψ is of
Carathéodory’s type on Q × RN × Rm and Ψ(·, ·/ε1, uε) is uniformly integrable.
In view of [44, Theorem 17] we have, as E 3 ε→ 0,∫

Q

Ψ

(
x,
x

ε1

, uε(x)

)
dx →

∫
Q

∫
∆(A)

∫
Rm

Ψ̂(x, s, λ)dνx,s(λ)dβ(s)dx

=

∫
Q

∫
∆(A)

∫
Rm

ĝ(x, s)Φ̂(x, s, λ)dνx,s(λ)dβ(s)dx.

But, (Φ(·, ·/ε1, uε))ε∈E is uniformly integrable, so because of the Theorem 3.3,
there exist a subsequence E ′ from E and a function χ ∈ L1(Q;B1

A) such that

Φ

(
·, ·
ε1

, uε

)
→ χ in L1(Q)- weak Σ as E ′ 3 ε→ 0.

Thus, for g, we have, when E ′ 3 ε→ 0,∫
Q

g

(
x,
x

ε1

)
Φ

(
x,
x

ε1

, uε(x)

)
dx→

∫
Q

∫
∆(A)

ĝ(x, s)χ̂(x, s)dβ(s)dx,

hence, comparing the above convergence results yields

χ̂(x, s) =

∫
Rm

Φ̂(x, s, λ)dνx,s(λ),
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form which, (4.5) and (4.6). Finally, let us check (iii). If in (ii) we choose
Φ(x, y, λ) = |λ|p then by using Jensen’s inequality we are led to∫

Q

∫
∆(A)

∣∣∣∣∫
Rm

λdνx,s(λ)

∣∣∣∣p dβdx ≤
∫
Q

∫
∆(A)

∫
Rm

|λ|p dνx,s(λ)dβ(s)dx

≤ lim inf
E3ε→0

∫
Q

|uε(x)|p dx < +∞,

hence (iii). �

The following result characterizes the strong convergence.

Proposition 4.6. Let (uε)ε∈E be a bounded sequence in Lp(Q; Rm) (1 ≤ p <∞),
and let (νx,s)x∈Q,s∈∆(A) be the associated Young measure. Assume that either

v ∈ Lp(Q; (A)m) or v ∈ C(Q; (Bp
A)m). Then

νx,s = δbv(x,s) if and only if lim
E3ε→0

‖uε − vε‖L1(Q)m = 0,

where vε(x) = v(x, x/ε1), x ∈ Q.

Proof. Assume that νx,s = δbv(x,s) where v is either in Lp(Q; (A)m) or in C(Q; (Bp
A)m).

Set Φ(x, y, λ) = |λ− v(x, y)|; then Φ is a Carathéodory function and further,
Φ ≥ 0. Moreover the sequence (Φ(·, ·/ε1, uε))ε∈E is uniformly integrable since by
setting ϕ(t) = tp (t ≥ 0), ϕ is inf-compact and∫

Q

ϕ

(∣∣∣∣Φ(·, ·ε1

, uε

)∣∣∣∣) dx =

∫
Q

∣∣∣∣uε(x)− v

(
x,
x

ε1

)∣∣∣∣p dx
≤ 2p

(∫
Q

|uε(x)|p dx+

∫
Q

∣∣∣∣v(x, xε1

)∣∣∣∣p dx)
≤ M

where M is a positive constant independent of ε. Applying [part (ii) of] Theorem
4.5, we get, as E 3 ε→ 0,∫

Q

Φ

(
x,
x

ε1

, uε(x)

)
dx→

∫
Q

∫
∆(A)

〈
νx,s, Φ̂(x, s, ·)

〉
dβ(s)dx.

But 〈
νx,s, Φ̂(x, s, ·)

〉
=

〈
δbv(x,s), Φ̂(x, s, ·)

〉
= Φ̂(x, s, v̂(x, s))

= |v̂(x, s)− v̂(x, s)| = 0 a.e. (x, s) ∈ Q×∆(A).

On the other hand∫
Q

Φ

(
x,
x

ε1

, uε(x)

)
dx =

∫
Q

∣∣∣∣uε(x)− v

(
x,
x

ε1

)∣∣∣∣ dx = ‖uε − vε‖L1(Q) .

Now assume that ‖uε − vε‖L1(Q) → 0 as E 3 ε → 0. Let g ∈ K(Q;A); Applying

once more [part (ii) of] Theorem 4.5 with Φ(x, y, λ) = g(x, y) |λ− v(x, y)| we get,
when E 3 ε→ 0∫

Q

Φ

(
x,
x

ε1

, uε(x)

)
dx→

∫
Q

∫
∆(A)

∫
Rm

ĝ(x, s) |λ− v̂(x, s)| dνx,s(λ)dβ(s)dx.
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But ∣∣∣∣∫
Q

Φ

(
x,
x

ε1

, uε(x)

)
dx

∣∣∣∣ ≤ ‖g‖∞ ‖uε − vε‖L1(Q) → 0 when E 3 ε→ 0.

Thus ∫
Q

∫
∆(A)

ĝ(x, s) 〈νx,s, |λ− v̂(x, s)|〉 dβdx = 0 ∀g ∈ K(Q;A),

hence 〈νx,s, |λ− v̂(x, s)|〉 = 0 a.e. (x, s) ∈ Q × ∆(A), which leads to νx,s =
δbv(x,s). �

5. Homogenization of a convex integral functional revisited

All function spaces and scalar functions are real-valued in this section.

5.1. Setting of the problem. Our main concern here is the study of the as-
ymptotic behavior (as ε→ 0) of the sequence of solutions of the problems

min
{
Fε(v) : v ∈ W 1,p

0 (Q; Rn)
}

where the functional Fε is defined on Lp(Q; Rn) by

Fε(v) =

{ ∫
Q
f
(
x, x

ε
, Dv(x)

)
dx, v ∈ W 1,p

0 (Q; Rn)

+∞ elsewhere,
(5.1)

Q being a bounded open set in RN and f : Q × RN × RnN → [0,+∞) a
Carathéodory function (i.e., f(x, ·, λ) is measurable and f(·, y, ·) is continuous)
satisfying the following conditions:

(H1) f(x, y, ·) is strictly convex for almost all y ∈ RN and for all x ∈ Q,
(H2) There exist three constants p > 1 and c1, c2 > 0 such that

c1 |λ|p ≤ f(x, y, λ) ≤ c2(1 + |λ|p) (5.2)

for all (x, λ) ∈ RN × RnN and for almost all y ∈ RN .

From the above hypotheses, for any fixed ε > 0 and for v ∈ Lp(Q; RnN), the
function x 7→ f (x, x/ε, v(x)) of Q into R+ (denoted by f ε(·, ·, v)), is well defined
and lies in L1(Q), with

c1 ‖v‖pLp(Q)nN ≤ ‖f ε(·, ·, v)‖L1(Q) ≤ c′2

(
1 + ‖v‖p

Lp(Q)nN

)
where c′2 = c2 max(1, |Q|) with |Q| =

∫
Q
dx. Hence (5.1) makes sense and, by

classical arguments, there exists [15, 21] (for each fixed ε > 0) a unique uε ∈
W 1,p

0 (Q; Rn) that realizes the infimum of Fε on Lp(Q; RnN), i.e.,

Fε(uε) = min
v∈W 1,p

0 (Q;Rn)
Fε(v). (5.3)

Our objective here amounts to find, under the assumption that

f(x, ·, λ) ∈ B1
A for all x ∈ Q, λ ∈ RnN , (5.4)

(where A is an algebra wmv) a homogenized functional F such that the sequence
of minimizers uε converges to a limit u, which is precisely the minimizer of F .

This issue has already been addressed in many papers (see in particular [2, 5,
22, 29]). In [29] the general deterministic homogenization of (5.1) is addressed,
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but in separable ergodic algebras wmv using the Σ-convergence method. Here no
ergodicity assumption is made on the algebra A and moreover, we use the Young
measures theory to solve the problem. This reduces considerably the length of
this section in contrast to what has been done so far; see e.g. [29]. So we mean
here to provide by means of Young measures generated by an algebra wmv, a full
study of the functional Fε in the general framework of algebras wmv.

5.2. Homogenization result. Let A be an algebra wmv. Using (5.4) and
some well-known results (see e.g. [29, Proposition 2.3], [48, Proposition 3.1])
one can easily define the function f(·, ·,w) : (x, y) → f(x, y,w(x, y)) (for w ∈
Lp(Q; (Bp

A)nN)), as an element of L1(Q;B1
A) with

f̂(x, s, ŵ(x, s)) = G(f(x, ·,w(x, ·)))(s) a.e. in (x, s) ∈ Q×∆(A).

Now, let

F1,p
0 = W 1,p

0 (Q; Rn)× Lp(Q; (B1,p
#A)n).

