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CENTRAL ELEMENTS IN TOPOLOGICAL ALGEBRAS WITH
THE EXPONENTIAL MAP

MATI ABEL∗ AND ARNE KOKK

Communicated by Z. Lykova

Abstract. Topological algebras with the exponential map are examined and
several conditions are obtained for an element in a Gelfand–Mazur algebra with
the exponential map to be central modulo the left topological radical.

1. Introduction

Characterizations of commutativity in different classes of topological algebras
have been considered in many papers (see, for example, [9, 12, 14, 16, 17, 22, 26])
and many of the results obtained in this area use the extended Jacobson density
theorem for Banach algebras due to A. M. Sinclair [24, Theorem 6.7]. It is the
object of the present paper to examine commutativity criteria (modulo either the
left topological radical or the Jacobson radical) in topological algebras. We show,
among others, that one can use a result analogous to Sinclair’s theorem also within
the class of Gelfand–Mazur algebras with the exponential map (Theorem 3.3).
Moreover, we obtain several conditions for an element in a topological algebra to
be central modulo the left topological radical and we also describe several classes
of topological algebras possessing the exponential map.

2. Preliminaries

Throughout this paper, all algebras are assumed to be complex, associative
and unital.

Let A be an algebra with the identity eA. We denote by InvA the set of all
invertible elements of A, σA(a) is the spectrum of an element a in A and rA(a)
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is the spectral radius of a ∈ A, i.e. rA(a) = sup{|α| : α ∈ σA(a)}. In case σA(a)
is empty we put rA(a) = 0 and if σA(a) is unbounded then rA(a) is defined to
be ∞. Further, in what follows, an ideal of A is always a proper ideal, L is the
set of all maximal left ideals of A, R is the set of all maximal right ideals of A,
[a, b] = ab− ba is the commutator of a, b ∈ A and

exp(a)n =
n∑
i=0

ai/i!

for any a in an algebra A and any n = 1, 2, . . . .
Now, if L is in L and a ∈ A \ L then La = {x ∈ A : xa ∈ L} is a maximal

left ideal of A. Indeed, La is a left ideal of A and if ba /∈ L for some b in L1 ∈ L
containing La then, because of Aba+L = A, there is c ∈ A such that cba−a ∈ L.
So, cb− eA ∈ La ⊂ L1 and, consequently, L1 = A.

Further, let AL = {x ∈ A : Lx ⊆ L} stand for the normalizer of the ideal
L ∈ L. Clearly AL is a subalgebra of A containing the center Z(A) of A. Besides,
L is a two-sided ideal of AL and an element a ∈ A \ L is in AL if and only if
L ⊆ La, or equivalently, if and only if La ⊆ L. Moreover, the quotient algebra
AL/L is a division algebra ([19, Theorem 2.1.2] or [21, Lemma 2.1]). Analogously,
AR = {x ∈ A : xR ⊆ R} is the normalizer of R ∈ R.

We shall need the following lemmas.

Lemma 2.1. Let A be an algebra, let L ∈ L and a, x, y ∈ A. If a /∈ AL, then
there is b ∈ A such that ba− x, b− y ∈ L.

Proof. Since a /∈ AL, there are c1, c2 ∈ A such that c1 ∈ L, c1 /∈ La, c2 /∈ L,
c2 ∈ La. Now, c1a /∈ L and, because L is a maximal left ideal, Ac1a + L = A.
Analogously, Ac2 + L = A. So, there are d1, d2 ∈ A such that d1c1a− x ∈ L and
d2c2 − y ∈ L. Finally, put b = d1c1 + d2c2. �

Lemma 2.2. Let A be an algebra. If = ⊂ L is such that La ∈ = for any L ∈ =
and a ∈ A \ L, then

<(=) = ∩{L : L ∈ =}
is a two-sided ideal of A.

Moreover, if b ∈ A is such that for any L ∈ = there is α ∈ C satisfying
b− αeA ∈ L, then [b, x] ∈ <(=) for any x ∈ A.

