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RAPID POLYNOMIAL APPROXIMATION IN L2-SPACES
WITH FREUD WEIGHTS ON THE REAL LINE

RUI XIE∗1 AND MARCEL DE JEU2

Communicated by M. S. Moslehian

Abstract. The weights Wα(x) = exp(−|x|α) (α > 1) form a subclass of
Freud weights on the real line. Primarily from a functional analytic angle, we
investigate the subspace of L2(R,W 2

α dx) consisting of those elements that can
be rapidly approximated by polynomials. This subspace has a natural Fréchet
topology, in which it is isomorphic to the space of rapidly decreasing sequences.
We show that it consists of smooth functions and obtain concrete results on
its topology. For α = 2, there is a complete and elementary description of this
topological vector space in terms of the Schwartz functions.

1. Preliminary results and overview

In this paper we are concerned with rapid polynomial approximation of functions
in a weighted L2-space on the real line, where the weight is defined in terms of
a particular class of Freud weights. Using classical approximation results, we
approach the situation primarily from a functional analytic point of view, as we
will now explain.

1.1. Rapidly approximable functions. To motivate our work, we start by
considering the following more general situation. Let Ω ⊂ Rd be a nonempty
measurable subset, and let µ be a non-negative measure on Ω. Let Π denote the
polynomials on Rd, and let Πn (n ≥ 0) denote the polynomials of degree at most
n. Fix 1 ≤ p ≤ ∞, and assume that Π (or rather the set of restrictions of the
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polynomials to Ω) is contained in Lp(Ω, µ); for 1 ≤ p < ∞ this implies that µ
must be finite. Assume further that Π is dense in Lp(Ω, µ). Equivalently, assume
that

d(f,Πn)Lp(Ω,µ) ↓ 0, (1.1)

for all f ∈ Lp(Ω, µ). Here d(f,Πn)Lp(Ω,µ) denotes the distance infP∈Πn ||f −
P ||Lp(Ω,µ) of f to the closed linear subspace Πn of Lp(Ω, µ). If w : N0 → R≥0 is
increasing, and f ∈ Lp(Ω, µ) is such that

sup
n≥0

w(n)d(f,Πn)Lp(Ω,µ) <∞,

then – especially if w increases to∞ – this gives more information than (1.1) about
the gain in accuracy of approximating f by elements of Πn as n increases. We
will say that f ∈ Lp(Ω, µ) is rapidly approximable in Lp(Ω, µ) (by polynomials) if

sup
n≥0

nkd(f,Πn)Lp(Ω,µ) <∞,

for all k ≥ 0. Here, as elsewhere, 00 is to be read as 1. Equivalently, if we put
Π−1 = {0}, we could have required

sup
n≥0

nkd(f,Πn−1)Lp(Ω,µ) <∞,

for all k ≥ 0, which is technically more convenient (cf. the proof of Theorem 2.2).
The set Lp(Ω, µ)ra of rapidly approximable elements of Lp(Ω, µ) is clearly an
abstract linear subspace of Lp(Ω, µ). If p = 2, which is our main interest, Theo-
rem 2.2 implies that L2(Ω, µ)ra is isomorphic as an abstract vector space to the
space (s) of rapidly decreasing sequences. The map realizing this isomorphism
sends f ∈ L2(Ω, µ) to its sequence (aPn(f)) of Fourier coefficients with respect to
a system (Pn) of orthonormal polynomials of nondecreasing degree for µ. More-
over, if we supply L2(Ω, µ) with the locally convex topology induced by the family
{qk : k = 0, 1, 2, . . .} of seminorms on L2(Ω, µ), defined by

qk(f) = sup
n≥0

nkd(f,Πn−1)L2(Ω,µ) (f ∈ L2(Ω, µ)ra),

then L2(Ω, µ)ra is a Fréchet space, the inclusion L2(Ω, µ)ra ⊂ L2(Ω, µ) is con-
tinuous, and the isomorphism of L2(Ω, µ)ra with (s) as above is a topological
isomorphism of Fréchet spaces.

1.2. Concrete models for the rapidly approximable functions. For con-
crete realizations to Ω and µ, the natural questions are to describe the vector space
L2(Ω, µ)ra as concretely as possible, and also to determine its Fréchet topology as
explicitly as possible. Though not motivated from our viewpoint, this program
has in fact been completed in at least two general papers, both for bounded sets,
which we now discuss.

First of all, Zerner [26] (see [16] for the proofs) showed the following. Let
Ω be an open bounded subset of Rd with Lipschitz boundary, let D(Ω̄) be the
Fréchet space of functions having derivatives of all order on the closure Ω̄ of Ω.
Suppose that m ∈ L1(Ω, dx), and that there exists δ > 0 such that m(x) ≥ δ, for
all x ∈ Ω. Choose a system (Pn) of orthonormal polynomials of nondecreasing
degree for µ. Then the map sending f ∈ D(Ω̄) to its sequence (aPn) of Fourier
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coefficients with respect to (Pn) establishes a topological isomorphism between
D(Ω̄) and the space of rapidly decreasing sequences. Thus, interpreted in our
framework, L2(Ω,m(x) dx)ra = D(Ω̄) as topological vector spaces.

The condition that m is strictly bounded away from zero excludes, for exam-
ple, the weight for the Jacobi polynomials for various values of the parameters.
Fortunately, there is a stronger result that covers these weights as well, and in
fact also covers suitable measures for which there need not be a density. This is
due to Zeriahi [25], which is our second paper to be discussed.

Suppose Ω is a nonempty compact subset of Rd with Lipschitz boundary. Let
µ be a Borel measure on Ω. Suppose that there exist C > 0, γ > 0 and 0 < t0 < 1
such that, for every x in Ω, µ(Ω∩B(x, t)) ≥ Ctγ for all 0 < t < t0, where B(x, t)
is the ball with center x and radius t. Let C∞(Ω) be the space of all functions
on Ω that can be extended to a smooth function on Rd, in the Fréchet topology
described as on [25, p. 689]. Choose a system (Pn) of orthonormal polynomials of
nondecreasing degree for µ. Then it follows from [25, Théorème 3.1] that the map
sending f ∈ C∞(Ω) to its sequence (aPn) of Fourier coefficients with respect to
(Pn) establishes a topological isomorphism between the Fréchet space C∞(Ω) and
the space of rapidly decreasing sequences. Thus, interpreted in our framework
again, L2(Ω, µ)ra = C∞(Ω) as topological vector spaces. Let us note that [25]
contains much more material than just cited, and also that – with the measure
as indicated – the topological isomorphism statement holds under more lenient
conditions on the geometry of Ω than having Lipschitz boundary. It is sufficient
for Ω to be a compact uniformly polynomial cuspidal set; see [17] and [25, p. 684].