F1,p
0 is a Banach space under the norm

‖u‖F1,p
0

=

(
‖u0‖pW 1,p

0 (Q)n
+ ‖u1‖pLp(Q;(B1,p

#A)n)

) 1
p

(u = (u0, u1) ∈ F1,p
0 ),

(where ‖u1‖Lp(Q;(B1,p
#A)n) = (

n∑
i=1

N∑
j=1

∥∥∂u1,i/∂yj
∥∥p
Lp(Q;Bp

A)
)1/p for u1 = (u1,i)1≤i≤n) ad-

mitting F∞0 = D(Q)n × [D(Q)⊗ (%(A))n] as a dense subspace.
We can now state and prove the main result of this subsection.

Theorem 5.1. Let A be a separable algebra wmv such that (5.4) holds. For each
ε > 0, let uε be the unique solution of (5.3). Then, as ε→ 0 we have

uε → u0 in W 1,p
0 (Q)n-weak (5.5)

∂uε
∂xi

→ ∂u0

∂xi
+
∂u1

∂yi
in Lp(Q)n-weak Σ (1 ≤ i ≤ N) (5.6)

where u = (u0, u1) ∈ F1,p
0 is the unique solution of the variational minimization

problem

F (u) = inf
v∈F1,p

0

F (v) (5.7)

with the functional F defined on Lp(Q; Rn)× Lp(Q; (B1,p
#A)n) by

F (v) =

{ ∫
Q

∫
∆(A)

f̂(x, s,Dv0 + ∂v̂1)dβdx for v ∈ F1,p
0

+∞ elsewhere

and ∂v̂1 = D̂yv1.

Proof. First of all we see that Eq. (5.7) possesses a unique solution since the func-

tion f̂ : Q×∆(A)×RnN → [0,∞), f̂(x, s, λ) = G(f(x, ·, λ))(s) is a Carathéodory’s
type function which is strictly convex in λ.
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Now, in view of the growth condition (5.2), the sequence (uε)ε>0 is bounded
in W 1,p

0 (Q)n and so the sequence f ε(·, ·, Duε) is bounded in L1(Q). Thus given
an arbitrary fundamental sequence E, there exist a subsequence E ′ from E and
a couple u = (u0, u1) ∈ F1,p

0 such that (5.5)-(5.6) hold whenever E ′ 3 ε → 0.
If we show that u solves (5.7) then thanks to the uniqueness of the solution to
(5.7), the convergence results (5.5)-(5.6) will hold for ε → 0. Thus our only
concern here is to check that u solves (5.7). To this end, let (νx,s)x∈Q,s∈∆(A) be
the Young measure associated with (Duε)ε∈E′ at length scale ε. Thanks to [part
(i) of] Theorem 4.5 we have∫

Q

∫
∆(A)

∫
RnN

f̂(x, s, λ)dνx,s(λ)dβ(s)dx ≤ lim inf
E′3ε→0

∫
Q

f
(
x,
x

ε
,Duε

)
dx.

But due to Jensen’s inequality one has∫
Q

∫
∆(A)

∫
RnN

f̂(x, s, λ)dνx,s(λ)dβ(s)dx ≥
∫
Q

∫
∆(A)

f̂

(
x, s,

∫
RnN

λdνx,s(λ)
)

dβ(s)dx,

and by Corollary 4.3,∫
Q

∫
∆(A)

f̂(x, s,Du0 + D̂yu1)dβdx ≤ lim inf
E′3ε→0

∫
Q

f
(
x,
x

ε
,Duε

)
dx

since
∫

RnN λdνx,s(λ) = Du0(x) + D̂yu1(x)(s) = G1(Du0(x) + Dyu1(x))(s) where
u1(x) = u1(x, ·). So, let E ′1 be a subsequence from E ′ such that

lim inf
E′3ε→0

∫
Q

f
(
x,
x

ε
,Duε

)
dx = lim

E′13ε→0

∫
Q

f
(
x,
x

ε
,Duε

)
dx.

We then have∫
Q

∫
∆(A)

f̂(x, s,Du0 + D̂yu1)dβdx ≤ lim
E′13ε→0

∫
Q

f
(
x,
x

ε
,Duε

)
dx. (5.8)

Let us establish an upper bound for limE′13ε→0

∫
Q
f (x, x/ε,Duε) dx. To do that,

let Φ = (ψ0, %
n(ψ1)) ∈ F∞0 with ψ0 ∈ D(Q)n, ψ1 = (ψ1,i)1≤i≤n ∈ [D(Q) ⊗

(%(A∞))n], %n(ψ1) = (%(ψ1,i))1≤i≤n. We define Φε as follows: Φε = ψ0 + εψε1, that

is, Φε(x) = ψ0(x) + εψ1(x, x/ε) for x ∈ Q. Then Φε ∈ W 1,p
0 (Q)n, and, since uε is

the minimizer, one has∫
Q

f
(
x,
x

ε
,Duε

)
dx ≤

∫
Q

f
(
x,
x

ε
,DΦε(x)

)
dx.

Set vε(x) = f (x, x/ε,Duε) (x ∈ Q), ε ∈ E ′1. Then (vε)ε∈E′1 is uniformly inte-

grable; indeed let ϕ(t) = t2 (t ≥ 0); then ϕ is inf-compact, ϕ(t)/t → +∞ as
t→ +∞, and further∫

Q

ϕ(vε(x))dx ≤ c22

∫
Q

(1 + |DΦε|p)2dx

≤ c22 |Q| (1 + ‖Dψ0‖∞ + ‖Dψ1‖∞ + ‖Dyψ1‖∞)2p

< ∞
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where |Q| denote the Lebesgue measure of Q. The sequence (DΦε)ε∈E′1 being

bounded in Lp(Q; RnN) let (µx,s)x∈Q,s∈∆(A) be the Young measure associated with
(DΦε)ε∈E′1 at length scale ε. Since f is Carathéodory and vε = f(·, ·/ε,Duε) is
uniformly integrable, we deduce by [part (ii) of] Theorem 4.5 that, as E ′1 3 ε→ 0,∫

Q

f
(
x,
x

ε
,DΦε(x)

)
dx→

∫
Q

∫
∆(A)

∫
RnN

f̂(x, s, λ)dµx,s(λ)dβ(s)dx.

But DΦε − (Dψ0 + (Dyψ1)
ε) = ε(Dψ1)

ε and so

‖DΦε − (Dψ0 + (Dyψ1)
ε)‖L1(Q) → 0 as E ′1 3 ε→ 0.

This yields by Proposition 4.6 that µx,s = δDψ0+dDyψ1
, in such a way that

lim
E′13ε→0

∫
Q

f
(
x,
x

ε
,DΦε(x)

)
dx =

∫
Q

∫
∆(A)

f̂(x, s,Dψ0 + D̂yψ1)dβdx.

Thus

lim
E′13ε→0

∫
Q

f
(
x,
x

ε
,Duε(x)

)
dx ≤

∫
Q

∫
∆(A)

f̂(x, s,Dψ0 + D̂yψ1)dβdx

for any Φ = (ψ0, %
n(ψ1)) ∈ F∞0 , and by a density argument, for all Φ ∈ F1,p

0 .
Whence

lim
E′13ε→0

∫
Q

f
(
x,
x

ε
,Duε(x)

)
dx ≤ inf

v∈F1,p
0

∫
Q

∫
∆(A)

f̂(x, s,Dv0 + D̂yv1)dβdx. (5.9)

The inequalities (5.8) and (5.9) yield (5.7). This completes the proof. �

5.3. Some applications of Theorem 5.1. We can consider the homogenization
problem for (5.3) under a variety of assumptions as in the following examples.

Example 5.2 (Homogenization in ergodic algebras). We assume that the algebra
A is ergodic. This allows us to solve the following deterministic homogenization
problems:

(P)1 The function f is periodic in y;
(P)2 The function f is almost periodic in y [9, 11];
(P)3

f(x, ·, λ) ∈ L1
∞,AP (RN) for all x ∈ Q and all λ ∈ RnN

where L1
∞,AP (RN) denotes the closure with respect to the seminorm ‖·‖1

(defined in Section 2) of the space of finite sums∑
finite

ϕiui with ϕi ∈ B∞(RN), ui ∈ AP (RN),

AP (RN) being the space of all continuous real-valued almost periodic
functions on RN and B∞(RN) the space of continuous real-valued functions
on RN that converge at infinity.
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Example 5.3 (Homogenization in non ergodic algebra). We assume here that
N = 1. Let A be the algebra generated by the function f(z) = cos 3

√
z (z ∈ R)

and all its translates f(· + a), a ∈ R. It is known that A is an algebra with
mean value which is not ergodic; see [25, p. 243] for details. Since A satisfies all
the requirements of Theorem 4.1, the conclusion of Theorem 5.1 holds under the
hypothesis

(H) f(x, ·, λ) ∈ B1
A for all (x, λ) ∈ Q× Rn.

The homogenization problem solved here is new. One can also consider other
homogenization problems in the present setting of non-ergodic algebras.

6. Homogenization of a stochastic Ladyzhenskaya model for
incompressible viscous flow

We assume in this section that all vector spaces are real vector spaces, and all
scalar functions are real-valued. Let Ay and Aτ be two algebras wmv on RN

y and
Rτ , respectively. We set A = Ay � Aτ , the product algebra wmv defined as in
[28, 31, 49]. Obviously, no ergodicity assumption is required neither on Ay, nor
on Aτ .