Proof. See [21, Lemmas 2.3 and 2.4]. �

3. Central elements in Gelfand–Mazur algebras

Recall that a topological algebra is an algebra which is also a Hausdorff topo-
logical vector space in such a way that the ring multiplication is separately con-
tinuous; and we say that a topological algebra A is a topological algebra with the
exponential map if every a ∈ A has an exponent exp(a) ∈ InvA.

If A is a topological algebra, then by radA we denote the left topological radical
of A, i.e. radA =∩{L : L ∈ =c}, where =c is the set of all closed maximal left
ideals of A. By Lemma 2.2, radA is a two-sided ideal of A and an element a in
A is said to be central modulo radA if [a, b] ∈ radA for every b ∈ A.
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Furthermore, A is called a Gelfand–Mazur algebra if the quotient algebra A/L
is topologically isomorphic to C for every closed two-sided ideal L of A which is
maximal in A as a left or as a right ideal. Also, we say that a Gelfand–Mazur
algebra A is hereditarily Gelfand–Mazur algebra if every unital closed subalgebra
of A is a Gelfand–Mazur algebra in the subalgebra topology. For different classes
of Gelfand–Mazur algebras we refer to [1, 5, 23].

Proposition 3.1. Let A be a hereditarily Gelfand–Mazur algebra. The following
statements are equivalent for an element a ∈ A:

(1) a ∈ AL for every L ∈ =c,
(2) for every L ∈ =c there is α ∈ C satisfying a− αeA ∈ L,
(3) a is central modulo radA.

Proof. (1)⇒(2). Take L ∈ =c. Then L is a closed two-sided ideal of the subal-
gebra AL and, as we mentioned above, the quotient algebra AL/L is a division
algebra. Hence L is maximal in AL as a left or as a right ideal. Indeed, if there is
a left ideal I in AL such that L ⊂ I and i ∈ I \L, then i+L is invertible in AL/L.
Therefore there exists x ∈ AL such that xi−eA ∈ L, so that eA = xi−(xi−eA) ∈ I
which is impossible. The proof for right ideals is similar.

Now, since AL is, by assertion, a Gelfand–Mazur algebra, AL/L is topologically
isomorphic to C. So, there is a multiplicative linear functional Λ on AL with the
kernel kerΛ = L and since eA, a ∈ AL, we have a− Λ(a)eA ∈ L.

(2)⇒(3). Note first that Lx ∈ =c for any L ∈ =c and x ∈ A \ L. Then use
Lemma 2.2.

(3)⇒(1). Take any L ∈ =c and any l ∈ L. Then [a, l] ∈ radA ⊂ L. Thus,
la ∈ L for any l ∈ L, that is a ∈ AL. �

Remark 3.2. An analogous result is also valid when considering the closed maxi-
mal right ideals and the right topological radical of A.

The next theorem could be looked as a version of the above mentioned Sinclair’s
theorem for the class of topological algebras possessing the exponential map.

Theorem 3.3. Let A be a topological algebra with the exponential map, L ∈ =c
and let a ∈ A \AL. Moreover, let Z be the linear subspace in A, generated by the
elements a and eA and let {x, y} be a linearly independent system of elements of
Z. Then, there is b ∈ A such that exp(b)a− x, exp(b)− y ∈ L.

Proof. Note that a and eA are linearly independent elements. Consider Z as
the 2-dimensional coordinate space with respect to the base {a, eA}, i.e. for any