Returning to the general context again, we note that a typical way of guaran-
teeing that a candidate function f is in L2(Ω, µ)ra, is to show that it falls within
the scope of a suitable Jackson-type inequality. There is an extensive literature
on such inequalities. As an example, taken from [19, p. 815], we let Ω be a fat
(i.e., E = intE) compact subset of Rd. Then it is said in [19] that Ω admits a
Jackson inequality if, for each k = 0, 1, 2, · · · , there exist Ck > 0 and an integer
mk ≥ 0 such that, for all f ∈ C∞

int(E) and all n > k,

nkd(f,Πn)L∞(Ω,dx) ≤ Ck

∑
|α|≤mk

||Dαf(x)||L∞(Ω,dx). (1.2)

Here C∞
int(E) denotes the space of smooth functions on intE that can be contin-

uously extended to E, together with all their partial derivatives. If Ω admits a
Jackson inequality, and f ∈ C∞

int(E), then it is immediate that, for n > k,

nkd(f,Πn)L2(Ω,dx) ≤ Ck

 ∑
|α|≤mk

||Dαf(x)||L∞(Ω,dx)

(∫
Ω

1 dx

)1/2

,

so certainly

sup
n≥0

nkd(f,Πn)L2(Ω,dx) <∞

for all k = 0, 1, 2, . . .. Hence C∞
int(E) ⊂ L2(Ω, dx)ra in that case. Note, however,

that any constant depending on k and f in the right hand side of (1.2) would
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have sufficed to reach this conclusion. It is not necessary to have an upper bound
in (1.2) depending on k and f as it does.

Conversely, if one wants to deduce that L2(Ω, dx)ra is contained in a candidate
space, this can sometimes be done using a Markov-type inequality, on which the
literature is likewise extensive. As an example, in [18, p. 450] it is said that a
compact subset Ω of Rd is Markov, if there exist constants M > 0 and r > 0 such
that, for all P ∈ Π,

‖gradP‖L∞(Ω,dx) ≤M(degP )r‖P‖L∞(Ω,dx).

By iteration this enables one to control the derivatives of P ∈ Πn in terms of P at
the cost of a factor that is polynomial in n. One then transfers such an inequality
to the norm in L2(Ω, µ) and obtains that, if (aPn) is rapidly decreasing, the series∑

Pn
aPnD

αPn – where (Pn) is a system of orthonormal polynomials for L2(Ω, µ)
with nondecreasing degree – is convergent in a suitable topology. This will then
typically allow one to conclude that elements of L2(Ω, dx)ra are smooth in the
sense as applicable in the particular situation at hand.

If all is well, one has two opposite inclusions and L2(Ω, dx)ra has been deter-
mined as a vector space. If there is a natural Fréchet topology on L2(Ω, dx)ra,
then the Closed Graph Theorem and Open Mapping Theorem can be convenient
to show that the isomorphism must necessarily be topological, cf. [26] or [25,
p. 693].

1.3. Rapid approximation on the real line with Freud weights. The dis-
cussion above has been mainly for bounded subsets of Rd, but clearly one can
ask the same question to describe L2(Ω, µ)ra as a topological vector space for a
concrete unbounded Ω and (bounded) µ such that Π ⊂ L2(Ω, µ). Much less is
known here. To our knowledge the present paper may be the first to consider
this question for unbounded Ω, and Theorem 5.1 below is the only case we are
aware of where this question has been answered in full.

The problem is that weighted approximation on unbounded subsets of Rd is
much harder than on unbounded subsets. In particular, the Jackson-type and
Markov-type inequalities, that lie at the basis of the topological isomorphisms in
[26, 25] as discussed above, are far less well developed.

In one dimension, however, there are some results available when Ω = R and
µ = W (x) dx where W is a so-called Freud weight. Following the modern def-
inition [14, Definition 3.3], W : R → R>0 is a Freud weight if it is of the form
W = exp(−Q(x)), where Q : R → R is even, Q′ exists and is positive on (0,∞),
xQ′(x) is strictly increasing on (0,∞), with right limit 0 at 0, and such that, for
some λ,A,B > 1, and C > 0,

A ≤ Q′(λx)

Q′(x)
≤ B for x ≥ C.

Such weights, first introduced by Freud, have received considerable attention; see,
e.g., [5, 6, 7, 8, 11, 12, 15]. Clearly the weights Wα(x) = exp(−|x|α) (α > 1) are
Freud weights.
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Our aim is to describe the topological vector space L2(R,W 2
α dx)ra for α > 1

as much as possible.1

First of all, let us note that Π ⊂ Lp(R,W p
α dx) (α > 0, 1 ≤ p < ∞) and

that, as a special case of the general polynomial density result in Lp-spaces for
quasi-analytic weights [9, Corollary 6.34], which in itself is a consequence of more
general considerations applicable in a variety of topological function spaces, this
subspace is dense if α ≥ 1 and 1 ≤ p < ∞. Aside, for the sake of completeness
we mention that uniform polynomial approximation with weight Wα for α > 0
has also been considered (a special case of Bernstein’s original problem) and that
it is known that the polynomials are then dense if and only if α ≥ 1; see [13,
p. 254] for details and references.

Of course Π ⊂ L2(R,W 2
α dx)ra, but can we see other elements? With the

discussion above in mind, the first thing to look for is a Jackson-type inequality.
Indeed there is one, as given by the following theorem, which is a consequence of
iterating [14, Corollary 3.2] as on [14, p. 12-13] and the formula for the Mhaskar-
Rakhmanov-Saff number figuring therein, cf. [14, p. 11].

Theorem 1.1. Let 1 ≤ p < ∞, r ≥ 1 and α > 1. Then there is a constant C
with the following property:

If f ∈ Cr−1(R), f (j) is absolutely continuous for j = 0, 1, . . . , r − 1, and
‖f (r)‖Lp(R,W p

α dx) <∞, then, for all n ≥ 0,

nr( 1
α
−1)d(f,Πn)Lp(R,W p

α dx) ≤ C‖f (r)‖Lp(R,W p
α dx). (1.3)

Remark 1.2. Lubinsky has shown [13, p. 255] that there is no Jackson inequality
as in (1.3) for α = 1. The amount of work needed to establish this and related
results like Theorem 1.1 and the Markov inequality in Theorem 1.4 is formidable.

