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APPLICATION OF MULTIDIMENSIONAL HARDY OPERATOR
AND ITS CONNECTION WITH A CERTAIN NONLINEAR
DIFFERENTIAL EQUATION IN WEIGHTED VARIABLE

LEBESGUE SPACES

ROVSHAN A. BANDALIEV

Communicated by C. Cuevas

Abstract. In this paper a two weight criterion for multidimensional geomet-
ric mean operator in variable exponent Lebesgue space is proved. Also, we
found a criterion on weight functions expressing one-dimensional Hardy in-
equality via a certain nonlinear differential equation. In particular, considered
nonlinear differential equation is nonlinear integro-differential equation.

1. Introduction and preliminaries

It is well known that the variable exponent Lebesgue space appeared in the lit-
erature for the first time already in [18]. Further development of this theory was
connected with the theory of modular function spaces. The first systematic study
of modular spaces is presented in [17]. In the appendix, Nakano mentions explic-
itly variable exponent Lebesgue spaces as an example of more general spaces he
considers. Somewhat later, a more explicit version of these spaces, namely mod-
ular function spaces, were investigated by many mathematicians (see [16]). The
next step in the investigation of variable exponent spaces was given in [19] and
in [14]. The study of these spaces has been stimulated by problems of elasticity,
fluid dynamics, calculus of variations and differential equations with non-standard
growth conditions (see [7]). Recently in [1] was investigated converse theorems
of trigonometric approximation in variable exponent Lebesgue spaces with some
Muckenhoupt weights.
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Inequalities are one of the most important instruments in many branches of
mathematics such as functional analysis, theory of differential and integral equa-
tions, interpolation theory, harmonic analysis, probability theory etc. They are
also useful in mechanics, physics and other sciences. It is well known that the clas-
sical two weight inequality for the geometric mean operator is closely connected
to the one-dimensional Hardy inequality (see [9]). Analogously, the Pólya-Knopp
type inequalities with multidimensional geometric mean operator is connected
with multidimensional Hardy type operator. In the paper [8] the connection
of the Hardy inequality with a nonlinear differential equation having a solution
with certain special properties was considered. Therefore, the consideration of
this problems in variable exponent Lebesgue space is actual.

Let Rn be the n-dimensional Euclidean space of points x = (x1, · · · , xn) and

Ω be a Lebesgue measurable subset in Rn and |x| =

(
n∑
i=1

x2
i

)1/2

. Suppose that

p is a Lebesgue measurable function on Ω such that 0 < p ≤ p(x) < ∞, p =
ess infx∈Ω p(x) and ω is a weight function on Ω, i.e. ω is a non-negative, almost
everywhere (a.e.) positive function on Ω. The Lebesgue measure of a set Ω will

be denoted by |Ω|. It is well known that |B(0, 1)| = π
n
2

Γ
(
n
2

+ 1
) , where B(0, 1) =

{x ∈ Rn; |x| < 1} . Further, in this paper all sets and functions are supposed to be
Lebesgue measurable. By AC(0, ∞) we denote the set of absolutely continuous
functions on (0, ∞). For the sake of simplicity, the letter C always denotes a
positive constant which may change from one step to the next.

Definition 1.1. By Lp(x), ω(Ω) we denote the set of measurable functions f on Ω
such that for some λ0 > 0∫

Ω

(
|f(x)|ω(x)

λ0

)p(x)

dx <∞.

Note that the expression

‖ωf‖Lp(x)(Ω) = ‖f‖Lp(·), ω(Ω) = inf

λ > 0 :

∫
Ω

∣∣∣∣f(x)ω(x)

λ

∣∣∣∣p(x)

dx ≤ 1

 .

defines a quasi-Banach spaces. In particular, for 1 ≤ p(x) < ∞ the space
Lp(x), ω(Ω) is a Banach function space (see [7]) with respect to the expression
‖f‖Lp(x), ω(Ω).

For ω = 1 the space Lp(x),ω(Ω) coincides with the variable Lebesgue space
Lp(x)(Ω).

We reduce two examples which characterize the norm of this space.