element z = αa + βeA ∈ Z (α, β ∈ C) put ‖z‖ =
√
αᾱ + ββ̄. Moreover, let

LB(Z) be the Banach algebra of all bounded linear operators on Z. Define an
operator P ∈ LB(Z) by P (αa+βeA) = αx+βy for any α, β ∈ C. Since {x, y} is a
linearly independent system, P is invertible, so that 0 /∈ σLB(Z)(P ). Furthermore,
σLB(Z)(P ) is a finite set (see, for example, [19, Proposition 1.10.1]). Put R− =
{α ∈ R : α ≤ 0}. Now, there is λ ∈ C\R− such that σLB(Z)(λP ) ⊂ C\R− and it
readily follows that there is R ∈ LB(Z) such that expn(R)(z) −→ P (z) (z ∈ Z) in
the coordinate space topology (see, for example, [11, Proposition 1.8.3]). But then
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exp(R)n(z) −→ P (z) in the topology of A for every z ∈ Z. Further, by Lemma
2.1, there is b ∈ A such that ba−R(a), b−R(eA) ∈ L. So, bz−R(z) ∈ L for every
z ∈ Z and also, bnz−Rn(z) = b(bn−1z−Rn−1(z))+ b(Rn−1(z))−R(Rn−1(z)) ∈ L
(z ∈ Z, n = 2, 3, . . .). Hence expn(b)z − expn(R)(z) ∈ L for any z ∈ Z (n =
1, 2, . . .) and since L is closed, we conclude that exp(b)z − P (z) ∈ L for any
z ∈ Z. �

Corollary 3.4. Let A be a topological algebra with the exponential map and let L
be an element in =c. If a ∈ A\AL and α ∈ C is nonzero, then there are elements
b1, b2 ∈ InvA such that

(1) α ∈ σA(a(b−11 ab1)),
(2) α ∈ σA(a− b−12 ab2).

Proof. Since by assertion a /∈ AL, elements a and eA are linearly independent and
therefore {eA, a/α} and {a + αeA, eA} are two linearly independent systems of
elements of the linear subspace of A generated by a and eA. Hence, by Theorem
3.3, there are b1, b2 ∈ InvA such that b1a−eA, αb1−a, b2a−a−αeA, b2−eA ∈ L.
Now ab1a− a, ab2 − a ∈ L, so that ab1a− αb1, [b2, a]− αb2 ∈ L. Consequently,
b−11 ab1a − αeA, b

−1
2 [b2, a] − αeA ∈ L. But this yields α ∈ σA(a(b−11 ab1)) and

α ∈ σA(a− b−12 ab2). �

Proposition 3.1 and Corollary 3.4 give us

Corollary 3.5. Let A be a hereditarily Gelfand–Mazur algebra with the exponen-
tial map and let a be an element of A. If one of the following two conditions

(1) sup{rA(a(b−1ab)) : b ∈ InvA} <∞,
(2) sup{rA(a− b−1ab) : b ∈ InvA} <∞

is satisfied, then a is central modulo radA.

Proof. By Corollary 3.4 a ∈ AL for every L ∈ =c. So, by Proposition 3.1, a is
central modulo radA. �

A topological algebra A is called a Q-algebra if the set InvA is open in the
topology of A. It is a well-known fact that in a Q-algebra A every maximal ideal
is closed and σA(a) is bounded for any a ∈ A ([23], p. 72). Thus, for topological
Q-algebras radA = RadA = ∩{R : R ∈ R} and we can easily deduce the following
theorem (cf. [13, Theorems 4.1 and 4.2], [15, Theorem 2.1], [18, Theorem 5.6],
[20, Theorem 2], [21, Theorem 3.3], [26, Theorems 3.1 and 5.1]).

Theorem 3.6. Let A be a hereditarily Gelfand–Mazur Q-algebra with the ex-
ponential map. The following statements are equivalent for an element a ∈ A
:

(1) a is central modulo the Jacobson radical RadA of A,
(2) σA(a+ b) ⊆ σA(a) + σA(b) for each b ∈ A,
(3) σA(ab) \ {0} ⊆ σA(a)σA(b) for each b ∈ A,
(4) there is K > 0 such that rA(a+ b) ≤ K(rA(a) + rA(b)) for each b ∈ A,
(5) there is K > 0 such that rA(ab) ≤ KrA(a)rA(b) for each b ∈ A,
(6) there is M > 0 such that sup{rA(a− b−1ab) : b ∈ InvA} < M ,
(7) there is M > 0 such that sup{rA(a(b−1ab)) : b ∈ InvA} < M .
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Proof. (1)⇒(2). Take any b ∈ A and λ ∈ σA(a + b). Then a + b − λeA ∈ M for
some M ∈ L or M ∈ R. Suppose that M ∈ L. Then, by Proposition 3.1, there
is α ∈ σA(a) such that a− αeA ∈M . Now a− αeA + b− (λ− α)eA ∈M and so
(λ− α) ∈ σA(b). The proof in case M ∈ R is analogous (see Remark 3.2).