The following is immediate from Theorem 1.1.

Proposition 1.3. Let α > 1. If f ∈ C∞(R), f (r) is absolutely continuous and
‖f (r)‖Lp(R,W p

α dx) <∞ for all r ≥ 0, then f ∈ L2(R,W 2
α dx)ra.

The set of all f as in Proposition 1.3 is a vector space, and together with
Π it spans a subspace Lα of L2(R,W 2

α dx)ra. Note, however, that an abso-
lutely continuous function on R cannot grow faster than linearly, so that all
elements of Lα are of at most polynomial growth. Since L2(R,W 2

α dx) con-
tains functions of superexponential growth, Lα seems suspiciously small to be
a candidate for L2(R,W 2

α dx)ra. For α = 2 we know in fact from Theorem 5.1

that L2(R, e−2x2
dx)ra = {gex2

: g ∈ S(R)}, where S(R) is the usual Schwartz
space of rapidly decreasing functions. This space contains functions of superex-
ponential growth and the feeling arises that this could be the general phenom-
enon. At the moment, however, for α > 1, α 6= 2, we can only conclude that
Lα ⊂ L2(R,W 2

α dx)ra. To improve this one would need an inequality as (1.3),
valid for more functions and allowing a constant on the right hand side that need

1As far as the choice of the weight is concerned, the space L2(R,Wα dx)ra would perhaps be
a more natural choice. However, these spaces are isometrically isomorphic to L2(R,W 2

α dx)ra
via a dilation (which leaves each Πn invariant!), and the squared version is more in concordance
with the notation in various approximation results in the literature.



RAPID POLYNOMIAL APPROXIMATION IN L2-SPACES WITH FREUD WEIGHTS 221

not depend on f and r as in (1.3). We will see in Proposition 6.1 how such an
equality is intimately connected with a possible candidate for L2(R,W 2

α dx)ra.
We turn to the other part of the program as sketched in Section 1.2, namely

determining a priori regularity properties of elements of L2(R,W 2
α dx)ra. Here

we can do more. With Section 1.2 in mind, the following Markov inequality [14,
equation (7.3)] for the weights Wα(x) is expected to be useful.

Theorem 1.4. Let p ∈ (0,∞] and α > 1. Then there exists a constant Cα,p such
that, for all P ∈ Πn,

‖P ′‖Lp(R,W p
α dx) ≤ Cα,pn

1− 1
α‖P‖Lp(R,W p

α dx). (1.4)

As it turns out, it is indeed possible to put this to good use, and as a by-product
one also obtains some first information on the topology of L2(R,W 2

α dx)ra in the
process. However, doing so takes some effort, and this is the main body of work
in this paper. It may be a reflection of the intrinsic difficulty of approximation on
unbounded sets that even then our results, although non-trivial, are not complete
(with the exception of α = 2), showing that further research is still necessary to
understand the rapidly approximable functions in this case of an unbounded
underlying set.

For the convenience of the reader, we collect our main results in the following
theorem that summarizes the results of Section 4 and 5. In its formulation, (Pα,n)
is the real-valued polynomial orthonormal basis of L2(R,W 2

α dx), where deg p = n
(n ≥ 0). The Fourier coefficients of f ∈ L2(R,W 2

α dx) with respect to this basis
are given by

aα,n(f) =

∫
R
f(x)Pα,n(x)W 2

α(x) dx (n ≥ 0).

Theorem 1.5 (Main results). Let α > 1 and let L2(R,W 2
α dx)ra be the subspace

of elements of L2(R,W 2
α dx) that can be rapidly approximated by polynomials. Let

C∞
α (R) = {f ∈ C∞(R) : f (j) ∈ L2(R,W 2

α dx), j = 0, 1, 2, · · · }.
Supply C∞

α (R) with the locally convex topology induced by the family of seminorms
{qα,j : j = 0, 1, 2, . . .}, defined, for j = 0, 1, 2, · · · , by

qα,j(f) = ‖f (j)‖L2(R,W 2
α dx) (f ∈ C∞

α (R)).

This space C∞
α (R) is a Fréchet space. If fn → f in C∞

α (R), then f
(j)
n → f (j)

uniformly on compact subsets of R, for all j ≥ 0.
The non-trivial inclusion L2(R,W 2

α dx)ra ⊂ C∞
α (R) holds, and the inclusion

map is continuous. In particular, if fn → f in L2(R,W 2
α dx)ra, then f

(j)
n → f (j)

uniformly on compact subsets of R, for all j ≥ 0.
If f ∈ L2(R,W 2

α dx)ra, and (aα,n(f)) is its sequence of Fourier coefficients with
respect to the orthonormal basis (Pα,n) of L2(R,W 2

α dx), then
∑∞

n=0 aα,n(f)Pα,n

converges to f in L2(R,W 2
α dx)ra. Consequently,

∑∞
n=0 aα,n(f)P

(j)
α,n converges uni-

formly to f (j) on compact subsets of R, for all j = 0, 1, 2, . . ..
If α = 2, then

L2(R, e−2x2

dx)ra = {gex2

: g ∈ S(R)},
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and the resulting bijection between L2(R,W 2
α dx)ra and S(R) is a topological iso-

morphism.

Remark 1.6. It should be mentioned here that [4] sheds some additional light on
L2(R,W 2

α dx)ra. In that paper, the relation between weighted integrability of a
function and weighted summability of its Fourier coefficients is investigated. If
α > 1 and f ∈ L2(R,W 2

α dx)ra, it is a consequence of [4, Theorem 2.3] that∫
R
|f(x)|qe−q|x|α dx <∞ (2 ≤ q <∞),

and that there exists a constant C such that

|f(x)| ≤ Ce|x|
α

. (1.5)

This paper is organized as follows.
In Section 2 we define the notion of rapidly approximable elements of a sep-

arable Hilbert space. It carries a natural topology and it follows from a more
general result that it is then a Fréchet space. With this topology it is shown to
be topologically isomorphic to (s).

Section 3 is written with the spaces C∞
α (R) in Theorem 1.5 in mind, but the

actual main result of this section, Theorem 3.1, is in arbitrary dimension and
considerably more general. Its proof is based on one of the Sobolev Embedding
Theorems.

