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Abstract. In this paper, we study the concept of harmonic functionals for
certain Banach algebras such as generalized Fourier algebras. For a non-
zero character φ on Banach algebra A, we also characterize the concept of
φ-amenability in terms of harmonic functionals. Finally, for a locally compact
group G we investigate the space Hσ,x of σ-harmonic functionals in the dual
of generalized Fourier algebra Ap(G). The main result states that G is first
countable if and only if σ is adapted if and only if Hσ,x = Cφx.

1. Introduction and preliminaries

For a locally compact group G and 1 < p < ∞, Herz [6] introduced the generalized
Fourier algebra of G denoted by Ap(G). Elements of Ap(G) can be represented,
nonuniquely, as u =

∑∞
i=1(fi ∗ ǧi), where fi ∈ Lp(G) , gi ∈ Lq(G), 1

p
+ 1

q
= 1,

ǧ(x) = g(x−1) and
∑∞

i=1 ‖fi‖p‖‖gi‖q < ∞. Then

‖u‖Ap = inf

{
∞∑
i=1

‖fi‖p‖‖gi‖q : u =
∞∑
i=1

(fi ∗ ǧi)

}
determines a norm on Ap(G). When p = 2, Ap(G) coincides with the Fourier
algebra A2(G) introduced by Eymard [4].

For 1 < p < ∞ we denote by L(Lp(G)) the space of all continuous linear
operators on Lp(G), equipped with the usual operator norm ‖ · ‖op, and let
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λp : M(G) → L(Lp(G)) be the left regular representation of the measure al-
gebra M(G) on Lp(G) defined by λp(µ)(f) = µ ∗ f , where µ ∈ M(G), f ∈
Lp(G) and µ ∗ f =

∫
G

f(y−1x)dµ(y). Let PMp(G) be the weak∗-closure of
λp(M(G)) in L(Lp(G)), where the closure is with respect to the weak∗ topology
σ(L(Lp(G)), Lp(G)⊗̂Lq(G)). The space PMp(G) called the space of p-pseudo-
measures on G. It is well known that PMp(G) can be identified with the dual
of the generalized Fourier algebra Ap(G). When µ ∈ M(G) the dual action of
λp(µ) on Ap(G) is defined by λp(µ)(u) =

∫
G

u(x)dµ(x) for all u ∈ Ap(G). With
the usual operations of pointwise addition and multiplication, Ap(G) is a com-
mutative semisimple regular and Tauberian Banach algebra.

Let MAp(G) be the multiplier algebra of Ap(G); that is, the set of all continuous
functions v on G such that vu ∈ Ap(G) for all u ∈ Ap(G). With the multiplier
norm

‖v‖M = inf
{
‖uv‖Ap : u ∈ Ap(G), ‖u‖Ap ≤ 1

}
MAp(G) is a Banach algebra containing Ap(G) as an ideal with decreasing norms
‖ · ‖M ≤ ‖ · ‖Ap . There is a natural MAp(G)-module action on PMp(G) defined
by 〈v · T, u〉 = 〈T, uv〉 for all u ∈ Ap(G), v ∈ MAp(G) and T ∈ PMp(G).

Let A be a Banach algebra. We denote by ∆(A) the set of all non-zero char-
acters, bounded multiplicative linear functionals on A. For φ ∈ ∆(A), Kaniuth,
Lau and Pym [11, 12] introduced and investigated a notion of amenability for Ba-
nach algebras called φ-amenability; see also [1, 2, 9, 19]. In fact, A is said to be
φ-amenable if there exists m ∈ A∗∗ such that m(φ) = 1 and m(f ·a) = φ(a) m(f)
for all f ∈ A∗ and a ∈ A, where f · a ∈ A∗ is defined by (f · a)(b) = f(ab) for all
b ∈ A. Any such m is called a φ-mean. An element a of A is called φ-maximal
if it satisfies ‖a‖ = φ(a) = 1. Let SAφ denote the collection of all φ-maximal

