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TWO NEW CLASSES OF SUBALGEBRAS OF L1 (G)
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Abstract. In this paper, two new classes of subalgebras of L1 (G) generated
by Lorentz–Karamata spaces are investigated and some fundamental properties
of these spaces are examined. Also, the multipliers space (homomorphisms
space) on L1 (G) ∩ L (p, q; b) (G) spaces are characterized.

1. Introduction and preliminaries

A new generalization of Lebesgue, Lorentz, Zygmund, Lorentz-Zygmund and gen-
eralized Lorentz-Zygmund spaces was studied by D.E.Edmunds, R.Kerman and
L.Pick in [7]. By using Karamata theory, they introduced Lorentz–Karamata
spaces Lp,q;b (Ω) and compared corresponding quasinorms on these spaces. Nev-
ertheless, J.S.Neves studied Lp,q;b (R, µ) spaces in [19] where p, q ∈ (0,∞] , b is a
slowly varying function on [1,∞) and (R, µ) is a measure space. These spaces
cover the generalized Lorentz-Zygmund spaces Lp,q;α1,...αm (R) (introduced in [6]),
Lorentz-Zygmund spaces Lp,q (log L)α (R) (introduced in [1]), Zygmund spaces
Lp (log L)α (R) (introduced in [2, 25]), Lorentz spaces Lp,q (R) and Lebesgue
spaces Lp (R) under convenient choices of slowly varying functions and parame-
ters p, q. In this section, we will give some definitions and properties of slowly
varying functions to establish Lorentz–Karamata spaces. Throughout this paper,
certain well-known terms such as rearrangement-invariant Banach space, abso-
lutely continuous norm, Segal algebra, Fourier transform, homogeneous Banach
space etc. will be used frequently in the sequel. We will not give their definitions,
but one can refer to [2, 5, 9, 10, 22, 24] and references therein. For any two
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non-negative expressions A and B, the symbol A - B means that A ≤ cB, for
some positive constant c independent of the variables in the expressions A and
B. If A - B and B - A, we write A ≈ B and say that A and B are equivalent.

Definition 1.1. The family of all extended scalar valued (real or complex) µ-
measurable functions on a measure space (X, µ) will be denoted by M (X, µ) and
M0 (X, µ) will stand for the subset of M (X, µ) consisting of all those functions
which are finite µ−a.e.

Definition 1.2. Let f be a measurable function defined on a measure space
(X, µ). We assume that the function f is finite valued almost everywhere and for
y > 0

µ {x ∈ X : |f (x)| > y} < ∞.

Then the distribution function λf of f is defined by

λf (y) = µ {x ∈ X : |f (x)| > y} .

The nonnegative rearrangement of f is given by

f ∗ (t) = inf {y > 0 : λf (y) ≤ t } , t ≥ 0

where inf ∅ = ∞. Also the average (maximal) function of f on (0,∞) is given by

f ∗∗ (t) =
1

t

∫ t

0

f ∗ (s) ds.

Note that λf (·) , f∗ (·) and f ∗∗ (·) are non-increasing and right continuous func-
tions. Also, it is obvious that if X has a finite measure, then λf is bounded above
by µ (X) and so f ∗ (t) = 0 for all t ≥ µ (X).

A positive measurable function L, defined on some neighborhood of infinity, is
said to be slowly varying if, for every s > 0,

L (st)

L (t)
→ 1 (t → +∞) .

These functions were introduced by Karamata in [13]. Another definition of
slowly varying functions can be found in [7] such as:

Definition 1.3. A positive and Lebesgue measurable function b is said to be
slowly varying (s.v.) on [1,∞) in the sense of Karamata if, for each ε > 0,
tεb (t) is equivalent to a non-decreasing function and t−εb (t) is equivalent to a
non-increasing function on [1,∞).