In Section 4 the Markov inequality in Theorem 1.4 is combined with the results
from Section 3. It is shown that, if f ∈ L2(R,W 2

α dx)ra, its Fourier series does not
just converge in L2(R,W 2

α dx)ra, but in fact in C∞
α (R). This gives the continuous

non-trivial inclusion in Theorem 1.5.
Section 5 is concerned with the case where α = 2, where it is possible to

describe L2(R, e−2x2
dx)ra explicitly.

Section 6 contains some possibilities as a basis for further research. We also
include a result indicating, even a bit stronger than already in the rest of the
paper, how for the problem at hand classical results in approximation theory are
naturally intertwined with functional analytic methods.

Remark 1.7. The papers [26] and [25] give a theoretical foundation to the principle
in the theory of special functions that “smoothness gives good convergence”.
Indeed, if, in the context of those papers, f ∈ L2(Ω, µ)ra (i.e., if f is sufficiently
regular), then the Fourier series of f does not just converge in L2(Ω, µ), but
actually in the topology of L2(Ω, µ)ra. Typically this will imply that one can
partially differentiate the series termwise an arbitrary number of times, and the
resulting series will then converge uniformly to the corresponding derivative of f .
It may be that these very general results are presently not as well known among
researchers in the theory of special functions as they deserve.

2. Rapid approximation in separable Hilbert spaces

In this section we define the subspace of a Hilbert space that consists of elements
that can be approximated rapidly by elements lying in increasing subspaces that
are defined naturally in terms of a fixed orthonormal basis. This subspace is
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supplied with a natural topology in which it is a Fréchet space, and it is shown to
be topologically isomorphic to (s), cf. Theorem 2.2. We start with a preparatory
result in which subspaces of a given Fréchet space are supplied with a new Fréchet
topology that is stronger than the induced topology.

Proposition 2.1. Let X be a Fréchet space, with topology induced by a finite or
countably infinite separating set {pn : n ∈ P} of seminorms on X. Suppose that I
is a finite or countably infinite index set, that, for each i ∈ I, {qi,j : j ∈ Ji} is a set
of continuous seminorms on X of arbitrary cardinality, and that wi : Ji → R≥0

is a nonnegative weight on Ji. Let

XI = {x ∈ X : sup
j∈Ji

wi(j)qi,j(x) <∞ for all i ∈ I}.

Then XI is a linear subspace of X, and, for each i ∈ I, the map qi : XI → R≥0,
defined by

qi(x) = sup
j∈Ji

wi(j)qi,j(x) (x ∈ XI),

is a seminorm on XI . Furthermore, XI is a Fréchet space when supplied with the
locally convex topology induced by the separating family {pn : n ∈ P}∪{qi : i ∈ I}
of seminorms on XI , this topology is independent of the choice of the family
{pn : n ∈ P} inducing the original topology on X, and the inclusion map XI ⊂ X
is continuous.

Proof. The routine verifications – for which the continuity of the qi,j is not needed
– that XI is a linear subspace of X, that the qi (i ∈ I) are seminorms on XI , that
the topology on XI does not depend on the choice of the family {pn : n ∈ P},
and that the inclusion map is continuous are left to the reader.

To see thatXI is Fréchet, we first note that it is metrizable, since the separating
family {pn : n ∈ P} ∪ {qi : i ∈ I} is at most countably infinite.

As to the completeness of XI , let (xk) ⊂ XI be a Cauchy sequence. Since the
pn (n ∈ P ) are included in the family of seminorms defining the topology on XI ,
(xk) is also a Cauchy sequence in the complete space X. Let x denote its limit.
We must prove that x ∈ XI and that xk → x in XI .

To show that x ∈ XI note that, for each fixed i ∈ I, there exists Ci ≥ 0 such
that qi(xk) ≤ Ci for all k. That is, wi(j)qi,j(xk) ≤ Ci, for all j ∈ Ji and all k.
Since the qi,j are continuous on X, this implies that wi(j)qi,j(x) ≤ Ci, for all
j ∈ Ji. We conclude that x ∈ XI .

It remains to show that xk → x in XI , i.e., that pn(x − xk) → 0 (n ∈ P ) and
qi(x − xk) → 0 (i ∈ I). The first statement is simply the convergence of xk to
x in X, so we turn to the second. Fix i ∈ I and let ε > 0. Then there exists
N ∈ N such that qi(xk−xl) < ε/2, for all k, l ≥ N , hence wi(j)qi,j(xk−xl) < ε/2
for all k, l ≥ N and all j ∈ Ji. Since the qi,j are continuous on X, this implies
that wi(j)qi,j(x − xk) ≤ ε/2 for all k ≥ N and all j ∈ Ji. We conclude that
qi(x− xk) ≤ ε/2 < ε for all k ≥ N . Hence qi(x− xk) → 0, as required. �

We can now define the subspace of rapidly approximable elements of a Hilbert
space and show that in its natural topology it is topologically isomorphic to (s).



224 R. XIE, M. DE JEU

The choice to start the indexing of the orthonormal basis at 0 is made with the
constant polynomials in mind.

Theorem 2.2. Let H be a separable Hilbert space with orthonormal basis {en :
n = 0, 1, 2, . . .}. For n = 0, 1, 2, . . ., let Ln = Span{ek : 0 ≤ k ≤ n}. Put
L−1 = {0}. Let

Hra = {x ∈ H : sup
n≥0

nkd(x, Ln−1) <∞ for all k = 0, 1, 2, . . .},

where 00 is to be read as 1, and d(x, Ln−1) is the distance from x to the closed
subspace Ln−1 of H. For k = 0, 1, 2, . . ., define qk : Hra → R≥0 by

qk(x) = sup
n≥0

nkd(x, Ln−1) (x ∈ Hra).

Then {qk : k = 0, 1, 2, . . .} is a separating family of seminorms on Hra that
induces a Fréchet topology on Hra. Moreover, x =

∑∞
n=0 an(x)en ∈ H is in Hra

precisely when (an(x)) ∈ (s), and the map Φ sending x to (an(x)) is a topological
isomorphism between the Fréchet spaces Hra and (s).

Proof. The topology on H is defined by the norm || . || and, for n = −1, 0, 1, 2, . . .,
the map sending x → d(x, Ln−1) is a continuous seminorm on H. Therefore
Proposition 2.1 shows that Hra is a Fréchet space in the topology induced by
the family {|| . ||} ∪ {qk : k = 0, 1, 2, . . .} of seminorms on Hra. However, since
|| . || ≤ q0, the family {qk : k = 0, 1, 2, . . .} induces the same topology.