elements of A. It is easy to see that SAφ is a convex semigroup. We denote by

SAφ
w∗

the weak∗-closure of SAφ in A∗∗.
Let (B, ‖ · ‖B) be a Banach algebra containing the Banach algebra (A, ‖ · ‖A)

as a two-sided ideal with decreasing norms ‖ · ‖B ≤ ‖ · ‖A and let φ ∈ ∆(A).
Then we can extend φ to an element in ∆(B) whic is equal to φ on A, we denote
this extension still by φ. It is easy to see that SAφ ⊆ SBφ . For each b ∈ SBφ ,
we denote by Ib,φ the norm closure of the set {a − ab : a ∈ A} in A and set
Iφ = {a ∈ A : φ(a) = 0}. Following [3], the elements of Hb,φ := Ib,φ

⊥ are called
b-harmonic functionals. We note that

Hb,φ = {f ∈ A∗ : b · f = f} .

It is well known that ∆(Ap(G)) can be canonically identified with G. More pre-
cisely, the map x → φx, where φx(u) = u(x) for u ∈ Ap(G), is a homeomorphism
from G onto ∆(Ap(G)). For each x ∈ G we set

SA
x =

{
u ∈ Ap(G) : ‖u‖Ap = u(x) = 1

}
and

SM
x = {v ∈ MAp(G) : ‖v‖M = v(x) = 1} .
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Let e ∈ G be the identity element of G. We recall from [17, Lemma 1.1] that

SA
e

w∗

= {F ∈ Ap(G)∗∗ : ‖F‖ = F (φe) = 1} .

Now suppose that x ∈ G and Lx is the left translation by x on Ap(G); that is,
Lxu(y) = u(x−1y) for all u ∈ Ap(G) and y ∈ G. Then as shown in [8, p. 216],
SA

x = Lx(S
A
e ) and

SA
x

w∗

= {F ∈ Ap(G)∗∗ : ‖F‖ = F (φx) = 1} .

In [18, Lemma 3.1], it is proved that for each x ∈ G, Ap(G) has a φx-mean in

SA
x

w∗

. Recall that for each σ ∈ SM
x , we denote by Iσ,x the norm closure of the set

{u− uσ : u ∈ Ap(G)} and set Ix = {u ∈ Ap(G) : u(x) = 0}.
In this paper, for a separable Banach algebra A and φ ∈ ∆(A), among the

other things, we show that A has a φ-mean in SAφ
w∗

if and only if Hb,φ = Cφ for

some b ∈ SAφ . Specifically, for a locally compact group G, we prove that G is first
countable if and only if the space Hσ,x of σ-harmonic functionals in PMp(G) is
equal to Cφx for some x ∈ G and σ ∈ SM

x .

2. Harmonic functionals

We commence with the following lemma whose proof is inspired by [10, Theo-
rem 4.1].

Lemma 2.1. Let A be a separable Banach algebra and let φ ∈ ∆(A). Then the
following statements are equivalent.

(a) A has a φ-mean in SAφ
w∗

.

(b) There is an element b ∈ SAφ such that ‖abn − φ(a)bn‖ → 0 for all a ∈ A.

Proof. (a)⇒(b). Suppose that (bi) is a dense sequence of the unite bale of A and
let (γj) be a sequence of positive real numbers such that

∑∞
j=1 γj = 1. Choose

the increasing sequence (nk) of positive integers such that (
∑k

j=1 γj)
nk < γk. By

assumption and [11, Theorem 1.4] and its proof, there is a net (aα) ⊆ SAφ such
that