The detailed study of Karamata theory, properties and examples of s.v. func-
tions can be found in [5, 6, 13] and [25]. Let m ∈ N and α = (α1, ..., αm) ∈ Rm.
If we denote by ϑm

α the real function defined by

ϑm
α (t) =

m∏
i=1

lαi
i (t) for all t ∈ (0,∞) ,

where l1, ..., lm are positive functions defined on (0,∞) by

l1 (t) = 1 + |log t| , li (t) = 1 + log li−1 (t) , i ≥ 2

then the following functions are s.v. on [1,∞):
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(1) b (t) = ϑm
α (t) with m ∈ N and α ∈ Rm;

(2) b (t) = exp (logα t) with 0 < α < 1;
(3) b (t) = exp (lαm (t)) with 0 < α < 1, m ∈ N;
(4) b (t) = lm (t) with m ∈ N.

Given a s.v. function b on [1,∞), we denote by γb the positive function defined
by

γb (t) =

{
b (t) , if t ≥ 1
b
(

1
t

)
, if 0 < t < 1

.

It is known that any s.v. function b on (0,∞) is equivalent to a s.v. continuous

function b̃ on (0,∞). Consequently, without loss of generality, we may assume
that all s.v. functions in question are continuous functions in (0,∞) [11].

Definition 1.4. Let p, q ∈ (0,∞] and let b be a s.v. function on [1,∞). Lorentz–
Karamata space Lp,q;b (G) is defined to be the set of all functions f ∈ M0 (G, µ)
such that

‖f‖∗p,q;b :=
∥∥∥t 1

p
− 1

q γb (t) f ∗ (t)
∥∥∥

q;(0,∞)
(1.1)

is finite. Here ‖·‖q;(0,∞) stands for the usual Lq (quasi-) norm over the interval

(0,∞).

Let 0 < p, q ≤ ∞ and b be a s.v. function on [1,∞). Let us introduce the
functional ‖f‖p,q;b defined by

‖f‖p,q;b :=
∥∥∥t 1

p
− 1

q γb (t) f ∗∗ (t)
∥∥∥

q;(0,∞)
; (1.2)

this is identical with that defined in (1.1) except that f ∗ is replaced by f ∗∗.
However, when p = ∞, Lp,q;b (G) spaces are different from the trivial spaces if

and only if
∥∥∥t 1

p
− 1

q γb (t)
∥∥∥

q;(0,∞)
< ∞. It is easy to see that Lp,q;b (G) spaces endowed

with a convenient norm (1.2), are rearrangement-invariant Banach function spaces
with associate spaces Lp′,q′;b−1 (R, µ) if (R, µ) is a resonant measure space and have
absolutely continuous norm when p ∈ (1,∞) and q ∈ [1,∞).

It is clear that, for 0 < p < ∞, Lp,q;b (G) spaces contain the characteristic
function of every measurable subset of G with finite measure and hence, by lin-
earity, every µ−simple function. From the definition of ‖·‖∗p,q;b, it follows that

if f ∈ Lp,q;b (G) and p, q ∈ (0,∞), then the function λf (y) is finite valued. In
this case, with a little thought, it is possible to construct a sequence of (simple)
functions which satisfy Lemma 1.1 in [3]. Therefore, if we use the same method
as employed in the proof of Proposition 2.4 in [12], we can show that Lebesgue
dominated convergence theorem holds and so the set of simple functions is dense
in Lorentz–Karamata spaces for p ∈ (1,∞) and q ∈ [1,∞). Also, we can see the
density of continuous and complex-valued functions with compact support since
µ is a Haar measure.

It follows from [19] that ‖f‖∗p,q;b ≤ ‖f‖p,q;b - ‖f‖∗p,q;b for all f ∈ M0 (G, µ)

where 1 < p ≤ ∞, 1 ≤ q ≤ ∞ and b is a s.v. function on [1,∞). In particular,
Lp,q;b (G) spaces consist of all those functions f for which ‖f‖p,q;b is finite. Since

the function f → f ∗∗ is subadditive, it is obvious that ‖·‖p,q;b is a norm if q ≥ 1.
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For more information on Lorentz–Karamata spaces, one can refer to [2, 5, 7,
9, 11, 19] and references therein.