6.1. Statement of the problem and a priori estimates. Let (Ω,F ,P) be a
probability space. On (Ω,F ,P) we define a prescribed m-dimensional standard
Wiener process W . We equip (Ω,F ,P) with the natural filtration (F t) of W . We
therefore aim at studying the asymptotics of the following stochastic generalized
Navier-Stokes type equations

duε +
(
− div

[
a
(
x
ε
, t
ε

)
∇uε + b

(
x
ε
, t
ε

)
|∇uε|p−2∇uε

]
+ (uε · ∇)uε +∇qε

)
dt

= fdt+ g
(
x
ε
, t
ε
,uε
)
dW in QT

div uε = 0 in QT

uε = 0 on ∂Q× (0, T )
uε(x, 0) = u0(x) in Q.

(6.1)
In order that (6.1) becomes meaningful, we need to precise the data. Let Q be
a smooth bounded open set in RN

x (N = 2 or 3), and let T be a positive real
number. In QT = Q× (0, T ) we consider the partial differential operator (where
∇ and div denote respectively the gradient operator and divergence operator in
Q)

P ε = − div

[
a

(
x

ε
,
t

ε

)
∇·
]

:= −
N∑

i,j=1

∂

∂xi

(
aij

(
x

ε
,
t

ε

)
∂

∂xj

)
where the function a = (aij)1≤i,j≤N ∈ L∞(RN

y × Rτ )
N×N satisfies the following

assumptions:

aij = aji (6.2)

and there exists a constant ν0 > 0 such that

N∑
i,j=1

aij(y, τ)λiλj ≥ ν0 |λ|2 for all λ = (λi) ∈ RN and a.e. (y, τ) ∈ RN+1
y,τ . (6.3)
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The operator P ε above defined is assumed to act on vector functions as follows:
for u = (ui)1≤i≤N ∈ (W 1,p(Q))N we have P εu = (P εui)1≤i≤N . The function
b ∈ L∞(RN+1

y,τ ) and verifies c1 ≤ b(y, τ) ≤ c−1
1 a.e. (y, τ) ∈ RN × R where

c1 is a positive constant. So, putting b(y, τ, λ) = b(y, τ) |λ|p−2 λ, the function
b : (y, τ, λ) 7→ b(y, τ, λ), from RN × R× RN×N into RN×N satisfies:

For each fixed λ ∈ RN , b(·, ·, λ) is measurable; (6.4)

b(y, τ, 0) = 0 a.e. (y, τ) ∈ RN × R; (6.5)

There are two positive constants ν1 and ν2 such that
(i) (b(y, τ, λ)− b(y, τ, µ)) · (λ− µ) ≥ ν1 |λ− µ|p

(ii) |b(y, τ, λ)− b(y, τ, µ)| ≤ ν2 (|λ|+ |µ|)p−2 |λ− µ|
for all λ, µ ∈ RN×N and for a.e. (y, τ) ∈ RN × R,

(6.6)

where p ≥ 3 is a real number, the dot denotes the usual Euclidean inner product
in RN×N , and |·| the associated norm. Next, the mapping (y, τ, u) 7→ g(y, τ, u)
from RN × R × RN into Rm (integer m ≥ 1) satisfies the assumption that there
exist positive constants c0 and c1 such that

(i) g(·, ·, u) is measurable for any u ∈ RN ;
(ii) |g(y, τ, u)| ≤ c0(1 + |u|);
(iii) |g(y, τ, u1)− g(y, τ, u2)| ≤ c1 |u1 − u2|
for all u, u1, u2 ∈ RN and for a.e. (y, τ) ∈ RN × R.

(6.7)
The first issue to be discussed is related to the existence and uniqueness of the
solution of (6.1). Prior to that, we introduce the following spaces [27, 41]

V = {ϕ ∈ C∞0 (Q)N : divϕ = 0};
V = closure of V in W 1,p(Q)N = {u ∈ W 1,p

0 (Q)N : div u = 0};
H = closure of V in L2(Q)N .

We endow V with theW 1,p
0 (Q)N -norm (the gradient norm), which gives a reflexive

Banach space. The space H is equipped with the L2(Q)N -norm which makes it
a Hilbert space. For u ∈ Lp(0, T ;V ) the question for the existence of the trace
function (x, t) 7→ b(x/ε, t/ε,∇u(x, t)) can be discussed in the same way as in [30].
Also the function (x, t) 7→ a(x/ε, t/ε) is well defined. With this in mind, let

aε (x, t) = a

(
x

ε
,
t

ε

)
and

bε(·, ·,∇u)(x, t) = b

(
x

ε
,
t

ε
,∇u(x, t)

)
:= b

(
x

ε
,
t

ε

)
|∇u(x, t)|p−2∇u(x, t)

for (x, t) ∈ QT . We introduce the functionals

aI(u,v) =

∫
Q

(aε∇u) · ∇vdx+

∫
Q

bε(·, ·,∇u) · ∇vdx (u,v ∈ W 1,p
0 (Q)N);
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bI(u,v,w) =
N∑

i,k=1

∫
Q

ui
∂vk

∂xi
wkdx (u = (ui),v,w ∈ W 1,p

0 (Q)N).

Then the following estimates hold:

|aI(u,v)| ≤ ‖a‖∞ ‖∇u‖L2(Q) ‖∇v‖L2(Q) + ν2 ‖∇u‖p−1
Lp(Q) ‖∇v‖Lp(Q) ; (6.8)

aI(v,v) ≥ ν0 ‖∇v‖2
L2(Q) + ν1 ‖∇v‖pLp(Q) (6.9)

for all u,v ∈ W 1,p
0 (Q)N . From the above estimate (6.8) we infer by the Riesz

representation theorem the existence of an operator Aε : V → V ′ such that

aI(u,v) = 〈P εu,v〉+ 〈Aεu,v〉 for all u,v ∈ V .

It is worth noting that since p ≥ 3 (hence p ≥ 2) we have P εu ∈ V ′ for u ∈ V .
Moreover the operator Aε (for fixed ε > 0) is maximal monotone, surjective
and hemicontinuous [27, Chap. 2, Section 2]. As far as the trilinear form bI is
concerned, we have that [27, 41]

bI(u,v,v) = 0 for all u ∈ V and v ∈ W 1,p
0 (Q)N ;

bI(u,u,v) = bI(u,v,u) for u ∈ V and v ∈ W 1,p
0 (Q)N .

Furthermore, since W 1,p(Q) ⊂ Lr(Q) [1] for any r > 1 (indeed for N = 2, 3
and p ≥ 3 we have 1

p
− 1

N
≤ 0, so that, by the Sobolev embedding, the above

embedding holds true). So choosing r > 1 in such a way that 2
r
+ 1

p
= 1, we have

by Hölder’s inequality that

|bI(u,v,u)| ≤ c ‖u‖2
Lr(Q) ‖∇v‖Lp(Q) for all u,v ∈ W 1,p

0 (Q)N . (6.10)

We therefore infer the existence of an element B(u) ∈ V ′ such that

〈B(u),v〉 = bI(u,u,v) for all u,v ∈ V. (6.11)

Equation (6.11) defines a bounded operator B : V → V ′ with the further property
that if u ∈ Lp(0, T ;V ) then B(u) ∈ Lp

′
(0, T ;V ′). In fact, from (6.10)-(6.11) we

have by Hölder’s inequality (for u ∈ Lp(0, T ;V )),

‖B(u)‖Lp′ (0,T ;V ′) ≤
(∫ T

0

‖u(t)‖2p′

Lr(Q) dt

)1/p′

.

But W 1,p(Q) ⊂ Lr(Q) (with continuous embedding), hence there is a positive
constant c independent of u, such that

‖B(u)‖Lp′ (0,T ;V ′) ≤ c

(∫ T

0

‖u(t)‖2p′

V dt

)1/p′

.

Also, as p ≥ 3, we have 2p′ ≤ p, so that using once again Hölder’s inequality with
exponent p/2p′ ≥ 1, we get(∫ T

0

‖u(t)‖2p′

V dt

)1/p′

≤ c

(∫ T

0

‖u(t)‖pV dt
)2/p

.
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We therefore deduce

‖B(u)‖Lp′ (0,T ;V ′) ≤ c

(∫ T

0

‖u(t)‖pV dt
)2/p

. (6.12)

The above inequality will be useful in the sequel. Finally, for the sake of com-
pleteness, we choose f ∈ Lp

′
(0, T ;V ′) and u0 ∈ H. We are now in a position to

state the existence and uniqueness result for (6.1). Before we can do that, how-
ever, we need to take the projection of (6.1) on V ′; we get the following abstract
form in V ′:{

duε + (P εuε +Aεuε +B(uε))dt = fdt+ gε(uε)dW, 0 < t < T
uε(0) = u0.