‖aaα − φ(a)aα‖ → 0

for all for all a ∈ A. We choose a sequence (am) ⊆ Sφ, inductively to satisfy

‖ak1 ...ak`
am − am‖ < γm

for 1 ≤ kj < m, 1 ≤ j ≤ nm, and

‖biak1 ...ak`
am − φ(bi)am‖ < γm

for 1 ≤ i, kj < m, 1 ≤ j ≤ nm. Then the element

b :=
∞∑

m=1

γmam ∈ SAφ

is the required element. Indeed, the rest of the proof is similar to the proof of
[10, Theorem 4.1] and so we omit it. �
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Theorem 2.2. Let (B, ‖ · ‖B) be a Banach algebra which contains the separable
Banach algebra (A, ‖ · ‖A) as a two-sided ideal such that ‖ · ‖B ≤ ‖ · ‖A and let
φ ∈ ∆(A). Then the following statements are equivalent.

(a)There is b ∈ SBφ such that Hb,φ = Cφ.

(b) A has a φ-mean in SAφ
w∗

.

(c) There is b ∈ SAφ such that Hb,φ = Cφ.

Proof. (a)⇒(b). Suppose that Hb,φ = Cφ for some b ∈ SBφ . Then it follows from

Ib,φ ⊆ Iφ and I⊥φ = Cφ that Ib,φ = Iφ. Now, for each n ∈ N consider the element

bn =
1

n

n∑
j=1

bj

in SBφ . Thus for each a ∈ A we have

lim
n→∞

‖(a− ab)bn‖A ≤ lim
n→∞

2

n
‖a‖A = 0.

Since Iφ = Ib,φ, it follows that

lim
n→∞

‖abn‖A = 0

for all a ∈ Iφ. Choose b0 ∈ SAφ . Then ab0 − φ(a)b0 ∈ Iφ for all a ∈ A. For each

n ∈ N define an := b0bn. Thus, (an) ⊆ SAφ and for each a ∈ A,

lim
n→∞

‖aan − φ(a)an‖A = lim
n→∞

‖(ab0 − φ(a)b0)bn‖A = 0.

It is clear that any weak∗ cluster point of (an) is a φ-mean in SAφ
w∗

.

(b)⇒(c). Suppose that (b) holds. Then there is an element b ∈ SAφ such that
‖abn − φ(a)bn‖ → 0 for all a ∈ A by Lemma 2.1. It is easy to see that bn · f = f
for all f ∈ Hb and n ∈ N. Thus,

〈(f − f(bn)φ), a〉 = 〈(bn · f − f(bn)φ), a〉
= 〈f, abn − φ(a)bn〉 → 0

for all a ∈ A. This shows that f(bn)φ → f in the weak∗ topology of A∗ and
consequently f ∈ Cφ, as required.

The implication (c)⇒(a) is trivial. �

Remark 2.3. Recall that a Lau algebra A is a Banach algebra which is the pre-
dual of von Neumann algebra M such that the identity element ε of M is a
multiplicative linear functional on A. In this case, the ε-means of norm one are
nothing but the topological left invariant means on A∗; see [14] for details. A
is called left amenable if there is a topological left invariant mean on A∗. Ex-
amples of Lau algebras include the group algebra L1(G) of a locally compact
group or hypergroup G, the Fourier algebra and the Fourier-Stieltjes algebra of
a locally compact group. Other examples are the measure algebra M(S) of a lo-
cally compact semi-topological semigroup or hypergroup S and the predual of a
Hopf-von Neumann algebra. For a more recent example of Lau algebras, consider
the Fourier-Stieltjes algebra of a topological group as defined in [16]. For a Lau
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algebra A, the ε-maximal elements are precisely the positive linear functionals of
norm one in A and hence span A. In view of [15, Lemma 2.1], the set of states
in the predual of a von Neumann algebra is weak∗ dense in the set of states in its
dual space. In particular,

SAε
w∗

= {F ∈ A∗∗ : ‖F‖ = F (ε) = 1}.
Thus, by Lemma 2.1 and Theorem 2.2 for a separable Lau algebra A the following
statements are equivalent.

(a) A is left amenable.
(b) There is a state b in A such that ‖abn − ε(a)bn‖ → 0 for all a ∈ A.
(c) There is a state b in A such that Hb,ε = Cε.