2. Two new classes of subalgebras of L1 (G)

Let G and Ĝ be locally compact abelian groups in Pontryagin duality with Haar
measures µ and η respectively, such that Plancherel theorem holds and Cc (G)
denote the space of all continuous, complex-valued functions on G with compact

support. The Fourier transform of a function f ∈ L1 (G) will be denoted by f̂ .
For 1 ≤ p < ∞, the spaces

Ap (G) =
{

f ∈ L1 (G) : f̂ ∈ Lp
(
Ĝ
)}

Bp (G) = L1 (G) ∩ Lp (G)

have been studied in [14, 15, 16, 17, 18, 21, 23] by many authors. They found
that Ap (G) and Bp (G) are Banach algebras under the usual convolution product
with respect to the norms ‖·‖ = ‖·‖1 + ‖̂·‖p and ‖·‖ = ‖·‖1 + ‖·‖p, respectively.
Besides this, for 1 < p < ∞, 1 ≤ q < ∞, the spaces

A (p, q) (G) =
{

f ∈ L1 (G) : f̂ ∈ L (p, q)
(
Ĝ
)}

B (p, q) (G) = L1 (G) ∩ L (p, q) (G)

are defined and similar results are obtained in [4, 8, 20, 24]. Based on this idea,
we will examine two new subalgebras of L1 (G). Let Ap,q;b (G) and Bp,q;b (G) be
the subspaces of L1 (G) such that

Ap,q;b (G) =
{

f ∈ L1 (G) : f̂ ∈ Lp,q;b

(
Ĝ
)}

provided that each function in Lp,q;b

(
Ĝ
)

is locally integrable and

Bp,q;b (G) = L1 (G) ∩ Lp,q;b (G) .

For every f ∈ Ap,q;b (G) and g ∈ Bp,q;b (G) , we can supply two norms by

‖f‖A = ‖f‖1 +
∥∥∥f̂∥∥∥

p,q;b

‖g‖B = ‖g‖1 + ‖g‖p,q;b ,

respectively. Some new results for Lorentz–Karamata spaces are obtained in [9].
Since these results will help us to show some properties of (Ap,q;b (G) , ‖·‖A) and
(Bp,q;b (G) , ‖·‖B) spaces, now they will be reminded without their proofs.

Proposition 2.1. Let f be a scalar valued, measurable functions on (G, µ). If we
define the function Lsf (t) = f (t− s) for any s ∈ G, then we have the following:

(1) λLsf (y) = λf (y) for all y ≥ 0,
(2) (Lsf)∗ (t) = f ∗ (t) for all t ≥ 0 and (Lsf)∗∗ (t) = f ∗∗ (t) for all t > 0,
(3) If p, q ∈ (0,∞), then ‖Lsf‖∗p,q;b = ‖f‖∗p,q;b , ‖Lsf‖p,q;b = ‖f‖p,q;b.

Proposition 2.2. For any f ∈ Lp,q;b (G), 1 < p < ∞ and 1 ≤ q < ∞, the
function s → Lsf is continuous from G into Lp,q;b (G).
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Proposition 2.3. Let T be a convolution operator like defined in Definition 2.1
of [3] and h = T (f, g). T can be uniquely extended so that if f ∈ Lp,q;b (G),
1 < p, q < ∞ and g ∈ L1 (G), then h ∈ Lp,s;b (G), where q ≤ s. Moreover
‖h‖p,q;b - ‖f‖p,q;b ‖g‖1.

Lemma 2.4. There is an approximate identity {aα}α∈I of L1 (G) such that
‖aα‖1 = 1 for each α ∈ I and f ∗aα → f for all f ∈ Lp,q;b (G) where 1 < p, q < ∞.

The following lemma is a generalization of Lemma 3.3 of [24].