Example 1.2. Let p(x) =

{
2 for x ∈ Ω
3 for x ∈ Rn \ Ω

and f ∈ L2 (Rn)
⋂
L3 (Rn) .
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We calculate ‖f‖Lp(x)(Rn). By the definition we have

‖f‖Lp(x)(Rn) = inf

λ > 0 :

∫
Ω

∣∣∣∣f(x)

λ

∣∣∣∣2 dx+

∫
Rn\Ω

∣∣∣∣f(x)

λ

∣∣∣∣3 dx ≤ 1

 =

= inf
{
λ > 0 :

a1

λ2
+
a2

λ3
≤ 1
}

= inf
{
λ > 0 : λ3 − a1 λ− a2 ≥ 0

}
,

where a1 =

∫
Ω

f 2(x) dx and a2 =

∫
Rn\Ω

|f(x)|3 dx. Now we solve the inequality

λ3 − a1 λ− a2 ≥ 0. We consider three different cases.

Case 1. Let
a2

2

4
− a3

1

27
> 0. Then the cubic equation λ3 − a1 λ − a2 = 0 has

one real root and two complex conjugate roots. Namely, λ1 =
3

√
a2

2
+

√
a2

2

4
− a3

1

27

+
3

√
a2

2
−
√
a2

2

4
− a3

1

27
, λ2 = −λ1

2
+ i
√

3

3

√
a2
2

+

√
a22
4
− a31

27
− 3

√
a2
2
−
√

a22
4
− a31

27

2
and

λ3 = λ2. It is obvious that λ3 − a1 λ− a2 = (λ− λ1)
(
λ2 + λ1 λ+ |λ2|2

)
and λ2 +

λ1 λ+ |λ2|2 > 0 for all λ ∈ (−∞,+∞). Therefore the inequality λ3−a1 λ−a2 ≥ 0
holds if and only if λ ≥ λ1 and

‖f‖Lp(x)(Rn) =
3

√
a2

2
+

√
a2

2

4
− a3

1

27
+

3

√
a2

2
−
√
a2

2

4
− a3

1

27
.

Case 2. Let
a2

2

4
− a3

1

27
= 0. Then λ3 − a1 λ− a2 =

(
λ− 2 3

√
a2

2

)(
λ+ 3

√
a2

2

)2

and the inequality λ3 − a1 λ − a2 ≥ 0 holds if and only if λ ≥ 2 3

√
a2

2
and

‖f‖Lp(x)(Rn) = 2 3

√
a2

2
.

Case 3. Let
a2

2

4
− a3

1

27
< 0. Then the equation λ3 − a1 λ− a2 = 0 has three dis-

tinct real roots. We denote by α1, α2 and α3 the roots of this equation. By
Viète’s formulas one root of this equation is positive and two roots are neg-
ative. Let α1 > 0. Then λ3 − a1 λ− a2 = (λ− α1)

(
λ2 + α1 λ+ α2

1 − a1

)
= 0,

α2 =
−α1 +

√
4 a1 − 3α2

1

2
, α3 =

−α1 −
√

4 a1 − 3α2
1

2
and

√
a1 < α1 <

2√
3

√
a1.

It is obvious that α3 < α2 < α1. Therefore the inequality λ3−a1 λ−a2 ≥ 0 holds
if and only if λ ∈ [α3, α2]

⋃
[α1,∞) and by the definition of the norm we have

λ ≥ α1. Thus, ‖f‖Lp(x)(Rn) = α1.

Example 1.3. Let n = 1, x ∈ [1, ∞), p(x) = x and f(x) = 1.
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We calculate ‖1‖Lp(x)([1,∞)). We have

‖1‖Lp(x)([1,∞)) = inf

λ > 0 :

∞∫
1

1

λx
dx ≤ 1

 .

It is obvious that

∞∫
1

1

λx
dx =

1

λ lnλ
if λ > 1 and

inf

λ > 0 :

∞∫
1

1

λx
dx ≤ 1

 = inf

{
λ > 1 :

1

λ lnλ
≤ 1

}
= inf

{
λ > 1 : λλ ≥ e

}
.

Thus, ‖1‖Lp(x)([1,∞)) = 1, 7712 · · ·

In [2] the following theorem is proved.