(6.13)

With all the properties of the operator Aε (among which the strict monotonicity,
the maximality and the hemicontinuity) the existence and uniqueness of a mar-
tingale solution (and hence from the uniqueness, the strong) solution to (6.13)
follows exactly the way of proceeding as in [40], and we can formulate the follow-
ing result without proof.

Theorem 6.1. Let the hypotheses be as above. Let ε > 0 be freely fixed and
let 1 < r < ∞. There exists an F t-progressively measurable process uε ∈
Lr(Ω,F ,P;Lp(0, T ;V ) ∩ L∞(0, T ;H)) such that

(uε(t),v) +
∫ t

0
(P εuε(s) +Aεuε(s) +B(uε(s)),v) ds = (u0,v)

+
∫ t

0
(f(s),v) ds+

∫ t
0

(gε(uε(s),v) dW (s)
(6.14)

for all v ∈ V and for almost all (ω, t) ∈ Ω× [0, T ].
Moreover uε ∈ Lr(Ω;F ,P; C([0, T ];H)) and is unique in the sense that if uε and
uε satisfy (6.14) then P(ω : uε(t) = uε(t) in V ′ for all t ∈ [0, T ]) = 1.

Remark 6.2. (1) For the existence result in the above theorem, we only need
to have p ≥ 1 + 2N

N+2
, and for the uniqueness, the more restricted assumption

p ≥ 1 + N
2

is required; see [27]. We have taken p ≥ 3 only for the sake of

simplicity. We might take p ≥ 1 + N
2

for both the existence and uniqueness. (2)

Since f ∈ Lp′(0, T ;V ′) the existence of the pressure qε is out of reach; see e.g., [38,
Proposition 3] (see also [39]). That is why, in the sequel we are mainly concern
with the asymptotics of the velocity field uε defined in Theorem 6.1. Accordingly,
throughout the remainder of this section, we will only refer to problem (6.13)
instead of (6.1).

It is very important to note that very few results are available as regards the ho-
mogenization of SPDEs. We may cite [6, 23, 24, 34, 46, 47] in that framework. In
the just mentioned work, the homogenization of SPDEs is studied under the pe-
riodicity assumption on the coefficients of the equations considered. In addition,
the convergence method used is either the G-convergence method [6, 23, 24] or
the two-scale convergence method [46, 47]. In view of the study of the qualitative
properties of the solutions of SPDEs, it is more convenient to use an appropriate
method taking into account both the random and deterministic behaviours of
these solutions; see Subsection 3.2. As for the homogenization of SPDEs beyond
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the periodic setting, to the best of our knowledge, the only results available so
far in the literature are [32, 33].

Before we can proceed with the a priori estimates, let us set a convention.
The letter C will throughout denote a positive constant whose value may change
from line to line. The dependence of constants on the parameters will be written
explicitly only when necessary. With this in mind, the following a priori estimates
hold.

Proposition 6.3. For each fixed ε > 0, let uε be the unique solution of (6.13).
Then for any 1 < r <∞ we have

E sup
0≤t≤T

‖uε(t)‖rL2(Q) ≤ C; (6.15)

E
∫ T

0

‖uε(t)‖2
H1

0 (Q)N dt ≤ C (6.16)

and

E
∫ T

0

‖uε(t)‖2
V dt ≤ C (6.17)

for any ε > 0, where C is a positive constant independent of ε.

Proof. Applying Itô’s formula to ‖uε(t)‖2
L2(Q) gives

‖uε(t)‖2
L2(Q) + 2

∫ t

0

〈P εuε(s) + Aεuε(s) +B(uε(s)),uε(s)〉 ds

=
∥∥u0
∥∥2

L2(Q)
+ 2

∫ t

0

〈f(s),uε(s)〉 ds+

∫ t

0

|gε(uε(s))|2 ds

+2

∫ t

0

(gε(uε(s)),uε(s)) dW (s).

By using (6.3), [part (i) of] (6.6) and (6.7) we get

‖uε(t)‖2
L2(Q) + 2ν0

∫ t
0
‖uε(t)‖2

H1
0 (Q)N ds+ 2ν1

∫ t
0
‖uε(t)‖pV ds

≤ ‖u0‖2
L2(Q) + 2

∫ t
0
‖f(s)‖V ′ ‖uε(s)‖V ds+ C

∫ t
0
‖uε(s)‖2

L2(Q) ds

+C + 2
∫ t

0
(gε(uε(s)),uε(s)) dW (s).

(6.18)

By Young’s inequality applied to the first integral on the right-hand side of (6.18),

2

∫ t

0

‖f(s)‖V ′ ‖uε(s)‖V ds ≤ C(ν1)

∫ t

0

‖f(s)‖p
′

V ′ ds+ ν1

∫ t

0

‖uε(s)‖pV ds

≤ C + ν1

∫ t

0

‖uε(s)‖pV ds.

Taking into account the above inequality in (6.18) we are led to

‖uε(t)‖2
L2(Q) + 2ν0

∫ t

0

‖uε(t)‖2
H1

0 (Q)N ds+ ν1

∫ t

0

‖uε(t)‖pV ds

≤
∥∥u0
∥∥2

L2(Q)
+ C + C

∫ t

0

‖uε(s)‖2
L2(Q) ds+ 2

∫ t

0

(gε(uε(s)),uε(s)) dW (s).
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Taking first the supremum over 0 ≤ s ≤ t (for all 0 ≤ t ≤ T ) and next the
mathematical expectation in the above inequality,

E sup
0≤s≤t

‖uε(s)‖2
L2(Q) + 2ν0E

∫ t
0
‖uε(t)‖2

H1
0 (Q)N ds+ ν1E

∫ t
0
‖uε(t)‖pV ds

≤ ‖u0‖2
L2(Q) + C + CE

∫ t
0
‖uε(s)‖2

L2(Q) ds

+2E sup
0≤s≤t

∣∣∫ s
0

(gε(uε(τ)),uε(τ)) dW (τ)
∣∣ . (6.19)

Making use of the Burkhölder–Davis–Gundy’s inequality applied to the last term
in the right-hand side of (6.19),

2E sup
0≤s≤t

∣∣∣∣∫ s

0

(gε(uε(τ)),uε(τ)) dW (τ)

∣∣∣∣
≤ CE

(∫ t

0

|(gε(uε(s)),uε(s))|2 ds
)1/2

≤ CE

[
sup

0≤s≤t
‖uε(s)‖2

L2(Q)

(∫ t

0

‖gε(uε(s))‖2
L2(Q) ds

)1/2
]
,

and by Cauchy-Schwartz’s inequality,

2E sup
0≤s≤t

∣∣∫ s
0

(gε(uε(τ)),uε(τ)) dW (τ)
∣∣ ≤ 1

2
E sup

0≤s≤t
‖uε(s)‖2

L2(Q)

+CE
∫ t

0
‖uε(s)‖2

L2(Q) ds.

Putting this in (6.19) we derive

1
2
E sup

0≤s≤t
‖uε(s)‖2

L2(Q) + 2ν0E
∫ t

0
‖uε(s)‖2

H1
0 (Q)N ds+ ν1E

∫ t
0
‖uε(s)‖pV ds

≤ C + CE
∫ t

0
‖uε(s)‖2

L2(Q) ds.
(6.20)

It therefore follows from Gronwall’s inequality that

E sup
0≤t≤T

‖uε(t)‖2
L2(Q) ≤ C (6.21)

where C is independent of ε. It also follows from (6.20) and (6.21) that

E
∫ T

0

‖uε(t)‖pV dt ≤ C and E
∫ T

0

‖uε(t)‖2
H1

0 (Q)N dt ≤ C

where C is also independent of ε, hence (6.16) and (6.17).
Now, as far as (6.15) is concerned, we start again from the Itô’s formula which

reads in this case as: if

Xt = X0 +

∫ t

0

φ(s)ds+Nt

where Xt = ‖uε(t)‖2
L2(Q), X0 = ‖u0‖2

L2(Q), Nt = 2
∫ t

0
(gε(uε(s),uε(s)) dW (s) and

φ(s) = −2 〈P εuε(s) +Aεuε(s),uε(s)〉+ 2 〈f(s),uε(s)〉+ ‖gε(uε(s))‖2
L2(Q), then

X l
t = X l

0 + l

∫ t

0

X l−1
s φ(s)ds+ l

∫ t

0

X l−1
s dNs +

1

2
l(l − 1)

∫ t

0

X l−2
s d 〈Ns〉
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for any 1 ≤ l <∞. We apply the above formula with l = r/2 (r > 2) and we get

‖uε(t)‖rL2(Q) + r

∫ t

0

‖uε(s)‖r−2
L2(Q) [ν0 ‖uε(s)‖2

H1
0 (Q)N + ν1 ‖uε(s)‖pV ]ds

≤
∥∥u0
∥∥r
L2(Q)

+
r

2

∫ t

0

‖uε(s)‖r−2
L2(Q) ‖g

ε(uε(s))‖2
L2(Q) ds

+r
(r

2
− 1
)∫ t

0

‖uε(s)‖r−2
L2(Q) ‖g

ε(uε(s))‖2
L2(Q) ds

+
r

2

∫ t

0

‖uε(s)‖r−2
L2(Q) (gε(uε(s)),uε(s)) dW (s).