Lemma 2.5. If f ∈ Lp1,s;b (G)∩Lp2,s;b (G), then f ∈ Lr,s;b (G) for all r such that
p1 < r < p2.

Proof. Let θ =
(

1
r
− 1

p2

)
/
(

1
p1
− 1

p2

)
. Then using Hölder’s inequality, we get

(
‖f‖∗r,s;b

)s

=

∞∫
0

t
s
r
−1γs

b (t) (f ∗ (t))s dt

=

∞∫
0

[
t
θ
�

s
p1
−1

�
γθs

b (t) (f ∗ (t))θs

] [
t
θ
�

s
p2
−1

�
γ

(1−θ)s
b (t) (f ∗ (t))(1−θ)s

]
dt

≤
(
‖f‖∗p1,s;b

)θs (
‖f‖∗p2,s;b

)(1−θ)s

.

�

The spaces Ap,q;b (G) and Bp,q;b (G) are the generalization of the spaces Ap,q (G)
and Bp,q (G) which are examined in [24]. Therefore, we will not give a detailed
study of Ap,q;b (G) and Bp,q;b (G) spaces and easy proofs of the following. An in-
terested reader can prove them by using Proposition 2.1, Proposition 2.2, Propo-
sition 2.3 and Lemma 2.4.

Theorem 2.6. (i) There is an approximate identity {eα} of Ap,q;b (G) for 1 <
p, q < ∞, which is a bounded approximate identity of L1 (G) such that ‖eα‖1 ≤ 1
and êα have compact support for all α.
(ii) (Ap,q;b (G) , ‖·‖A) is a Segal Algebra, i.e.
→ (Ap,q;b (G) , ‖·‖A) is a homogeneous Banach space,
→ (Ap,q;b (G) , ‖·‖A) is a Banach algebra with its norm ‖·‖A ≥ ‖·‖1 and
→ (Ap,q;b (G) , ‖·‖A) is a dense subspace of L1 (G).
(iii) Since L1 (G) and Lp,q;b (G) are strongly character invariant, Ap,q;b (G) is
strongly character invariant and the maps f → Mtf , t → Mtf are continuous

where Mtf(x) = 〈x, t〉 f(x) for all f ∈ Ap,q;b (G), x ∈ G and t ∈ Ĝ.
(iv) Ap,q;b (G) and Lp,q;b (G) are essential Banach L1(G)−modules.
(v) A1;1;1 (G) ⊂ Ap,q;b (G) for all 1 ≤ p < ∞, 1 ≤ q ≤ ∞.

(vi) The Fourier transforms Â1 (G) and ̂Ap,q;b (G) are dense in Lp,q;b

(
Ĝ
)

for

1 ≤ p, q < ∞.

Theorem 2.7. (i) There is an approximate identity {eα} of Bp,q;b (G) for 1 <
p, q < ∞, which is a bounded approximate identity of L1 (G) such that ‖eα‖1 ≤ 1.
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(ii) (Bp,q;b (G) , ‖·‖B) is a Segal Algebra, i.e.
→ (Bp,q;b (G) , ‖·‖B) is a homogeneous Banach space,
→ (Bp,q;b (G) , ‖·‖B) is a Banach algebra with its norm ‖·‖B ≥ ‖·‖1 and
→ (Bp,q;b (G) , ‖·‖B) is a dense subspace of L1 (G).
(iii) Since L1 (G) and Lp,q;b (G) are strongly character invariant, Bp,q;b (G) is
strongly character invariant and the maps f → Mtf , t → Mtf are continuous

where Mtf(x) = 〈x, t〉 f(x) for all f ∈ Bp,q;b (G), x ∈ G and t ∈ Ĝ.
(iv) Bp,q;b (G) is an essential Banach L1(G)−module.

Theorem 2.8. Let S (G) = Ap,q;b (G) or Bp,q;b (G). Then

(i)The maximal ideal space of S (G) can be identified with the dual group Ĝ of G;
(ii) the algebra S (G) satisfies Ditkin’s condition;
(iii) Shilov-Wiener Tauberian theorem holds in S (G).