It remains to establish the topological isomorphism between Hra and (s).
First of all, if x =

∑∞
n=0 an(x)en ∈ H is in Hra, and k ∈ N0 is fixed, then

there exists C ≥ 0 such that nk (
∑∞

i=n |ai(x)|2)1/2 ≤ C for all n. Then certainly
nk|an(x)| ≤ C for all n, showing that (an(x)) ∈ (s). Conversely, assume x =∑∞

n=0 an(x)en ∈ H with (an(x)) ∈ (s). Fix k ≥ 0. Then there exists a constant
C ≥ 0 such that |an(x)| ≤ C/nk+1 for all n ≥ 1. Hence we have, for n ≥ 2,

d(x, Ln−1) =

(
∞∑

i=n

|ai(x)|2
)1/2

≤

(
∞∑

i=n

C2

n2k+2

)1/2

≤
(∫ ∞

n−1

C2

x2k+2
dx

)1/2

=
C√

2k + 1

1

(n− 1)k+1/2
.

This implies that supn≥0 n
kd(x, Ln−1) <∞, as required.

Thus Φ : Hra → (s) is an isomorphism of abstract vector spaces. To see that
it is also topological, one could resort to elementary means as above, but it also
comes almost for free as a consequence of the completeness of the spaces. To start
with, the continuity of Φ follows from the Closed Graph Theorem for F-spaces
[21, Theorem 2.15]. Indeed, suppose that xk → x in Hra and Φ(xk) → (an)
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in (s). Then certainly ||xk − x|| ≤ q0(x − xk) → 0, hence the continuity of the
Fourier coefficients on H implies that Φ(xk) converges to Φ(x) in each coordinate.
But Φ(xk) also converges to (an) in each coordinate. Hence Φ(x) = (an), and
the Closed Graph Theorem then shows that Φ is continuous. Since we already
know that Φ is an isomorphism of abstract vector spaces, the Open Mapping
Theorem for F-spaces [21, Theorem 2.11] then implies that Φ is a topological
isomorphism. �

3. Weighted spaces of smooth functions

It is not obvious that the elements of the spaces L2(R,W 2
α dx)ra are actually

smooth if α > 1, but this will follow from the Markov inequality (1.4) and the
completeness of the spaces in the following rather general result. The statement
on convergence in the spaces will allow us to improve our understanding of the
topology on L2(R,W 2

α dx)ra.
In this section, we employ the usual notation for the differential operator Dα

of order |α| corresponding to a multi-index α ∈ Nd
0.

Theorem 3.1. Let Ω be a nonempty open subset of Rd and w : Ω → (0,∞) a
strictly positive measurable function on Ω. For 1 ≤ p <∞, define

C∞
w,p(Ω) = {f ∈ C∞(Ω) : Dαf ∈ Lp(Ω, w dx) for all α ∈ Nd

0},
and supply C∞

w,p(Ω) with the locally convex topology induced by the family of semi-

norms {qw,p,α : α ∈ Nd
0}, defined by

qw,p,α(f) =

{∫
Ω

|Dαf(x)|pw(x)dx

} 1
p

(f ∈ C∞
w,p(Ω)).

Suppose that there exists an open cover Ω =
⋃

i∈I Ωi, where I is an arbitrary
index set, such that, for each i ∈ I, Ωi, there exists Ci > 0 such that w(x) ≥ Ci

for all x ∈ Ωi. Then C∞
w,p(Ω) is a Fréchet space.

If fn → f in C∞
w,p(Ω) and α ∈ Nd

0, then Dαfn → Dαf uniformly on Ωi for all
i ∈ I, and consequently also on all compact subsets of Ω.

Before we turn to the proof, let us note that such a cover always exists if w
is continuous and strictly positive: let I = Ω and take a small open ball around
each x ∈ Ω that is contained in Ω. Hence C∞

w,p(Ω) is a Fréchet space for such w,
for all 1 ≤ p <∞, and the convergence statement is valid.

As to the proof of Theorem 3.1, we first note that {qw,p,α : α ∈ Nd
0} is trivially

a separating family of seminorms on C∞
w,p(Ω). Indeed, since w is strictly positive,

qw,p,0 is in fact a norm. Since the family is countable, [3, Chapter IV Proposi-
tion 2.1] shows that C∞

w,p(Ω) is metrizable. Hence it remains to show that C∞
w,p(Ω)

is complete, and that the statement on convergence holds.
Our proof for this is based on a part of the Sobolev Imbedding Theorem as

formulated in [2]. We recall the relevant notions for the convenience of the reader.
Let m = 0, 1, 2, . . . be an integer and let 1 ≤ p ≤ ∞. If Ω is a nonempty possibly
unbounded open subset of Rd, the Sobolev space Wm,p(Ω) is defined as

Wm,p(Ω) = {f ∈ Lp(Ω, dx) : Dαf ∈ Lp(Ω, dx) for 0 ≤ |α| ≤ m},
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with the usual identification of functions agreeing almost everywhere. Here Dαf
is the weak (distributional) derivative of f . As is well known (see [2, 3.3] for a
proof), Wm,p(Ω) is a Banach space when equipped with the norm defined, for
f ∈ Wm,p(Ω), by

‖f‖m,p =


(∑

0≤|α|≤m ‖Dαf‖p
p

)1/p

if 1 ≤ p <∞;

max0≤|α|≤m ‖Dαf‖∞ if p = ∞.

The part of the Sobolev Imbedding Theorem we will need embeds these spaces
Wm,p(Ω) continuously into spaces of functions with a certain minimal degree of
regularity. If Ω is a nonempty open subset of Rd, and j = 0, 1, 2, . . ., then Cj

B(Ω)
is defined by

Cj
B(Ω) = {u ∈ Cj(Ω) : Dαu is bounded on Ω for all 0 ≤ |α| ≤ j}.

Then (see [2, 1.27]) Cj
B(Ω) is a Banach space when supplied with the norm defined,

for f ∈ Cj
B(Ω), by

‖f‖j = max
0≤|α|≤j

‖Dαf‖∞.

We also recall that Ω is said to satisfy the cone condition if there exists a finite
cone C such that each x ∈ Ω is the vertex of a finite cone Cx that is contained in
Ω and that is obtained from C by a rigid motion.

The case of the Sobolev Imbedding Theorem we will use is then as follows [2,
Theorem 4.12.I.A].

Theorem 3.2. Let Ω be a nonempty open subset of Rd satisfying the cone con-
dition. Let j ≥ 0 and m ≥ 1 be integers and let 1 ≤ p <∞. If either mp > n or
m = n and p = 1, then

W j+m,p(Ω) ⊂ Cj
B(Ω),

and the inclusion map is continuous.