We can therefore follow the same way of reasoning as before (see also [40]) to get
(6.15). The proof is completed. �

The estimate (6.15) (for r > 2) is concerned with the higher integrability of the
sequence (uε)ε so that we can make use of it together with the Vitali’s theorem.
However this will become precise in the next subsection. Now, in order to prove
the tightness property of the sequence of probability laws of (uε)ε, we will also
need the

Proposition 6.4. Assuming that the function t 7→ uε(t) is extended by zero
outside the interval [0, T ], there exists a positive constant C such that

E sup
|θ|≤δ

∫ T

0

‖uε(t+ θ)− uε(t)‖p
′

V ′ dt ≤ Cδ
1

p−1

for each ε > 0 and 0 < δ < 1.

Proof. Assume θ ≥ 0. The same way of reasoning will apply for θ < 0. We have

uε(t+ θ)− uε(t) =

∫ t+θ

t

duε(s)

=

∫ t+θ

t

[−P εuε(s)−Aεuε(s)−B(uε(s)) + f(s)]ds

+

∫ t+θ

t

gε(uε(s))dW (s),

hence

‖uε(t+ θ)− uε(t)‖p
′

V ′ ≤ C

∥∥∥∥∫ t+θ

t

P εuε(s)ds

∥∥∥∥p
′

V ′
+ C

∥∥∥∥∫ t+θ

t

Aεuε(s)ds

∥∥∥∥p
′

V ′

+C

∥∥∥∥∫ t+θ

t

B(uε(s))ds

∥∥∥∥p
′

V ′
+ C

∥∥∥∥∫ t+θ

t

f(s))ds

∥∥∥∥p
′

V ′

+C

∥∥∥∥∫ t+θ

t

∫ t+θ

t

gε(uε(s))dW (s)

∥∥∥∥p
′

V ′

= I1 + I2 + I3 + I4 + I5.
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But

I1 ≤ C

(∫ t+θ

t

‖P εuε(s)‖V ′ ds
)p′

and ∫ t+θ

t

‖P εuε(s)‖V ′ ds ≤ C

∫ t+θ

t

‖P εuε(s)‖H−1(Q)N ds

≤ Cθ
1
p

(∫ t+θ

t

‖P εuε(s)‖p
′

H−1(Q)N ds

) 1
p′

,

hence

I1 ≤ Cθ
p′
p

∫ t+θ

t

‖P εuε(s)‖p
′

H−1(Q)N ds

≤ Cθ
p′
p

∫ t+θ

t

(
1 + ‖P εuε(s)‖2

H−1(Q)N

)
ds since p′ < 2

≤ Cθ
p′
p

∫ t+θ

t

‖P εuε(s)‖2
H−1(Q)N ds

≤ Cδ
p′
p

∫ t+θ

t

‖uε(s)‖2
H1

0 (Q)N ds.

We infer from (6.16) that

E sup
0≤θ≤δ

∫ T

0

I1dt ≤ Cδ
p′
p E
∫ T

0

(∫ t+δ

t

‖uε(s)‖2
H1

0 (Q)N ds

)
dt ≤ Cδ

p′
p .

As for I2 we have, as above,

I2 ≤ Cθ
p′
p

∫ t+θ

t

‖Aεuε(s)‖p
′

V ′ ds,

hence

E sup
0≤θ≤δ

∫ T

0

I2dt ≤ Cδ
p′
p E
∫ T

0

(∫ t+δ

t

‖∇uε(s)‖pLp(Q) ds

)
dt

≤ Cδ
p′
p by (6.17).

Now, dealing with I3 we have∫ t+θ

t

‖B(uε(s))‖V ′ ds ≤ θ
1
p

∫ t+θ

t

‖B(uε(s))‖p
′

V ′ ds,

and proceeding as above (taking into account (6.12) and (6.17)) we get

E sup
0≤θ≤δ

∫ T

0

I3dt ≤ Cδ
p′
p .
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We also have E sup0≤θ≤δ
∫ T

0
I4dt ≤ Cδ

p′
p . For the last integral, by using the

Burkhölder–Davis–Gundy’s inequality we have

E sup
0≤θ≤δ

∫ T

0

I5dt ≤ C

∫ T

0

E
(∫ t+θ

t

‖gε(uε(s))‖2
L2(Q) ds

) p′
2

dt

≤ C

∫ T

0

E
(∫ t+θ

t

‖uε(s)‖2
L2(Q) ds

) p′
2

dt (by (6.7))

≤ Cδ
p′
2

∫ T

0

E sup
0≤s≤T

‖uε(s)‖p
′

L2(Q) dt

≤ Cδ
p′
2 by (6.15).

Combining all the above estimates leads at once at

E sup
0≤θ≤δ

∫ T

0

‖uε(t+ θ)− uε(t)‖p
′

V ′ dt ≤ Cδ
p′
p

since δ
p′
2 ≤ δ

p′
p (recall that p ≥ 3 and 0 < δ < 1). As the same inequality

obviously holds for θ < 0, the proof is completed. �

6.2. Tightness property of the probability laws of (uε)ε . We are now able
to prove the tightness of the law of (uε,W ). We shall for this aim, follow the
lead of Bensoussan [7, Proposition 3.1] and Debussche et al. [16]. Before we can
proceed any further, we need the following important result.

Lemma 6.5 ([7, Proposition 3.1]). Let (µn)n and (νn)n be two ordinary sequences
of positive real numbers such that µn, νn → 0 as n → ∞. For the three positive
constants K, L and M , the set

Z = {u :
∫ T

0
‖u‖pV dt ≤ L, ‖u(t)‖2

H ≤ K a.e. t,

sup|θ|≤µn

∫ T
0
‖u(t+ θ)− u(t)‖p

′

V ′ dt ≤ νnM for all n ∈ N}

is a compact subset of L2(0, T ;H).

This being so, set S = L2(0, T ;H)×C(0, T ; Rm), a metric space equipped with
its Borel σ-algebra B(S). For 0 < ε < 1, let Ψε be the measurable S-valued
mapping defined on (Ω,F ,P) as

Ψε(ω) = (uε(·, ω),W (·, ω)) (ω ∈ Ω).

We introduce the image of P under Ψε defined by

πε(S) = P(Ψ−1
ε (S)) (S ∈ B(S)),

which defines a sequence of probability measures on S. The following result
holds.

Theorem 6.6. The sequence (πε)0<ε<1 is tight in (S,B(S)).
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Proof. Let δ > 0 and let Lδ, Kδ, Mδ be positive constants depending only on δ
(to be fixed later). We have by Lemma 6.5 that

Zδ =

{
u :
∫ T

0

‖u‖p
V dt ≤ Lδ, ‖u(t)‖2H ≤ Kδ a.e. t, sup

|θ|≤µn

∫ T

0

‖u(t + θ)− u(t)‖p′

V ′ ≤ νnMδ

}
is a compact subset of Lp(0, T ;H) for any δ > 0. Here we choose the sequence

(µn)n and (νn)n so that
∑

1
νn

(µn)
1

p−1 <∞. Then we have

P (uε /∈ Zδ) ≤ P
(∫ T

0

‖uε‖pV dt ≥ Lδ

)
+ P

(
sup
t∈[0,T ]

‖uε(t)‖2
H ≥ Kδ

)

+ P

(
sup
|θ|≤µn

∫ T

0

‖uε(t+ θ)− uε(t)‖p
′

V ′ dt ≥ νnMδ

)
.

In view of Tchebychev’s inequality we have

P(uε /∈ Zδ) ≤
1

Lδ
E
∫ T

0

‖uε(t)‖pV dt+
1

Kδ

E sup
t∈[0,T ]

‖uε(t)‖2
H

+
∑ 1

νnMδ

E sup
|θ|≤µn

∫ T

0

‖uε(t+ θ)− uε(t)‖p
′

V ′ dt.

From Propositions 6.3 and 6.4 it follows that

P(uε ∈ Zδ) ≤
C

Lδ
+

C

Kδ

+
C

Mδ

∑
n

1

νn
(µn)

1
p−1 .

So if we choose

Kδ = Lδ =
6C

δ
and Mδ =

6C
(∑

n
1
νn

(µn)
1

p−1

)
δ

,

then we have are led to

P (uε /∈ Zδ) ≤
δ

2
. (6.22)

Next, considering the sequence of probability measures πε2(A) := P(W ∈ A)
(A ∈ B(C(0, T ; Rm))), it consists of only one element, hence it is weakly compact.
As C(0, T ; Rm) is a Polish space, any weakly compact sequence of probability
measure is tight, so that, given δ > 0 there is a compact subset Cδ of C(0, T ; Rm)
such that P(W ∈ Cδ) ≥ 1− δ/2. We infer from this together with (6.21) that

P ((uε,W ) ∈ Zδ × Cδ) ≥ 1− δ.