Proof. The proof can be seen from Theorem 2.6(ii), Theorem 2.7(ii) and the fact
that every Segal algebra has properties (i)-(iii). �

The group algebra is known to have the factorization property, but in general
Ap (G), Bp (G), A (p, q) (G) and B (p, q) (G) don’t satisfy this property [18, 23,
24].

Lemma 2.9. Ap,q;b (G) ∗ Ap,q;b (G) ⊂ A p
2
, q
2
;b (G).

Proof. By using the techniques of Lemma 3.1 in [24], we get the result. �

As a consequence of this lemma, we can give the following theorem.

Theorem 2.10. If G is non-discrete, then Ap,q;b (G) ∗Ap,q;b (G) 6= Ap,q;b (G) and
Bp,q;b (G) ∗Bp,q;b (G) 6= Bp,q;b (G) for p ∈ (1,∞) and q ∈ [1,∞).

Proof. Is is known that if a Segal algebra S (G) is different from L1(G), then
S (G) · S (G) 6= S (G). Since Ap,q;b (G) and Bp,q;b (G) are Segal algebras different
from L1(G), we get the result. �

3. Multipliers space on Bp,q;b (G)

Let us denote the space of all bounded linear operators on Bp,q;b (G) as M
which is a Banach algebra under the usual operator norm. Besides this, let
HomL1(G) (Bp,q;b (G) , Bp,q;b (G)) be the space of all module homomorphisms of
L1 (G)−module Bp,q;b (G), that is, an operator T ∈ M satisfies T (f ∗ g) = f ∗
T (g) for all f ∈ L1 (G) and g ∈ Bp,q;b (G) .The module homomorphisms space,
called the multipliers space

HomL1(G) (Bp,q;b (G) , Bp,q;b (G)) = HomL1(G) (Bp,q;b (G))

is a Banach L1 (G)−module by (f ◦ T ) (g) = f ∗ T (g) = T (f ∗ g) for all g ∈
Bp,q;b (G).

Proposition 3.1. The set

D = span {Wf | f ∈ L1 (G)} = {Wf | f ∈ L1 (G)}
is a complete subalgebra of M and it possesses a minimal approximate identity.
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Proof. It is easy to see by the definition of D that D is a complete subalgebra of
M under the operator norm with usual composition. For each f ∈ L1 (G) and
h ∈ Bp,q;b (G) if we define Wf (h) = f ∗ h, then we have

‖Wf‖ = sup
‖h‖B≤1

‖Wf (h)‖B = sup
‖h‖B≤1

‖f ∗ h‖B ≤ ‖f‖1 , (3.1)

and for all f, g ∈ L1(G), h ∈ Bp,q;b (G)

(Wf −Wg) (h) = f ∗ h− g ∗ h = (f − g) ∗ h = Wf−g (h) (3.2)

(Wf ◦Wg) (h) = Wf (g ∗ h) = f ∗ g ∗ h = Wf∗g (h) .

Let f ∈ L1 (G) . Using (3.1), (3.2) and the minimal approximate identity of
L1 (G), say {eα} , we get

lim
α
‖Weα ◦Wf −Wf‖ = lim

α
‖Weα∗f −Wf‖

= lim
α
‖Weα∗f−f‖

≤ lim
α
‖eα ∗ f − f‖1 = 0.

Consequently, we have lim
α
‖Weα ◦ T − T‖ = 0 for all T ∈ D. �

Proposition 3.2. The space D is a complete subalgebra of HomL1(G) (Bp,q;b (G)).

Proof. For any f ∈ L1 (G), we have Wf ∈ M. Since Bp,q;b (G) is an essential
Banach L1 (G) -module, we have

Wf (g ∗ h) = f ∗ g ∗ h = g ∗Wf (h)

for all g ∈ L1 (G) and h ∈ Bp,q;b (G). Thus Wf belongs to HomL1(G) (Bp,q;b (G)) .
Since HomL1(G) (Bp,q;b (G)) is a Banach space under the usual operator norm, D
is a complete subalgebra of HomL1(G) (Bp,q;b (G)) . �

Proposition 3.3. The space D is an essential Banach L1 (G) -module.