Theorem 1.4. Let 1 ≤ p ≤ p(x) ≤ q(y) ≤ q < ∞ for all x ∈ Ω1 ⊂ Rn and
y ∈ Ω2 ⊂ Rm. If p ∈ C (Ω1) , then the inequality∥∥∥‖f‖Lp(·)(Ω1)

∥∥∥
Lq(·)(Ω2)

≤
(
p

q
+
q − p
q

) 2
p ∥∥∥‖f‖Lq(·)(Ω2)

∥∥∥
Lp(·)(Ω1)

is valid, where q = ess inf
Ω2

q(x), q = ess sup
Ω2

q(x) and C (Ω1) is the space of

continuous functions in Ω1 and f : Ω1×Ω2 → R is any measurable function such
that

‖‖f‖q,Ω2‖p,Ω1
= inf

µ > 0 :

∫
Ω1

(
‖f(x, ·)‖q(·),Ω2

µ

)p(x)

dx ≤ 1

 <∞.

Let Hf(x) =

∫
|y|<|x|

f(y) dy, where f ≥ 0 and B(0, |x|) = {y ∈ Rn; |y| < |x|} .

Now we formulate the criteria on boundedness of multidimensional Hardy type
operator in weighted variable Lebesgue spaces. In [3] the following theorem is
proved.

Theorem 1.5. Let q(·) be a measurable function on Rn, 1 < p ≤ q(x) ≤ q <∞
and p′ =

p

p− 1
. Suppose that v and w are weights on Rn. Then the inequality

‖Hf‖Lq(·), w(Rn) ≤ C ‖f‖Lp, v(Rn) (1.1)

holds, for every f ≥ 0 if and only if there exists α ∈ (0, 1) such that

A(α, p, q) = sup
t>0

 ∫
|y|<t

v−p
′
(y) dy


α
p ′
∥∥∥∥∥∥∥∥
 ∫
|y|<|·|

v−p
′
(y) dy


1−α
p
′
∥∥∥∥∥∥∥∥
Lq(·), w(|x|>t)

<∞. (1.2)
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Moreover, if C > 0 is the best possible constant in (1.1) then

sup
0<α<1

p ′A(α, p, q)

(1− α)
[(

p ′

1−α

)p
+ 1

α(p−1)

]1/p
≤ C ≤

≤
(
p

q
+
q − p
q

) 2
p

inf
0<α<1

A(α, p, q)

(1− α)1/p ′
.

Remark 1.6. Note that Theorem 1.5 in the case n = 1, q(x) = q = const for x ∈
(0,∞) and α = s−1

p−1
(1 < s < p) was proved in [20] and in multidimensional Hardy

type operators it was proved in [3]. Two-weighted criterion for one-dimensional
Hardy operator in weighted variable Lp(x), w([0, 1]) spaces was proved in [13]. Note
that Theorem 1.5 in the case n = 1, p(x) = p = const q(x) = q = const for
x ∈ (0,∞) was proved in [4], [15] and etc.

2. Main results

We consider the multidimensional geometric mean operator defined as

Gf(x) = exp

 1

|B(0, |x|)|

∫
B(0, |x|)

ln f(y) dy

 ,

where f > 0 and |B(0, |x|)| = |B(0, 1)| |x|n. It is obvious that G (f1 · f2) (x) =
Gf1(x) ·Gf2(x).

Now we formulate a two-weight criterion on boundedness of multidimensional
geometric mean operator in variable Lebesgue spaces.

Theorem 2.1. Let q(·) be a measurable function on Rn and 0 < p ≤ q(x) ≤ q <
∞. Suppose that v and w are weights on Rn. Then the inequality

‖Gf‖Lq(·), w(Rn) ≤ C ‖f‖Lp, v(Rn) (2.1)

holds, for every f > 0 if and only if there exists s ∈ (1, p) such that

D(s, p, q)

= sup
t>0
|B(0, t)|

s−1
p

∥∥∥∥∥ w(·)
|B(0,|·|)|

s
p

exp

(
1

|B(0,|·|)|

∫
B(0,|·|)

ln 1
v(y)

dy

)∥∥∥∥∥
Lq(·)(|x|>t)

<∞.(2.2)

Moreover, if C > 0 is the best possible constant in (2.1), then

sup
s>1

e
s
p(

es + 1
s−1

)1/p
D(s, p, q) ≤ C ≤

(
p

q
+
q − p
q

) 2
p

inf
s>1

e
s−1
p D(s, p, q).