So we have just checked that for any δ > 0 there is a compact Zδ ×Cδ ⊂ S such
that

πε(Zδ × Cδ) ≥ 1− δ,

by this proving the tightness of the family πε in S = Lp(0, T ;H)×C(0, T ; Rm). �

It follows from Theorem 6.6 and Prokhorov’s theorem that there is a sub-
sequence (πεn)n of (πε)0<ε<1 converging weakly (in the sense of measure) to a
probability measure Π. It emerges from Skorokhod’s theorem that we can find a
new probability space (Ω̄, F̄ , P̄) and random variables (uεn ,W

εn), (u0, W̄ ) defined
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on this new probability space and taking values in S = Lp(0, T ;H)×C(0, T ; Rm)
such that:

(i) The probability law of (uεn ,W
εn) is πεn ;

(ii) The probability law of (u0, W̄ ) is Π;
(iii) As n→∞,

W εn → W̄ in C(0, T ; Rm) P̄-a.s. (6.23)

and
(iv) As n→∞,

uεn → u0 in L2(0, T ;H) P̄-a.s. (6.24)

We can see that {W εn} is a sequence of m-dimensional standard Brownian
motions. Let F̄ t be the σ-algebra generated by (W̄ (s),u0(s)) (0 ≤ s ≤ t) and the
null sets of F̄ . Arguing as in [7, Proof of Theorem 1.1] we can show that W̄ is
an F̄ t-adapted standard Rm-valued Wiener process. Also by the same argument
as in [8, pp. 281-283] we can show that, for all v ∈ V and for almost every
(ω, t) ∈ Ω̄× [0, T ] the following holds true

(uεn(t),v) +
∫ t

0
(P εuεn(s) +Aεuεn(s) +B(uεn(s)),v) ds = (u0,v)

+
∫ t

0
(f(s),v) ds+

∫ t
0

(gε(uεn(s),v) dW εn(s).
(6.25)

6.3. Homogenization results.

6.3.1. Abstract formulation of the problem and preliminary results.
We begin this subsection by stating some important preliminary results neces-
sary to the homogenization process. The notations are those of the preceding
sections. It is worth noting that property (3.3) in Definition 3.8 still valid for f ∈
B(Ω; C(QT ;Bp′,∞

A )) where Bp′,∞
A = Bp′

A ∩ L∞(RN+1
y,τ ) and as usual, p′ = p/(p− 1).

Bearing this in mind, the question of homogenization of (6.13) will naturally
arise from the following important assumption:{

b ∈ B∞
A and aij, gk(·, ·, µ) ∈ B2

A, 1 ≤ i, j ≤ N, 1 ≤ k ≤ m
for any µ ∈ RN (6.26)

where g = (gk)1≤k≤m.

The above hypothesis, which depends on the algebra wmv A, is crucial in ho-
mogenization theory. It gives the structure of the coefficients of the operator
under consideration, and therefore allows one to pass to the limit. Without such
a hypothesis, one cannot perform the homogenization since the convergence pro-
cess relies heavily on the latter. The commonly assumption used is the periodicity
(obtained by taking the algebra to be the continuous periodic functions). Hy-
pothesis (6.26) includes a variety of behaviours, ranging from the periodicity to
the weak almost periodicity (as far as the ergodic algebras are concerned), and
also encompassing all the non ergodic algebras wmv.

Let Ψ ∈ B(Ω; C(QT ; (A)N×N)). Suppose that (6.26) is satisfied. It can be
shown (as in [35, Proposition 4.5]) that the function

(x, t, y, τ, ω) 7→ b(y, τ,Ψ(x, t, y, τ, ω))
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denoted below by b(·,Ψ), belongs to B(Ω; C(QT ;Bp′,∞
A ))N×N ; assumption (6.26)

is crucially used in order to obtain the above result. Likewise, the function
(x, t, y, τ, ω) 7→ gk(y, τ, ψ0(x, t, ω)) (for ψ0 ∈ B(Ω; C(QT ))N) denoted by gk(·, ψ0),
is an element of B(Ω; C(QT ;B2,∞

A )). We may then define their traces

(x, t, ω) 7→ b

(
x

ε
,
t

ε
,Ψ

(
x, t,

x

ε
,
t

ε
, ω

))
and

(x, t, ω) 7→ gk

(
x

ε
,
t

ε
, ψ0 (x, t, ω)

)
from QT × Ω into R, denoted respectively by bε(·,Ψε) and gεk(·, ψ0), as elements
of L∞(QT × Ω). The following result and its corollary can be proven exactly as
their homologues in [30] (see especially Proposition 3.1 therein).

Proposition 6.7. Let 3 ≤ p < ∞. Suppose that (6.26) holds. For Ψ ∈
B(Ω; C(QT ; (A)N×N)) we have

bε(·,Ψε) → b(·,Ψ) in Lp
′
(QT × Ω)N×N -weak Σ as ε→ 0.

The mapping Ψ 7→ b(·,Ψ) of B(Ω; C(QT ; (A)N×N)) into Lp
′
(QT ×Ω;Bp′

A )N×N ex-
tends by continuity to a unique mapping still denoted by b, of Lp(QT×Ω; (Bp

A)N×N)

into Lp
′
(QT × Ω;Bp′

A )N×N such that

(b(·,v)− b(·,w)) · (v −w) ≥ ν1 |v −w|p a.e. in QT × Ω× RN
y × Rτ

‖b(·,v)− b(·,w)‖
Lp′ (QT×Ω;Bp′

A )N×N

≤ ν2 ‖|v|+ |w|‖p−2
Lp(QT×Ω;Bp

A)
‖v −w‖Lp(QT×Ω;(Bp

A)N×N )

b(·, 0) = 0 a.e. in RN
y × Rτ

for all v,w ∈ Lp(QT × Ω; (Bp
A)N×N).

Corollary 6.8. Let ψ0 ∈ (B(Ω)⊗C∞0 (QT ))N and ψ1 ∈ (B(Ω)⊗C∞0 (QT )⊗A∞)N .
For ε > 0, let

Φε = ψ0 + εψε1, (6.27)

i.e., Φε(x, t, ω) = ψ0(x, t, ω) + εψ1(x, t, x/ε, t/ε, ω) for (x, t, ω) ∈ QT × Ω. Let
(vε)ε∈E is a sequence in Lp(QT × Ω)N×N such that vε → v0 in Lp(QT × Ω)N×N -
weak Σ as E 3 ε→ 0 where v0 ∈ Lp(QT × Ω;BpA)N×N , then, as E 3 ε→ 0,∫

QT×Ω

bε(·,∇Φε) · vεdxdtdP →
∫∫

QT×Ω×∆(A)

b̂(·,∇ψ0 + ∂ψ̂1) · v̂0dxdtdPdβ.

Also we will need the following important result in order to pass to the limit
in the stochastic term.

Lemma 6.9. Let (uε)ε be a sequence in L2(QT × Ω)N such that uε → u0 in
L2(QT × Ω)N as ε → 0 where u0 ∈ L2(QT × Ω)N . Then for each 1 ≤ k ≤ m we
have,

gεk(·,uε) → gk(·,u0) in L2(QT × Ω)-weak Σ as ε→ 0.
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Proof. First of all, let u ∈ B(Ω; C(QT ))N ; as seen above, the function (x, t, y, τ, ω) 7→
gk(y, τ,u(x, t, ω)) lies in B(Ω; C(QT ;B2,∞

A )), so that we have gεk(·,u) → gk(·,u) in
L2(QT × Ω)-weak Σ as ε→ 0. Next, since B(Ω; C(QT )) is dense in L2(QT × Ω),
it can be easily shown that

gεk(·,u0) → gk(·,u0) in L2(QT × Ω)-weak Σ as ε→ 0. (6.28)

Now, let f ∈ L2(Ω;L2(QT ;A)); then∫
QT×Ω

gεk(·,uε)f εdxdtdP−
∫∫

QT×Ω×∆(A)

ĝk(·,u0)f̂dxdtdPdβ

=

∫
QT×Ω

(gεk(·,uε)− gεk(·,u0))f
εdxdtdP +

∫
QT×Ω

gεk(·,u0)f
εdxdtdP

−
∫∫

QT×Ω×∆(A)

ĝk(·,u0)f̂dxdtdPdβ.

Using the inequality∣∣∣∣∫
QT×Ω

(gεk(·,uε)− gεk(·,u0))f
εdxdtdP

∣∣∣∣ ≤ C ‖uε − u0‖L2(QT×Ω)N ‖f ε‖L2(QT×Ω)

in conjunction with (6.28) leads at once to the result. �

Remark 6.10. In view of the Lipschitz property on the function gk we may get
more information on the limit of the sequence gεk(·,uε). Indeed, because of
|gεk(·,uε)− gεk(·,u0)| ≤ C |uε − u0|, we deduce the following convergence result:

gεk(·,uε) → gk(·,u0) in L2(QT × Ω)-strong Σ as ε→ 0.