Proof. For any g ∈ L1 (G) and Wf ∈ D, define g ◦ Wf : Bp,q;b (G) → Bp,q;b (G)
by letting (g ◦Wf ) (h) = Wf (h ∗ g) = Wf (g ∗ h) for each h ∈ Bp,q;b (G). In this
case

‖g ◦Wf‖ = sup
‖h‖B≤1

‖(g ◦Wf ) (h)‖B = sup
‖h‖B≤1

‖Wf (g ∗ h)‖B

≤ ‖Wf‖ sup
‖h‖B≤1

‖g ∗ h‖B ≤ ‖Wf‖ ‖g‖1

can be found and it implies that D is a Banach L1 (G) -module. On the other
hand, if we consider the bounded approximate identity {eα} of Bp,q;b (G) as in
Theorem 2.7(i), then we have

‖eα ◦Wf −Wf‖ = sup
‖u‖B≤1

‖(eα ◦Wf −Wf ) (u)‖B

= sup
‖u‖B≤1

‖f ∗ u ∗ eα − f ∗ u‖B

≤ sup
‖u‖B≤1

‖f ∗ eα − f‖1 ‖u‖B

= ‖f ∗ eα − f‖1 → 0
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for any Wf ∈ D by Theorem 2.7(iv). Therefore D is an essential Banach L1 (G)
-module. �

Also for any f ∈ L1 (G) and Weα ∈ D, we have

lim
α
‖f − f ◦Weα‖ = lim

α

(
sup

‖u‖B≤1

‖(f − f ◦Weα) (u)‖B

)

= lim
α

(
sup

‖u‖B≤1

‖f ∗ u− eα ∗ (f ∗ u)‖B

)

≤ lim
α

(
sup

‖u‖B≤1

‖f − eα ∗ f‖1 ‖u‖B

)
≤ lim

α
‖f − eα ∗ f‖1 = 0.

So f ∈ L1 (G) ◦D and f ∈ D by Proposition 3.3. That is to say L1 (G) ↪→ D.

Proposition 3.4. Let T ∈ HomL1(G) (Bp,q;b (G)) . Therefore T ◦W ∈ D for each
W ∈ D.

Proof. Since Bp,q;b (G) is a Segal algebra, it is easy to see that

D = span {Wf | f ∈ L1 (G)} = span {Wg | g ∈ Bp,q;b (G)}.
Let us take any Wg ∈ D. Then for all h ∈ Bp,q;b (G) , we get

(T ◦Wg) (h) = T (g ∗ h) = T (g) ∗ h = WT (g) (h)

and T ◦Wg ∈ D since T (g) ∈ Bp,q;b (G) . Now take any W ∈ D. By the definition
of D, for all ε > 0 we can find gε ∈ Bp,q;b (G) such that ‖W −Wgε‖ < ε

‖T‖ . Since

T ◦Wg ∈ D and T is bounded on Bp,q;b (G), we have

‖T ◦W − T ◦Wgε‖ = sup
‖h‖B≤1

‖(T ◦W ) (h)− (T ◦Wgε) (h)‖B

= sup
‖h‖B≤1

‖T (W (h))− T (gε ∗ h)‖B

≤ ‖T‖ sup
‖h‖B≤1

‖W (h)− gε ∗ h‖B

= ‖T‖ sup
‖h‖B≤1

‖W (h)−Wgε (h)‖B

= ‖T‖ ‖W −Wgε‖ < ε.

Therefore we say that T ◦W ∈ span {Wg | g ∈ Bp,q;b (G)} = D. �

Theorem 3.5. Let G be a locally compact abelian group. Then M (D, D) =
M (D), the space of multipliers on Banach algebra D, is isometrically isomorphic
to the space HomL1(G) (Bp,q;b (G)) .