We can now finish the proof of Theorem 3.1.

Conclusion of the proof of Theorem 3.1. We start by establishing the following
claim: If (fn) is a Cauchy sequence in C∞

w,p(Ω), then there exists a function
f ∈ C∞(Ω) such that Dαfn(x) → Dαf(x) uniformly on Ωi, for all i ∈ I and
all α ∈ Nd

0. To see this, first note that we may as well assume that all Ωi in
Theorem 3.1 satisfy the cone condition. Indeed, for each x ∈ Ω one can choose an
open Euclidean ball Bx that is contained in one of the Ωi, and then Ω =

⋃
x∈ΩBx

is an open cover with all required properties. If i ∈ I, then, since w > Ci on Ωi,
the map Resi given by restricting functions on Ω to Ωi gives natural continuous
maps Resi,m : C∞

w,p(Ω) → Wm,p(Ωi), for all m = 0, 1, 2, . . . . Since Ωi satisfies
the cone condition, Theorem 3.2 then implies that, by composition of continuous
inclusions, restriction gives continuous maps Resi,j : C∞

w,p(Ω) → Cj
B(Ωi), for all

j = 0, 1, 2, . . .. Thus, if (fn) is a Cauchy sequence in C∞
w,p(Ω), then (Resi,jfn) is

a Cauchy sequence in Cj
B(Ωi), for all i ∈ I and all j = 0, 1, 2, . . .. Since these

spaces are Banach spaces, it is then not difficult to see that, for each i ∈ I, there
exists φi ∈ C∞(Ωi) such that, for every α ∈ Nd

0, (DαResifn) converges uniformly
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to Dαφi on Ωi. Since the φi must then clearly agree on intersections of the Ωi,
they patch together to yield f ∈ C∞(Ω) as requested. This concludes the proof
of the claim.

Now let (fn) be a Cauchy sequence in C∞
w,p(Ω). As a consequence of the first

part of the proof, there exists f ∈ C∞(Ω) such that Dαfn(x) → Dαf(x) for
all x ∈ Ω and all α ∈ Nd

0. Actually, f is in C∞
w,p(Ω) and (fn) → f in C∞

w,p(Ω),
so that C∞

w,p(Ω) is complete. To see this, note that (Dαfn) is a Cauchy se-

quence in Lp(Ω, w dx), for all α ∈ Nd
0. Hence for each α ∈ Nd

0 there exists
gα ∈ Lp(Ω, w dx) such that (Dαfn) → gα, and there exists a subsequence (Dαfnk

)
such that (Dαfnk

(x)) converges w(x) dx-almost everywhere (and hence Lebesgue
almost everywhere, since w is strictly positive) to gα(x) as k tends to infinity.
But (Dαfnk

(x)) also converges to Dαf(x) for all x ∈ Ω. Hence gα = Dαf almost
everywhere, for all α ∈ Nd

0. We conclude that f ∈ C∞
w,p(Ω) and that (fn) → f in

C∞
w,p(Ω). This concludes the proof of the completeness of C∞

w,p(Ω).
The convergence statement is already implicit in the first part of the proof.

Indeed, as observed in that first part, restriction gives continuous maps Resi,j :

C∞
w,p(Ω) → Cj

B(Ωi), for all j = 0, 1, 2, . . .. Applying these to a convergent sequence
fn → f gives the statement on uniform convergence of all (Dαfn) on all Ωi. The
uniform convergence on all compact subsets of Ω is then also clear. �

Remark 3.3. We could also have introduced our space C∞
w,p(Ω) as

W∞
w,p = {f : Ω → C is measurable and Dαf ∈ Lp(Ω, w dx) for all α ∈ Nd

0},

with the usual identification of functions agreeing almost everywhere, and where
Dαf is now the weak derivative of f . Indeed, an argument as in the above proof,
combining local restrictions with the regularity statement in Theorem 3.2, shows
that elements of W∞

w,p are necessarily smooth. Hence C∞
w,p(Ω) = W∞

w,p and, if one
prefers, one can think of C∞

w,p(Ω) as a weighted Sobolev space of infinite order.

4. L2(R,W 2
α dx)ra: regularity and topology

We can now establish the regularity of elements of L2(R,W 2
α dx)ra and get a

better grip on the topology of this space. Ultimately this is all based on the
Markov inequality (1.4), that is used in the proof of the key Proposition 4.2, and
the Sobolev Embedding Theorem 3.2, that is used in the proof of Theorem 3.1.

As a first preparatory result, we note the following special case of Theorem 3.1.

Theorem 4.1. For α > 0, let

C∞
α (R) = {f ∈ C∞(R) : f (j) ∈ L2(R,W 2

α dx), j = 0, 1, 2, · · · }.

Supply C∞
α (R) with the locally convex topology induced by the family of seminorms

{qα,j : j = 0, 1, 2, . . .}, defined, for j = 0, 1, 2, · · · , by

qα,j(f) = ‖f (j)‖L2(R,W 2
α dx) (f ∈ C∞

α (R)). (4.1)

Then C∞
α (R) is a Fréchet space. If fn → f in L2(R,W 2

α dx)ra, then f
(j)
n → f (j)

uniformly on compact subsets of R, for all j ≥ 0.
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The second preparatory result, based on the Markov inequality (1.4), is as
follows.

Proposition 4.2. Let α > 1 and let F−1
α : (s) → L2(R,W 2

α dx) be the map assign-
ing to (an) ∈ (s) the corresponding element

∑∞
n=0 anPα,n of L2(R,W 2

α dx). Then

the series actually converges in C∞
α (R), and consequently

∑∞
n=0 anP

(j)
α,n converges

uniformly on compact subsets of R to (
∑∞

n=0 anPα,n)
(j)

, for all j = 0, 1, 2, . . ..
Furthermore, the map F−1

α : (s) → C∞
α (R) thus obtained is continuous.

Proof. We start by showing that the series
∑∞

n=0 anPα,n converges in C∞
α (R) for

all (an) ∈ (s). Since we know from Theorem 4.1 that C∞
α (R) is complete, this will

follow once we know that
(∑N

n=0 anPα,n

)∞
N=0

is a Cauchy sequence in C∞
α (R). For

this it is clearly sufficient to show that
∑∞

n=0 qα,j(anPα,n) <∞ for j = 0, 1, 2, . . .,
where the qα,j are the seminorms in (4.1). As to this, we note that it follows by
iterating the Markov inequality (1.4) for p = 2 that, for n, j = 0, 1, 2, . . .,

‖P (j)
α,n‖L2(R,W 2

α dx) ≤ Cj
α,2 {n(n− 1) · · · (n− j + 1)}1− 1

α ‖Pα,n‖L2(R,W 2
α dx)

≤ Cj
α,2n

j(1− 1
α)‖Pα,n‖L2(R,W 2

α dx) = Cj
α,2n

j(1− 1
α).