(1)⇒(3). Suppose ab − λeA ∈ M for some b ∈ A, nonzero λ ∈ C and M ∈ L
or M ∈ R. If M ∈ L then, again by Proposition 3.1, there is α ∈ σA(a) with
a − αeA ∈ M . Also, αb − ba ∈ M and, consequently, αb − λeA ∈ M since
[a, b] ∈ M . Hence, α is nonzero and λ/α ∈ σA(b). In view of Remark 3.2 the
proof for M ∈ R is analogous.

(2)⇒(4) and (3)⇒(5). Take any K ≥ 1.

(4)⇒(6). Take any M > 2KrA(a).

(5)⇒(7). Take any M > KrA(a)2.

(6)⇒(1) and (7)⇒(1). Use Corollary 3.5. �

4. Classes of topological algebras with the exponential map

4.1. Fundamental topological algebras with bounded elements. A topo-
logical algebra A is a fundamental topological algebra if there exists b > 1 such
that for every sequence (an) of A the convergence of bn(an − an−1) to zero in A
implies that (an) is a Cauchy sequence. This class of topological algebras was
introduced in [6]. It is known (see [3, Proposition 2.3]) that every locally pseu-
doconvex algebra (in particular, every locally convex algebra and every locally
bounded algebra) is a fundamental topological algebra.

An element a of a topological algebra A is called to be bounded if there exists
λ > 0 such that the set {

(
a
λ

)n
: n ∈ N} is bounded in A. If every element of A is

bounded, then A is called a topological algebra with bounded elements.

Proposition 4.1. Every unital sequentially complete fundamental topological al-
gebra with bounded elements is a topological algebra with the exponential map.

Proof. Let a be an element in A, O,O′′ neighbourhoods of zero in A and O′ a
neighbourhood of zero in C such that O′O′′ ⊂ O. Let λ > 0 be a number such that
the set {

(
a
λ

)n
: n ∈ N} is bounded. Then there is µ > 0 such that

(
a
λ

)n ∈ µO′′
for each n. Moreover, put

Sn =
n∑
i=0

ai

i!

for each n ∈ N, and let b > 1 be a fixed number. Since

∞∑
n=0

bnλn

n!

converges, then there is an n0 ∈ N such that bnλn

n!
∈ µ−1O′ whenever n > n0 and

bn(Sn − Sn−1) =
bnλn

n!

(a
λ

)n
∈ O′O′′ ⊂ O
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whenever n > n0. Hence, bn(Sn − Sn−1) converges to zero in A. Therefore, (Sn)
is a Cauchy sequence which converges in A, because A is a sequentially complete
fundamental topological algebra. Consequently,

exp(a) = lim
n→∞

Sn =
∞∑
i=0

ai

i!
∈ A.

Similarily, exp(−a) ∈ A. Since exp(a) exp(−a) = exp(−a) exp(a) = eA, then A
is a topological algebra with the exponential map. �

Corollary 4.2. Every unital sequentially complete locally pseudoconvex algebra
with bounded elements is a topological algebra with the exponential map.

4.2. Fundamental locally convex algebras. A fundamental topological alge-
bra A is called to be locally multiplicative (see [7] or [8]), if in A there exists a
neighbourhood U0 of zero such that for every neighbourhood V of zero of A, the
sufficiently large powers of U0 lie in V . It is shown in [8, p. 1765] or [7, Theorem
5.4], that every unital fundamental locally convex Fréchet algebra is a topological
algebra with the exponential map.