Proof. Let α =
s− 1

p− 1
, where 1 < s < p. We replace f with fβ, v with vβ, w with

wβ(x)

|B(0, |x|)|
, 0 < β < p, and p with

p

β
and q(x) with

q(x)

β
in (1.1), (1.2). We find
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that for 1 < s <
p

β

∥∥∥∥ wβ

|B(0, | · |)|
H(fβ)

∥∥∥∥
Lq(·)/β(Rn)

=

∥∥∥∥∥∥∥∥
 1

|B(0, | · |)|

∫
B(0, |·|)

fβ(y) dy


1/β
∥∥∥∥∥∥∥∥
β

Lq(·), w(Rn)

≤ Cβ

∫
Rn

[f(y)v(y)]p dy

β/p

.

Then the inequality∥∥∥∥∥∥∥∥
 1

|B(0, | · |)|

∫
B(0, |·|)

fβ(y) dy


1/β
∥∥∥∥∥∥∥∥
Lq(·), w(Rn)

≤ C
1/β
β

∫
Rn

[f(y)v(y)]p dy

1/p

(2.3)

holds if and only if

A

(
s− 1

p− 1
,
p

β
,
q

β

)

=

sup
t>0

 ∫
|y|<t

[v(y)]−
β p
p−β dy


s−1
p

∥∥∥∥∥∥∥∥
 1

|B(0, | · |)|
p

p−βs

∫
|y|<|·|

[v(y)]−
βp
p−β dy


p−βs
βp

∥∥∥∥∥∥∥∥
Lq(·), w(|x|>t)


β

= Bβ (s, p, q, β) <∞

and

sup
1<s< p

β


(

p
p−sβ

) p
β(

p
p−sβ

) p
β

+ 1
s−1


β/p

Bβ (s, p, q, β) ≤ Cβ

≤
(
p

q
+
q − p
q

) 2 β
p

inf
1<s< p

β

(
p− β
p− sβ

) p−β
p

Bβ (s, p, q, β) , (2.4)

where q is replaced by
q

β
and q is replaced by

q

β
. By L’Hospital rule, we get

lim
β→+0

 1

|B(0, |x|)|
p

p−βs

∫
|y|<|x|

[v(y)]−
βp
p−β dy


p−βs
βp
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= lim
β→+0

exp


p ln 1

|B(0,|x|)| + (p− βs) ln

( ∫
|y|<|x|

[v(y)]−
βp
p−β dy

)
p β



= lim
β→+0

exp

−sp ln

 ∫
|y|<|x|

[v(y)]−
βp
p−β dy

+

(p− βs)
(

p
p−β

)2 ∫
|y|<|x|

[v(y)]−
βp
p−β ln 1

v(y) dy

p
∫

|y|<|x|
[v(y)]−

βp
p−β dy



= exp

s
p

ln
1

|B(0, |x|)|
+

∫
|y|<|x|

ln 1
v(y) dy

|B(0, |x|)|

 =
1

|B(0, |x|)|
s
p

exp

 1

|B(0, |x|)|

∫
B(0,|x|)

ln
1

v(y)
dy

 .

Therefore

lim
β→+0

B (s, p, q, β)

= sup
t>0
|B(0, t)|

s−1
p

∥∥∥∥∥∥∥
w(·)

|B(0, | · |)|
s
p

exp

 1

|B(0, | · |)|

∫
B(0,|·|)

ln
1

v(y)
dy


∥∥∥∥∥∥∥
Lq(·)(|x|>t)

= D(s, p, q) <∞

and

sup
s>1

e
s
p(

es + 1
s−1

)1/p
D(s, p, q) ≤ lim

β→+0
C

1/β
β ≤

(
p

q
+
q − p
q

) 2
p

inf
s>1

e
s−1
p D(s, p, q). (2.5)

Further, we have

lim
β→+0

 1

|B(0, |x|)|

∫
B(0, |x|)

fβ(y) dy


1/β

= exp

 1

|B(0, |x|)|

∫
B(0, |x|)

ln f(y) dy

 .