We end this subsection by collecting here below some function spaces that we
will make use in the sequel. We begin by noting that the spaceB(Ω̄)⊗C∞0 (0, T )⊗V
is dense in Lp(Ω̄;Lp(0, T ;V )). Next, let the space

B1,p
div = {u ∈ (B1,p

#Ay
)N : divyu = 0}

where divyu =
∑N

i=1 ∂u
i/∂yi, and its smooth counterpart

A∞y,div = {u ∈ (DAy(RN)/IpAy
)N : divyu = 0}.

The following result holds.

Lemma 6.11. The space %Ny (A∞y,div) is dense in B1,p
div where, for u = (ui)1≤i≤N ∈

(A∞y )N we have %Ny (u) = (%y(u
i))1≤i≤N , %y being the canonical mapping of Bp

Ay

into its separated completion BpAy
.

Proof. This follows exactly in a same way as the proof of [50, Lemma 2.3]. �

Now, let

F1,p
0 = Lp(Ω̄× (0, T );V )× Lp(QT × Ω̄;BpAτ

(Rτ ;B1,p
div))

and

F∞
0 = [B(Ω̄)⊗ C∞0 (0, T )⊗ V ]×

[
B(Ω̄)⊗ C∞0 (QT )⊗

(
DAτ (Rτ )⊗ %Ny (A∞y,div)

)]
.

Thanks to Lemma 6.11 we have the density of F∞
0 in F1,p

0 .



HOMOGENIZATION THEORY 175

6.3.2. Homogenized problem. Let (uεn)n be the sequence determined in the
Subsection 6.2 and satisfying Eq. (6.25). Because of (6.25) the sequence (uεn)n
also satisfies the a priori estimates (6.15), (6.16) and (6.17). Therefore, owing
to the estimate (6.15) (which yields the uniform integrability of the sequence
(uεn)n with respect to ω) and the Vitali’s theorem, we deduce from (6.24) that,
as n→∞,

uεn → u0 in L2(Ω̄;L2(0, T ;H))

and hence

uεn → u0 in L2(QT × Ω̄)N as n→∞. (6.29)

In view of (6.17) and by the diagonal process, one can find a subsequence of (uεn)n
(not relabeled) which weakly converges in Lp(Ω̄;Lp(0, T ;V )) to the function u0

(this means that u0 ∈ Lp(Ω̄;Lp(0, T ;V ))). From Theorem 3.10, we infer the
existence of a function u1 = (uk1)1≤k≤N ∈ Lp(QT × Ω̄;BpAτ

(Rτ ;B1,p
#Ay

)N) such that
the convergence result

∂uεn

∂xi
→ ∂u0

∂xi
+
∂u1

∂yi
in Lp(QT × Ω̄)N -weak Σ (1 ≤ i ≤ N) (6.30)

holds when εn → 0. We recall that ∂u0

∂xi
=
(
∂uk

0

∂xi

)
1≤k≤N

(u0 = (uk0)1≤k≤N) and

∂u1

∂yi
=
(
∂uk

1

∂yi

)
1≤k≤N

. Now, let us consider the following functionals:

âI(u,v) =
N∑

i,j,k=1

∫∫
QT×Ω̄×∆(A)

âij(s, s0)Dju
kDiv

kdxdtdP̄dβ

+

∫∫
QT×Ω̄×∆(A)

b̂(s, s0,Du) · DvdxdtdP̄dβ

where Dju
k =

∂uk
0

∂xj
+ ∂jû

k
1 (∂jû

k
1 = G1

(
∂uk

1

∂yj

)
, and the same definition for Div

k)

and Du = (Dju)1≤j≤N with Dju = (Dju
k)1≤k≤N ;

b̂I(u,v,w) =
N∑

i,k=1

∫∫
QT×Ω̄

ui0
∂vk0
∂xi

wk0dxdtdP̄

for u = (u0,u1),v = (v0,v1),w = (w0,w1) ∈ F1,p
0 . The functionals âI and b̂I are

well-defined. Next, associated to these functionals is the variational problem
u = (u0,u1) ∈ F1,p

0 :

−
∫
QT×Ω̄

u0 · ψ′0dxdtdP̄ + âI(u,Φ) + b̂I(u,u,Φ)

=
∫

Ω̄

∫ T
0

(f(t), ψ0(t, ω)) dtdP̄ +
∫

Ω̄

∫ T
0

(g̃(u0), ψ0) dW̄dP̄
for all Φ = (ψ0, ψ1) ∈ F∞

0 .

(6.31)

The following global homogenization result holds.

Theorem 6.12. The couple (u0,u1) determined by (6.29)-(6.30) solves problem
(6.31).
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Proof. In what follows, we drop the index n from the sequence εn. So we will
merely write ε for εn. Now, from the equality div uε = 0 we easily obtain that
div u0 = 0 and divyu1 = 0, hence u = (u0,u1) ∈ F1,p

0 . It remains to show that u
solves (6.31). For that, let Φ = (ψ0, %

N(ψ1)) ∈ F∞
0 ; define Φε as in Corollary 6.8

(see (6.27) therein), that is, as follows:

Φε(x, t, ω) = ψ0(x, t, ω) + εψ1

(
x, t,

x

ε
,
t

ε
, ω

)
for (x, t, ω) ∈ QT × Ω̄.

Then we have Φε ∈ (B(Ω̄) ⊗ C∞0 (QT ))N and, using Φε as a test function in the
variational formulation of (6.25) we get

−
∫
QT×Ω̄

uε ·
∂Φε

∂t
dxdtdP̄ +

∫
QT×Ω̄

aε∇uε · ∇ΦεdxdtdP̄ (6.32)

+

∫
QT×Ω̄

bε(·,∇uε) · ∇ΦεdxdtdP̄ +

∫
Ω̄

∫ T

0

bI(uε,uε,Φε)dtdP̄

=

∫ T

0

∫
Ω̄

(f(t),Φε) dtdP̄ +

∫ T

0

∫
Ω̄

(gε(·,uε),Φε) dW
εdP̄.

We pass to the limit in (6.32) by considering each term separately. First we have∫
QT×Ω̄

uε ·
∂Φε

∂t
dxdtdP̄ =

∫
QT×Ω̄

uε ·
∂ψ0

∂t
dxdtdP̄ + ε

∫
QT×Ω̄

uε ·
(
∂ψ1

∂t

)ε
dxdtdP̄

+

∫
QT×Ω̄

uε ·
(
∂ψ1

∂τ

)ε
dxdtdP̄.

In view of (6.29) coupling with the convergence result (∂ψ1/∂τ)
ε →M(∂ψ1/∂τ) =

0 in L2(QT × Ω̄)N -weak, we obtain∫
QT×Ω̄

uε ·
∂Φε

∂t
dxdtdP̄ →

∫
QT×Ω̄

u0 ·
∂ψ0

∂t
dxdtdP̄.

Next, it is an usual well known fact that, using the convergence result (6.29)
together with the weak Σ-convergence of the sequence (∇Φε)ε to DΦ, we get∫

QT×Ω̄

aε∇uε · ∇ΦεdxdtdP̄ → âI(u,Φ).

Considering the next term, we use the monotonicity property to have∫
QT×Ω̄

(bε(·,∇uε)− bε(·,∇Φε)) · (∇uε −∇Φε)dxdtdP̄ ≥ 0. (6.33)

Owing to the estimate (6.17) (denoting by E the mathematical expectation on
(Ω̄, F̄ , P̄)) we infer that

sup
ε>0

E ‖bε(·,∇uε)‖p
′

Lp′ (QT )N×N <∞,

so that, from Theorem 3.9, there exist a function χ ∈ Lp′(QT × Ω̄;Bp
′

A )N×N and a
subsequence of ε not relabeled, such that bε(·,∇uε) → χ in Lp

′
(QT×Ω̄)N×N -weak
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Σ as ε → 0. We therefore pass to the limit in (6.33) (as ε → 0) using Corollary
6.8 to get ∫∫

QT×Ω̄×∆(A)

(χ̂− b̂(·,DΦ)) · (Du− DΦ)dxdtdP̄dβ ≥ 0 (6.34)

for any Φ ∈ F∞
0 where, as above, Du = ∇u0 + ∂û1 (u = (u0,u1)) and DΦ =

∇ψ0 + ∂ψ̂1. By the density of F∞
0 in F1,p

0 and by a continuity argument, (6.34)
still holds for Φ ∈ F1,p

0 . Hence by taking Φ = u + λv for v = (v0,v1) ∈ F1,p
0 and

λ > 0 arbitrarily fixed, we get

λ

∫∫
QT×Ω̄×∆(A)

(χ̂− b̂(·,Du + λDv)) · DvdxdtdP̄dβ ≥ 0 for all v ∈ F1,p
0 .

Therefore by a mere routine, we deduce that χ = b(·,∇u0 +∇yu1).

The next point to check is to compute the limε→0

∫
Ω̄

∫ T
0
bI(uε,uε,Φε)dtdP̄. We

claim that, as ε→ 0,∫
Ω̄

∫ T

0

bI(uε,uε,Φε)dtdP̄ → b̂I(u,u,Φ).

Indeed, by the strong convergence result (6.29) in conjunction with the Theorem
3.5, our claim is justified.