Thus, for j = 0, 1, 2, . . .,

∞∑
n=0

qα,j(anPα,n) =
∞∑

n=0

|an|‖P (j)
α,n‖L2(R,W 2

α dx) ≤ Cj
α,2

∞∑
n=0

|an|nj(1− 1
α). (4.2)

Since (an) ∈ (s), the right hand side in (4.2) is finite, as required, and this
concludes the proof of the claim. The statement on uniform convergence then
follows from Theorem 4.1.

For the continuity of F−1
α : (s) → C∞

α (R), fix j ≥ 0. Choose an integer
k ≥ j

(
1− 1

α

)
. Then for arbitrary (an) ∈ (s) we have, using (4.2),

qα,j

(
F−1

α ((an))
)

= qα,j

(
∞∑

n=0

anPα,n

)

≤
∞∑

n=0

qα,j(anPα,n)

≤ Cj
α,2

∞∑
n=0

|an|nj(1− 1
α)

≤ Cj
α,2

∞∑
n=0

|an|nk

≤ Cj
α,2|a0|+ Cα,2

∞∑
n=1

|an|n(k+2)−2

≤ Cj
α,2 sup

n
|an|+ Cj

α,2

(
∞∑

n=1

1

n2

)
sup

n
nk+2|an|.
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Since (an) → supn |an| and (an) → supn n
k+2|an| are elements of the family of

seminorms defining the topology on (s), we conclude (see, e.g., [10, Proposi-
tion 1.2.8]) that F−1

α is continuous. �

It is now a simple matter to combine this. Since Φα : L2(R,W 2
α dx)ra → (s) is

continuous by Theorem 2.2, and Φ−1
α : (s) → C∞

α (R) is continuous by Proposi-
tion 4.2, we see that Φ−1

α ◦Φα : L2(R,W 2
α dx)ra → C∞

α (R) is continuous. But this
composition is the identity on L2(R,W 2

α dx)ra. Hence we have the following.

Theorem 4.3. Let α > 1. Then L2(R,W 2
α dx)ra ⊂ C∞

α (R), and the inclusion

map is continuous. If fn → f in L2(R,W 2
α dx)ra, then f

(j)
n → f (j) uniformly on

compact subsets of R, for all j ≥ 0.

5. L2(R, e−2x2
dx): topological isomorphism with the Schwartz space

Although for general α > 1 Theorem 4.3 establishes some non-trivial basic
facts for L2(R,W 2

α dx)ra, a more concrete description of this space would be de-
sirable, even if only as a set. At present this seems out of reach, but there is
an exception if α = 2. In that case, L2(R, e−2x2

dx)ra is topologically isomorphic
with the Schwartz space S(R) of rapidly decreasing functions via a multiplica-
tion map, cf. Theorem 5.1. The idea is to combine the topological isomorphism
of L2(R, e−2x2

dx)ra with (s) and a known topological isomorphism between (s)
and the S(R).

The latter topological isomorphism between (s) and S(R) involves Hermite
functions, whose definitions we now recall. For n ≥ 0 and x ∈ R, let, as in [20,
p. 142], or [24, (1.1.2) and (1.1.18)],

hn(x) = (−1)n
(
2nn!

√
π
)− 1

2 e
1
2
x2 dn

dxn
e−x2

(5.1)

Then the Hermite functions (hn) form an orthonormal basis of L2(R, dx). This
is stated as [20, Lemma V.3] with a reference to the exercises for the proof.
Alternatively, [1, 22.2.14] or [23, (5.5.1)] gives orthonormality, and [23, (5.7.2)]
gives completeness; the latter also follows from [9, Corollary 6.34].

If f ∈ L2(R, dx), then its Fourier coefficients with respect to this orthonormal
basis are given, for n ≥ 0, by

Fh(f)n =

∫
R
f(x)hn(x) dx.

If f ∈ S(R), then the sequence (Fh(f)n) is not just in `2, but in fact in (s).
Actually, by [20, Theorem V.13] and its proof, see also [22, p. 262], Fh : S(R) →
(s) is an isomorphism of topological vector spaces between S(R) and (s), and if
f ∈ S(R), then the series

∑∞
n=0Fh(f)nhn converges to f in the topology of S(R).

We will now relate this to our setup, as follows. If we define

ψ(x) = e−x2/2 (x ∈ R),

then it is clear from (5.1) that

hn = Qnψ (n ≥ 0) (5.2)
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for some polynomial Qn of degree n. Hence (Qn) is the system of orthonormal
polynomials for the weight ψ2 on R. They are essentially the P2,n, up to a
constant and a dilation. Establishing notation to make this precise, if f : R → C
is a function, and r > 0, we let

δrf(x) = f(rx) (x ∈ R)

be the corresponding dilation of f . Now, for n,m ≥ 0, a change of the variable
of integration in the second step gives

δn,m =

∫
R
P2,n(x)P2,m(x)e−2x2

dx

=
1√
2

∫
R
P2,n(s/

√
2)P2,n(2/

√
2)e−s2

ds

=

∫
R

(
δ1/

√
2P2,n

21/4

)
(s)

(
δ1/

√
2P2,m

21/4

)
(s)ψ2(s) ds.