Formula (2.4) implies lim
β→+0

Cβ = 1, and according to (2.2) and (2.5) lim
β→+0

C
1/β
β

= C < ∞. Therefore the inequality (2.3) is valid. Moreover, from (2.3) for
β → +0 we obtain

‖Gf‖Lq(·), w(Rn) ≤ C ‖f‖Lp, v(Rn)

and by (2.5)

sup
s>1

e
s
p(

es + 1
s−1

)1/p
D(s, p, q) ≤ C ≤

(
p

q
+
q − p
q

) 2
p

inf
s>1

e
s−1
p D(s, p, q).

This completes the proof of Theorem 2.1. �
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Remark 2.2. Let q(x) = q = const and n = 1. Note that the simplest case of
(2.1) with v = w = 1 and p = q = 1 was considered in [9] and in [12]. Later on,
this inequality was generalized in various ways by many authors in [5], [6], [10],
[11], [20] and etc.

Corollary 2.3. Let q(x) = q = const, 0 < p ≤ q < ∞ and let f be a positive
function on Rn. Then∫

Rn

[Gf(x)]q |x|γ q dx

1/q

≤ C

∫
Rn

fp(x) |x|β p dx

1/p

(2.6)

holds with a finite constant C if and only if

γ +
n

q
=
β

n
+
n

p

and the best constant C has the following condition:

q

√
p

nq
e
β

n2 |B(0, 1)|
1
q
− 1
p sup
s>1

e
s
p (s− 1)

1
p
− 1
q

[(s− 1)es + 1]1/p
≤ C ≤ |B(0, 1)|

1
q
− 1
p e

β

n2
+ 1
q

q
√
n

.

Remark 2.4. Note that if p = q, then the inequality (2.6) is sharp with the

constant C =
e
β

n2
+ 1
p

p
√
n
.

Corollary 2.5. Let x ∈ Rn, 0 < p ≤ q(x) < ∞, q(x) =

{
1 for |x| < 1
2 for |x| ≥ 1,

and let f be a positive function on Rn. Suppose that v(x) = 1 and w(x) = |x|β.
Then

‖Gf‖L
q(·), |·|β (Rn) ≤ C

∫
Rn

fp(x) dx

1/p

holds with a finite constant C if and only if

n

(
s

p
− 1

)
≤ β ≤ n

(
1

p
− 1

2

)
, s ∈

(
1, 1 +

p

2

]
and the best constant C has the following condition:

sup
1<s≤1+ p

2

e
s
p(

es + 1
s−1

)1/p
D′(s, p, q) ≤ C ≤

(
p

q
+
q − p
q

) 2
p

inf
1<s≤1+ p

2

e
s−1
p D′(s, p, q),

where D′(s, p, q) = |B(0, 1)|−
1
p sup

t>0
t
n(s−1)
p

∥∥∥ | · |β−nsp ∥∥∥
Lq(·)(|·|>t)

<∞.

Now we consider an application in the theory of nonlinear ordinary differential
equation. Let L(t, ω, y) =

∥∥ω y1/p′
∥∥
Lq(x)(x>t)

, where t ∈ (0,∞) and ω is a weight

function defined on (0,∞).
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Lemma 2.6. Let 1 < p ≤ q(x) ≤ q < ∞. Suppose that ω1 and ω2 are weight
functions defined on (0,∞). Let the equation

L (t, ω2, y)− λω1(t) (y′(t))
1/p′

= 0, (λ > 0) (2.7)

have a solution y such that

y(t) > 0, y′(t) > 0, y ∈ AC(0, ∞). (2.8)

Then the weighted norm inequality

‖u‖Lq(·),ω2 (0,∞) ≤ λ

(
p

q
+
q − p
q

) 2
p

‖u′‖Lp,ω1 (0,∞)

holds, where u ∈ AC(0, ∞) and u(0) = lim
t→+0

u(t) = 0.