Proof. Define a mapping Ψ : HomL1(G) (Bp,q;b (G)) → M (D) by letting Ψ (T ) =
ρT for each T ∈ HomL1(G) (Bp,q;b (G)) , where ρT (S) = T ◦S for all S ∈ D. Note
that Ψ is well-defined by Proposition 3.4 and moreover if ρT (S ◦K) = T ◦S◦K =
ρT (S) ◦K for all S, K ∈ D, then we see that Ψ (T ) = ρT ∈ M (D) . It is obvious
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that the mapping Ψ is linear and injective. Also, for T ∈ HomL1(G) (Bp,q;b (G))
and any S ∈ D, we have

‖T ◦ S‖ = sup
‖g‖B≤1

‖(T ◦ S) (g)‖B = sup
‖g‖B≤1

‖T (S (g))‖B

≤ ‖T‖ sup
‖g‖B≤1

‖S (g)‖B = ‖T‖ ‖S‖

and so

‖ρT‖ = sup
S∈D

‖ρT (S)‖
‖S‖

= sup
S∈D

‖T ◦ S‖
‖S‖

≤ ‖T‖ .

On the other hand, since {Weα} is a minimal approximate identity for the space
D, we get

‖ρT‖ = sup
S∈D

‖T ◦ S‖
‖S‖

≥ sup
α

‖T ◦Weα‖
‖Weα‖

≥ sup
α
‖T ◦Weα‖ ≥ ‖T‖

and ‖ρT‖ = ‖T‖ .
Finally we will show that the mapping Ψ : HomL1(G) (Bp,q;b (G)) → M (D) is

onto. Let ρ be an element of M (D) and {eα} approximate identity for L1 (G) .
Since D ⊂ HomL1(G) (Bp,q;b (G)) and ρeα ∈ D, we have

ρeα (f ∗ g) = (f ◦ (ρeα)) (g) (3.3)

for any f ∈ L1 (G) and g ∈ Bp,q;b (G). Also M (D) ⊂ HomL1(G) (D) implies that

ρ (f ∗ eα) (g) = (f ◦ (ρeα)) (g) . (3.4)

Therefore by (3.3) and (3.4), we get

ρeα (f ∗ g) = (f ◦ (ρeα)) (g) = ρ (f ∗ eα) (g) .

So for each f ∈ L1 (G) and g ∈ Bp,q;b (G)

lim
α
‖ρ (f ∗ eα) (g)− ρf (g)‖B = lim

α
‖(ρ (f ∗ eα)− ρf) (g)‖B

= lim
α
‖ρ (f ∗ eα − f) (g)‖B

≤ lim
α
‖ρ (f ∗ eα − f)‖ ‖g‖B

≤ ‖ρ‖ lim
α
‖f ∗ eα − f‖1 ‖g‖B = 0

is obtained. Thus we get

lim
α

(ρeα) (f ∗ g) = lim
α

(f ◦ (ρeα)) (g) = lim
α

ρ (f ∗ eα) (g) = ρf (g) .

Since the space Bp,q;b (G) is an essential Banach L1 (G)−module by The-
orem 2.7(iv), the limit of (ρeα) (f ∗ g) = (f ◦ (ρeα)) (g) exists and equal to
f ∗ T (g) ∈ Bp,q;b (G) while T is an operator in HomL1(G) (Bp,q;b (G)). There-
fore, since lim

α
(ρeα) (f ∗ g) = lim

α
(f ◦ (ρeα)) (g) = ρf (g) exists, we can write

f ◦ T = ρf for all f ∈ L1 (G) . Then eα ◦ T ◦W = (ρeα) ◦W = ρ (eα ◦W ) can be
written for all W ∈ D. By Proposition 3.3, for all W ∈ D ,we get T ◦W = ρ (W )
or ρT (W ) = ρ (W ). Therefore ρT = ρ. �
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