Since dilation preserves the degree of a polynomial, we conclude that

Qn =
δ1/

√
2P2,n

21/4
(n ≥ 0). (5.3)

If f ∈ L2(R, e−2x2
dx), then (δ1/

√
2f)ψ ∈ L2(R, dx). For such f we compute, for

n ≥ 0, using (5.3) and (5.2),

(f, P2,n)L2(R,e−2x2dx) =

∫
R
f(x)P2,ne

−2x2

dx

=
1√
2

∫
R
f(s/

√
2)P2,n(s/

√
2)e−s2

ds

=

∫
R

(
δ1/

√
2f

21/4
ψ

)
(s)

(
δ1/

√
2P2,n

21/4
ψ

)
(s) ds

=

∫
R

(
δ1/

√
2f

21/4
ψ

)
(s) (Qnψ) (s) ds

= Fh

(
δ1/

√
2f

21/4
ψ

)
n

. (5.4)

When combining the topological isomorphisms Φα : L2(R, e−2x2
dx)ra → (s) and

F−1
h : (s) → S(R), we obtain Φα◦F−1

h : L2(R,W 2
α dx)ra → S(R), which is likewise

a topological isomorphism. Concretely, if f ∈ L2(R, e−2x2
dx)ra, then, using (5.4),

Φα ◦ F−1
h (f) =

∞∑
n=0

(f, P2,n)L2(R,e−2x2
dx)hn

=
∞∑

n=0

Fh

(
δ1/

√
2f

21/4
ψ

)
n

hn

=
δ1/

√
2f

21/4
ψ.
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We conclude that the map

f 7→
δ1/

√
2f

21/4
ψ

is a topological isomorphism between L2(R, e−2x2
dx)ra and S(R). Since dilations

are automorphisms of S(R), the same is then true for f 7→ δ√2((δ1/
√

2f)ψ) = fψ2.

All in all, we have the following description of L2(R, e−2x2
dx)ra.

Theorem 5.1. The elements of L2(R, e−2x2
dx)ra are precisely all functions f of

the form

f(x) = g(x)ex2

(x ∈ R), (5.5)

where g ∈ S(R). That is, if f ∈ L2(R, e−2x2
dx), then the following are equivalent:

(1) supn n
kd(f,Πn−1)L2(R,e−2x2dx) <∞, for all k = 0, 1, 2, . . ..

(2) There exists a Schwartz function g ∈ S(R) as in (5.5).

Moreover, the bijection in (5.5) between L2(R, e−2x2
dx)ra and S(R) is a topo-

logical isomorphism.

6. Possibilities

Although Theorem 5.1 gives a complete answer for α = 2, the results for general
α > 1, α 6= 2 are still not complete, with Theorem 1.5 and Remark 1.6 containing
what appears to be known at this moment.

It is tempting to try to extrapolate Theorem 5.1, and suggest the possibility
that L2(R,W 2

α dx)ra consists of (or at least contains) the functions that are equal
to gW−1

α on (R,∞) for some g ∈ S(R) and R > 0, and likewise at −∞. Certainly
(1.5) shows that there exist such g with g bounded, but this is still very far from
g being rapidly decreasing, and we refrain from stating a conjecture.

Likewise, at the moment we have no evidence, also not for α = 2, that C∞
α (R)

may or not be equal to L2(R,W 2
α dx)ra. Still it is interesting to investigate what

would follow if this were actually the case. This is done in our final result. It shows
that the validity of a stronger form of the Jackson-type inequality (1.3) would
not only imply that C∞

α (R) = L2(R,W 2
α dx)ra as sets, but is actually equivalent

with the equality of these sets.

Proposition 6.1. Let α > 1. Then the following are equivalent:

(1) C∞
α (R) = L2(R,W 2

α dx)ra as sets;
(2) C∞

α (R) = L2(R,W 2
α dx)ra as topological vector spaces;

(3) For each f ∈ C∞
α (R) and each k = 0, 1, 2, . . ., there exists a constant C

such that, for all n = 0, 1, 2, . . .,

nkd(f,Πn)L2(R,W 2
α dx) ≤ C. (6.1)

(4) For each k = 0, 1, 2, . . ., there exist a constant C, an integer r > 0, and
integers 0 ≤ j1 < j2 < · · · < jr, with the property that, for all f ∈ C∞

α (R)
and all n = 0, 1, 2, . . .,

nkd(f,Πn)L2(R,W 2
α dx) ≤ C

r∑
i=1

‖f (ji)‖L2(R,W 2
α dx). (6.2)
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Proof. Clearly (2) implies (1). Conversely, if (1) holds, then the Open Mapping
Theorem shows that the continuous inclusion map L2(R,W 2

α dx)ra ⊂ C∞
α (R) is

actually a topological isomorphism. Hence (1) implies (2). It is clear that (4)
implies (3). Since (3) is equivalent to stating that C∞

α (R) ⊂ L2(R,W 2
α dx)ra, and

the reverse inclusion is already known to be true, (3) implies (1). Hence the proof
will be complete once we show that (2) implies (4). For this, we fix k ≥ 0 and
note (cf. Theorem 2.2) that q̃k : L2(R,W 2

α dx)ra → R≥0, defined by

q̃k(f) = sup
n≥0

nkd(f,Πn)L2(R,W 2
α dx) (f ∈ L2(R,W 2

α dx)ra),

is a continuous seminorm on L2(R,W 2
α dx)ra. Hence, by assumption, it is a con-

tinuous seminorm on C∞
α (R), where the topology is defined by the family {qα,j :

j = 0, 1, 2, . . .} of seminorms as in (4.1). But then, by [10, Proposition 1.2.8],
there exist a constant C, an integer r > 0, and integers 0 ≤ j1 < j2 < · · · < jr,
such that, for all f ∈ C∞

α (R),

q̃(f) ≤ C
r∑

i=1

qα,ji
(f).

This is the statement in (4). �

Even though Proposition 6.1 is only a “what if”-result, it still brings to the
foreground the potential use of combining results in approximation theory of a
classical nature with functional analytic methods. This has already been implicit
in the rest of the paper, but here it is particularly clear.

For example, it is obvious that (4) implies that C∞
α (R) ⊂ L2(R,W 2

α dx)ra, but
for the converse inclusion (which we know to be true) we used the completeness
of C∞

α (R), which was ultimately based on the Sobolev Embedding Theorem.
The fact that the statement in (1) about sets implies a Jackson-type inequality

as in (6.2) is perhaps even more illustrative. Indeed, once we know that the
spaces in (2) are complete, and that one of the inclusions is continuous (which
we know to be true by proof using the Markov inequality), the Open Mapping
Theorem shows immediately that, if these spaces are equal, they must then be
topologically isomorphic. As in the above proof, the Jackson-type inequality
(6.2) is then a direct consequence of a general functional analytic principle for
continous seminorms on locally convex spaces.

The most remarkable consequence of mixing classical approximation theory
with functional analysis, however, seems to be the equivalence of (3) and (4).
There does not seem to be an a priori reason why a pointwise Jackson-type
inequality as in (6.1), with an “undetermined” right hand side, should imply a
uniform inequality as in (6.2), with a right hand side as occurring in the literature.
Nevertheless this must be the case, as a consequence of the Markov inequality,
the Sobolev Embedding Theorem and the Open Mapping Theorem combined.
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