4.3. Locally idempotent galbed algebras. Let l0 be the set of number se-
quences (αn), where αn 6= 0 for only a finite number of elements, k > 0, lk the
set of number sequences (αn) for which the series

∞∑
v=0

|αv|k

converges and let l = l1 \ l0. A topological algebra A is called a galbed algebra if
there exsists a sequence (αn) ∈ l such that for each neighbourhood O of zero in
A there is another neighbourhood U of A such that{ n∑

k=0

αk ak : a0, . . . , an ∈ U
}
⊂ O

for each n ∈ N. In case when we have already specified the sequence (αn) ∈ l,
we will talk about an (αn)-galbed algebra. In particular, when αn = 1

2n
for each

n ∈ N, a galbed algebra is called an exponentially galbed algebra. The class of
exponentially galbed algebras has been introduced in [25] and the class of galbed
algebras in [2]. It is easy to see that every locally pseudoconvex algebra is an
exponentally galbed algebra.

Moreover, a topological algebra A is called a locally idempotent algebra if A
has a base of idempotent neibourghoods of zero.

Proposition 4.3. Every unital sequentially complete locally idempotent
(αn)-galbed algebra A is a topological algebra with the exponential map if

lim
n→∞

αn
(n+ 1)αn+1

= 0. (4.1)
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Proof. Let a be an element in A and let O be a neighbourhood of zero in A. Then
there exist an idempotent neigbourhood U of zero such that U ⊂ O and λ > 0
such that a ∈ λU . Put

Sn =
n∑
i=0

ai

i!

for each n ∈ N. Then

Sn+p − Sn =

n+p∑
i=n+1

ai

i!
=

n+p∑
i=n+1

αiui,

where p ≥ 1 and

un+k =
an+k

(n+ k)!αn+k
∈ λn+k

(n+ k)!αn+k
U

for each k ≥ 1. Since
∞∑
n=0

λn+k

(n+ k)!αn+k

converges by (4.1) for each k ≥ 1, there exists n0 ∈ N such that∣∣∣ λn+k

(n+ k)!αn+k

∣∣∣ ≤ 1

whenever n > n0 and k ≥ 1. Hence un+k ∈ U for each k ≥ 1 whenever n > n0.
Therefore,

Sn+p − Sn =

n+p∑
i=0

αiui ∈
{ n+p∑

i=0

αiui : u0, . . . un+p ∈ U
}
⊂ O

whenever n > n0 and p ≥ 1 (here ui = θA for each i ∈ {1, . . . , n}). Thus (Sn)
is a Cauchy sequence which converges in A because A is sequentially complete.
Similary as in the proof of Proposition 4.1, A is a topological algebra with the
exponential map. �

Corollary 4.4. Every unital sequentially complete locally idempotent
exponentially galbed (in particular, every unital sequentially complete locally
m-pseudoconvex1) algebra A is a topological algebra with the exponential map.

Theorem 4.5. Let A be
a) a unital sequentially complete locally pseudoconvex Q-algebra with bounded

elements or
b) a unital sequentially complete locally idempotent exponentially galbed

Q-algebra with bounded elements.

If a ∈ A, then the statements (1)–(7) of Theorem 3.6 are equivalent.

1Corollary 4.2 for a complete locally m-pseudoconvex algebra was proved in [10], Proposition
5.2.2.
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Proof. It is known (see [4, Theorem 1] or [1, Corollary 2]) that every exponentially
galbed (in particular, locally pseudoconvex) algebra with bounded elements is
a Gelfand–Mazur algebra. In addition, every subalgebra of such an algebra is
also an exponentially galbed (respectively, locally pseudoconvex) algebra with
bounded elements. Hence, in both cases, A is a hereditarily Gelfand–Mazur
Q-algebra. Since A is a topological algebra with the exponential map (Corollaries
4.2 and 4.4), the statements (1)–(7) are, by Theorem 3.6, equivalent. �
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