For any T ∈ PMp(G) we denote by suppT the support of T which is defined
as follows: x ∈ suppT if φx is the weak∗ limit of operators T · v, where v ∈ Ap(G)
or equivalently, x ∈ suppT if and only if there is a net (uα) in Ap(G) such that
uα · T → φx in the weak∗ topology of PMp(G); see for details [13, p.267] and [7,
Proposition 10].

If G is first countable and 1 < p < ∞, then by a same argument for the case
p = 2; see [5, Corollary 6.9], we can show that Ap(G) is norm separable. Following
[20] for each x ∈ G, we call σ ∈ SM

x adapted if {y ∈ G : σ(y) = 1} = {x}.

Theorem 2.4. Let G be a locally compact group and let x ∈ G. Then the
following statements are equivalent.

(a) There is an adapted σ ∈ SM
x

(b) G is first countable.
(c) There is σ ∈ SM

x such that ‖vσn‖Ap → 0 for all v ∈ Ix.
(d) There is σ ∈ SM

x such that Hσ,x = Cφx.
(e) There is σ ∈ SM

x such that Ix = Iσ,x.
(f) There is an adapted σ ∈ SA

x .

Proof. (a)⇒(b). Suppose that σ ∈ SM
x is adapted and let U be a compact

neighborhood of e. For each n ∈ N define

Un =

{
x ∈ U : |σ(x)− 1| < 1

n

}
.

Continuity of σ implies that {Un : n ∈ N} consists of neighborhoods of e. Let V
be a compact neighborhood of e, without loss of generality we can assume that
V is open and V ⊆ U . Let

d = inf{|σ(x)− 1| : x ∈ U\V }.
Since U\V is compact and σ is adapted and continuous, it follows that d > 0.
We can find m ∈ N such that 1

m
≤ d. Thus Un ⊆ V for all n ≥ m. This shows

that {Un : n ∈ N} is a base of neighborhoods of e and so G is first countable.
Implications (b)⇒(c) and (b)⇒(d) follow from Lemma 2.1 and Theorem 2.2.
(d)⇔(e). This follows from Iσ,x ⊆ Ix and I⊥x = Cφx.
(e)⇒(f). Let T ∈ Hσ,x and choose y ∈ suppT . Then there is a net (uα) ⊆ Ap(G)

such that uα ·T
w∗
→ φy. Moreover, σ ·(uα ·T ) = uα ·T for all α. Now, given u0 ∈ Sy.
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Then we have

lim
α
〈uα · T, u0〉 = lim

α
〈σ · (uα · T ), u0〉

= 〈σ · φy, u0〉
= σ(y).

On the other hand,

lim
α
〈uα · T, u0〉 = φy(u0)

= u0(y)

= 1.

Therefore, y = x by assumption and so suppT = {x}. Thus T ∈ Cφx.
Finally, (f)⇒(a) is trivial. �

A group G is called amenable if there exists a continuous linear functional
m ∈ L∞(G)∗ such that m(Laf) = m(f) for all f ∈ L∞(G) and a ∈ G. It is
well known that Ap(G) has a bounded approximate identity if and only if G is
amenable. Now, we have the following lemma whose proof is omitted, since it
can be proved similarly to [3, Lemma 3.2.2].

Lemma 2.5. Let G be an amenable locally compact group and let x ∈ G. Then
Iσ,x has a bounded approximate identity for all σ ∈ SM

x .

We recall that for each x ∈ G the ideal Ix has a bounded approximate identity
if and only if G is amenable; see for example either [18, Proposition 3.9] or [11,
Corollary 2.3]. Thus, we have the following result by Lemma 2.5 and Theorem
2.4.

Proposition 2.6. Let G be a first countable locally compact group. Then G is
amenable if and only if Iσ,x has a bounded approximate identity for all σ ∈ SM

x .
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