Proof. Applying the Hölder inequality we have

u(x) =

x∫
0

u′(t) dt =

x∫
0

u′(t)(y′(t))
− 1
p′ (y′(t))

1
p′ dt

≤

 x∫
0

y′(t) dt

 1
p′ ∥∥∥u′ (y′)

− 1
p′
∥∥∥
Lp(0, x)

≤ (y(x))
1
p′
∥∥∥u′ (y′)

− 1
p′
∥∥∥
Lp(0, x)

.

Thus

‖u‖Lq(·), ω2 (0,∞) ≤
∥∥∥ω2(·) (y(·))

1
p′ ‖u′ (y′)

− 1
p′ ‖Lp(0, ·)

∥∥∥
Lq(·)(0,∞)

=

∥∥∥∥∥∥∥ω2(·)(y(·))
1
p′ u′ (y′)

− 1
p′ χ(0, ·)

∥∥∥
Lp(0,∞)

∥∥∥∥
Lq(·)(0,∞)

.

By using Theorem 1.4 we have∥∥∥∥∥∥∥ω2(·)(y(·))
1
p′ u′ (y′)

− 1
p′ χ(0, ·)

∥∥∥
Lp(0,∞)

∥∥∥∥
Lq(·)(0,∞)

≤
(
p

q
+
q − p
q

) 2
p
∥∥∥∥∥∥∥ω2(·)(y(·))

1
p′ u′ (y′)

− 1
p′ χ(0, ·)

∥∥∥
Lq(·)(0,∞)

∥∥∥∥
Lp(0,∞)

=

(
p

q
+
q − p
q

) 2
p
∥∥∥∥∥∥∥ω2 y

1
p′
∥∥∥
Lq(·)(t,∞)

u′ (y′)
− 1
p′

∥∥∥∥
Lp(0,∞)

= λ

(
p

q
+
q − p
q

) 2
p ∥∥∥ω1 (y′)

1
p′ u′ (y′)

− 1
p′
∥∥∥
Lp(0,∞)

= λ

(
p

q
+
q − p
q

) 2
p

‖ω1 u
′‖Lp(0,∞) = λ

(
p

q
+
q − p
q

) 2
p

‖u′‖Lp, ω1 (0,∞) .

This proves the Lemma 2.6. �
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Put

K = p′ inf sup
x>0

1

f(x)− x− p′
t∫

0

ω′1(s) f(s)

ω1(s)
ds

x∫
0

(f(t))1/p′+1P (t, ω2, y, f)

ω1(t) (y(t))1/p′
dt, (2.9)

where P (t, ω2, y, f) ≥ 0 for all t > 0, y(t) is a fixed positive solution of equation
(2.7) and the infimum is taken over the class of measurable functions such that

f(x) > x+ p′
t∫

0

ω′1(s) f(s)

ω1(s)
ds for all x > 0.

The following lemma gives the relation between the number K and the problem
(2.7), (2.8).

Lemma 2.7. Let λ > 0 be the number from Lemma 2.6 and let K be given by
(2.9). Suppose that ω1 and ω2 are weight functions defined on (0,∞) and the
derivative ω′1(t) exists for all t ∈ (0,∞) and ω1(t) ≥ ω1(0) > 0.

Then the following statements are equivalent:
(i) if the problem (2.7), (2.8) has a solution with a locally absolutely continuous

first derivative, then λ ≥ K;
(ii) if K < +∞, then the problem (2.7), (2.8) has a solution for every λ > K.

Proof. Assume that (i) holds. Let y0(x) be a solution of (2.7), (2.8). Let us take

w =
y0

y′0
. Assume that P (t, ω2, y0, w) = − d

dt
L (t, ω2, y0) = P (t). It is obvious that

P (t) ≥ 0 for all t > 0. Then by virtue of (2.7) w is a positive solution of the
equation

w′(t) =
p′ ω′1(t)w(t)

ω1(t)
+
p′(w(t))1/p′+1P (t)

λω1(t) (y0(t))1/p′
+ 1. (2.10)

Hence (2.10) implies

w(t) ≥
t∫

0

w′(s) ds = p′
t∫

0

ω′1(s)w(s)

ω1(s)
ds+

p′

λ

t∫
0

(w(s))1/p′+1 P (s)