We obviously have that∫ T

0

∫
Ω̄

(f(t),Φε(t, ω)) dtdP̄ →
∫ T

0

∫
Ω̄

(f(t), ψ0(t, ω)) dtdP̄.

The last point is concerned with the stochastic part
∫ T

0

∫
Ω̄

(gε(·,uε),Φε) dW
εdP̄.

But thanks to Remark 6.10 we get at once∫ T

0

∫
Ω̄

(gε(·,uε),Φε) dW
εdP̄ →

∫
Ω̄

∫ T

0

(g̃(u0), ψ0) dW̄dP̄

where g̃k(u0)(x, t, ω) =
∫

∆(A)
ĝk(s, s0,u0(x, t, ω))dβ and g̃(u0) = (g̃k(u0))1≤k≤m.

It emerges from the above study that u = (u0,u1) satisfies (6.31). �

In order to derive the homogenized problem, we need to deal with an equivalent
expression of problem (6.31). As we can see, this problem is equivalent to the
following system (6.35)-(6.36) reading as{ ∫∫

QT×Ω̄×∆(A)
âDu · ∂ψ̂1dxdtdP̄dβ +

∫∫
QT×Ω̄×∆(A)

b̂(·,Du) · ∂ψ̂1dxdtdP̄dβ = 0

for all ψ1 ∈ B(Ω̄)⊗ C∞0 (QT )⊗ [DAτ (Rτ )⊗ %Ny (A∞y,div)];

(6.35)
−
∫
QT×Ω̄

u0 · ψ′0dxdtdP̄ + âI(u, (ψ0, 0)) + b̂I(u,u, (ψ0, 0))

=
∫

Ω̄

∫ T
0

(f(t), ψ0(t, ω)) dtdP̄ +
∫

Ω̄

∫ T
0

(g̃(u0), ψ0) dW̄dP̄
for all ψ0 ∈ B(Ω̄)⊗ C∞0 (0, T )⊗ V .

(6.36)
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It is an easy matter to deal with (6.35). In fact, fix ξ ∈ RN×N and consider the
following cell problem:

π(ξ) ∈ BpAτ
(Rτ ;B1,p

div) :∫
∆(A)

â(ξ + ∂π̂(ξ)) · ∂ŵdβ +
∫

∆(A)
b̂(·, ξ + ∂π̂(ξ)) · ∂ŵdβ = 0

for all w ∈ BpAτ
(Rτ ;B1,p

div).

(6.37)

Due to the properties of the functions a and b, Eq. (6.37) admits at least a
solution (see e.g., [27, Chap. 2]). But if π1 = π1(ξ) and π2 = π2(ξ) are two
solutions of (6.37) then, setting π = π1 − π2,{ ∫

∆(A)
â∂π̂ · ∂ŵdβ +

∫
∆(A)

(̂b(·, ξ + ∂π̂1)− b̂(·, ξ + ∂π̂2)) · ∂ŵdβ = 0

for all w ∈ BpAτ
(Rτ ;B1,p

div).

Taking the particular test function w = π, we are led to∫
∆(A)

â∂π̂ · ∂π̂dβ +

∫
∆(A)

(̂b(·, ξ + ∂π̂1)− b̂(·, ξ + ∂π̂2)) · ∂π̂dβ = 0,

and using once again the properties of a and b (see in particular the Proposition
6.7), we get

ν0

∫
∆(A)

|∂π̂|2 dβ + ν1

∫
∆(A)

|∂π̂|p dβ = 0,

which gives ∂π̂ = 0, or equivalently, Dyπ = 0. It then follows that π = 0 since it

belong to BpAτ
(Rτ ; (B1,p

#Ay
)N).

Now, choosing ψ1 = φ ⊗ ϕ ⊗ w in (6.35) with φ ∈ B(Ω̄), ϕ ∈ C∞0 (QT ) and
w ∈ [DAτ (Rτ )⊗ %Ny (A∞y,div)], we obtain by disintegration the following equation:{ ∫

∆(A)
âDu · ∂ŵdβ +

∫
∆(A)

b̂(·,Du) · ∂ŵdβ = 0

for all w ∈ DAτ (Rτ )⊗ %Ny (A∞y,div).
(6.38)

Coming back to (6.37) we choose there ξ = ∇u0(x, t, ω) (for arbitrarily fixed
(x, t, ω) ∈ QT × Ω̄). Comparing the resulting equation with (6.38) and using
the density of DAτ (Rτ )⊗ %Ny (A∞y,div) in BpAτ

(Rτ ;B1,p
div) we get by the uniqueness of

the solution of (6.37) that u1 = π(∇u0), where π(∇u0) stands for the function
(x, t, ω) 7→ π(∇u0(x, t, ω)) defined from QT × Ω̄ into BpAτ

(Rτ ;B1,p
div). This shows

the uniqueness of the solution of (6.35).
As for (6.36), let, for ξ ∈ RN×N ,

M(ξ) =

∫
∆(A)

b̂(·, ξ + ∂π̂(ξ))dβ

and

mξ =

∫
∆(A)

â(ξ + ∂π̂(ξ))dβ.

Then substituting u1 = π(∇u0) in (6.36) and choosing there the special test
function ψ0(x, t, ω) = φ(ω)χ(t)ϕ(x) with φ ∈ B(Ω̄), χ ∈ C∞0 (0, T ) and ϕ ∈ V , we
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quickly obtain by Itô’s formula, the macroscopic homogenized problem (which
holds as an equality in V ′){

du0 + [− div (m∇u0 −M(∇u0)) +B(u0)]dt = fdt+ g̃(u0)dW̄
u0(0) = u0.

(6.39)

Since the above problem is of the same type as (6.13) the existence and the unique-
ness of its solution is ensured by the same arguments as (6.13). We therefore have
the following

Theorem 6.13. Assume that (6.2)-(6.7) hold. Moreover suppose that (6.26)
holds true. Let 3 ≤ p <∞. For each ε > 0 let uε be the unique solution of (6.13)
on a given stochastic system (Ω,F ,P),F t,W defined as in Section 4. Then as
ε → 0, the whole sequence uε converges in probability to u0 in L2(QT )N (i.e.,
||uε − u0||L2(QT )N converges to zero in probability) where u0 is the unique strong

probabilistic solution of (6.39) with W̄ replaced by W .

Proof. The proof of this Theorem is copied on that of [32, Theorem 8]. �

Remark 6.14. The deterministic counterpart of the above result has been recently
obtained in [17] in the case of density-dependent Navier-Stokes equations.

6.4. Some concrete applications of the results of the previous subsec-
tion. A look at the previous subsection reveals that the homogenization process
has been made possible because of the assumption (6.26) which was fundamental
in the said subsection. This assumption is formulated in a general fashion encom-
passing a variety of concrete behaviours as regard the coefficients of the operator
involved in (6.1). We aim at providing in this subsection some natural situations
leading to the homogenization of (6.1).

Example 6.15. The homogenization of (6.1) can be achieved under the period-
icity assumption

(6.26)1 The functions bi(·, ·, λ), aij and gk(·, ·, µ) are both periodic of period 1 in
each scalar coordinate.
This leads to (6.26) with A = Cper(Y ×Z) = Cper(Y )�Cper(Z) (the product
algebra, with Y = (0, 1)N and Z = (0, 1)), and hence Br

A = Lrper(Y × Z)
for 1 ≤ r ≤ ∞.

Example 6.16. The above functions in (6.26)1 are both Besicovitch almost peri-
odic in (y, τ). This amounts to (6.26) with A = AP (RN+1

y,τ ) = AP (RN
y )�AP (Rτ )

(AP (RN
y ) the Bohr almost periodic functions on RN

y ).

Example 6.17. The homogenization problem for (6.1) can be may be considered
under the assumption

(6.26)2 bi(·, ·, λ) is weakly almost periodic while the functions aij and gk(·, ·, µ)
are almost periodic in the Besicovitch sense. This yields (6.26) with A =
WAP (RN

y ) � WAP (Rτ ) (WAP (RN
y ), the algebra of continuous weakly

almost periodic functions on RN
y ; see e.g., [20]).
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Example 6.18. Let Aτ be the algebra of Example 5.3 (see Subsection 5.3).
It is known that Aτ is not ergodic [25, p. 243]. We may however study the
homogenization problem for (6.1) under the assumption that

(6.26)3 bi(y, ·, λ) ∈ Bp′

Aτ
and bi(·, τ, λ) is weakly almost periodic; aij is periodic

and gk(·, ·, µ) is almost periodic.

This assumption is more involved. In fact, let A1,τ be the algebra generated
by AP (Rτ ) ∪ Aτ . It is a fact that A1,τ is an algebra wmv on Rτ which is not
ergodic. Next, let A = WAP (RN

y )�A1,τ . Then, also A is not ergodic, and it can
be easily shown that (6.26) is satisfied with the above A.

Many other examples can be considered. We may also consider an example
involving only non ergodic algebras by taking for example A to be N + 1 copies
of the Aτ ’s above: A = Aτ � . . . � Aτ , N + 1 times, which gives a non ergodic
algebra on RN+1.
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