ω1(s) (y0(s))1/p′
ds+ t. (2.11)

From (2.11) implies that

λ ≥ p′

w(t)− t− p′
t∫

0

ω′1(s)w(s)

ω1(s)
ds

t∫
0

(w(s))1/p′+1 P (s)

ω1(s) (y0(s))1/p′
ds. (2.12)

From (2.11), (2.12) and (2.9) it follows that λ ≥ K and the proof of (i)⇒ (ii) is
complete.
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Assume now (ii) holds. Let us fix λ > K. By the definition of K there exists
a measurable function f(x) such that

f(x) ≥ x+ p′
x∫

0

ω′1(t) f(t)

ω1(t)
dt+

p′

λ

x∫
0

(f(t))1/p′+1P (t)

ω1(t) (y(t))1/p′
dt. (2.13)

Let us define a sequence wn(x) by setting

w0(x) = f(x),

wn(x) = x+ p′
t∫

0

ω′1(s)wn−1(s)

ω1(s)
ds+

p′

λ

x∫
0

(wn−1(t))1/p′+1 Pn−1(t)

ω1(t) (y(t))1/p′
dt, (2.14)

where P0(t) = P (t) and Pn(t) ≥ 0 for all n ∈ N. From (2.13) it follows that
w0(x) ≥ w1(x). We put wn−1(x) ≥ wn(x) and let Pn(t) be decreasing sequences
with respect to n on (0,∞), where n ∈ N. Then

x∫
0

(wn−1(t))1/p′+1 Pn−1(t)

ω1(t) (y(t))1/p′
dt ≥

x∫
0

(wn(t))1/p′+1 Pn(t)

ω1(t) (y(t))1/p′
dt

and

wn(x)− wn+1(x) ≥ p′
x∫

0

ω′1(s) (wn−1(s)− wn(s))

ω1(s)
ds

≥ inf
s∈(0,∞)

(wn−1(s)− wn(s))

x∫
0

ω′1(s)

ω1(s)
ds = inf

t∈(0,∞)
(wn−1(t)− wn(t)) ln

ω1(x)

ω1(0)
≥ 0.

Since wn(x) ≥ 0, the sequence (2.14) converges. We denote its limit by w(x).
By the Levi monotone convergence theorem it follows that w is a nonnegative
solution of the equation

w(x) = x+ p′
x∫

0

ω′1(t)w(t)

ω1(t)
dt+

p′

λ

x∫
0

(w(t))1/p′+1P (t)

ω1(t) (y(t))1/p′
dt,

where P (t) = lim
n→∞

Pn(t). Hence, w is absolutely continuous and satisfies the equa-

tion

w′(x) = 1 +
p′ ω′1(x)w(x)

ω1(x)
+
p′

λ

(w(x))1/p′+1P (x)

ω1(x) (y(x))1/p′
.

Therefore the function

y0(x) = e

x∫
a

dt
w(t)

(a be fixed in (0,∞))

satisfies the problem (2.7), (2.8).
This completes the proof of Lemma 2.7. �

Thus, we have the following
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Theorem 2.8. Let 1 < p ≤ q(x) ≤ q < ∞ and K < +∞. Suppose that ω1 and
ω2 are weight functions defined on (0,∞) and the derivative ω′1(t) exists for all
t ∈ (0,∞) and ω1(t) ≥ ω1(0) > 0. Then the following statements are equivalent:

a) there is a positive solution of the equation

L (t, ω2, y)− λω1(t) (y′(t))
1/p′

= 0,

y(t) > 0, y′(t) > 0, y ∈ AC(0, ∞),

where λ > 0;
b) the weighted norm inequality

‖u‖Lq(·),ω2 (0,∞) ≤ C0‖u′‖Lp,ω1 (0,∞)

holds, where u ∈ AC(0, ∞), u(0) = lim
t→+0

u(t) = 0 and C0 > 0 is independent of

u.

Remark 2.9. Note that for q(x) = q = const and 1 < p ≤ q < ∞ Theorem 2.8
was proved in [8] and the proof of Theorem 2.8 is based on the paper [8].
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203.

9. G.H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge, 1978.
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