

Ann. Funct. Anal. 5 (2014), no. 1, 128–142

 \mathscr{A} NNALS OF \mathscr{F} UNCTIONAL \mathscr{A} NALYSIS

ISSN: 2008-8752 (electronic)

URL:www.emis.de/journals/AFA/

A SETTING FOR GENERALIZED ORTHOGONALIZATION

GUSTAVO CORACH* AND ALEJANDRA MAESTRIPIERI

This paper is dedicated to Professor Tsuyoshi Ando, with affection and admiration

Communicated by L. Székelyhidi

ABSTRACT. Let \mathcal{H} be a complex Hilbert space. We study the geometry of the space of pairs (A, E), for A a (semidefinite bounded linear) positive operator on \mathcal{H} and E a (bounded linear) projection on \mathcal{H} such that $AE = E^*A$.

1. Introduction

An orthogonalization method in a Hilbert space \mathcal{H} is a tool which converts a sequence of linearly independent vectors in a sequence of orthonormal vectors, with some additional properties. But one can also think that an orthogonalization method provides to every closed subspace \mathcal{S} of \mathcal{H} a projection with image \mathcal{S} which is orthogonal with respect to a certain inner product. In this sense, a setting which unifies different orthogonalization methods is given by the set \mathcal{Z} consisting of all pairs (\langle , \rangle', E) , where \langle , \rangle' is a inner product or, more generally, a semi-inner product on \mathcal{H} and E is a bounded linear projection acting on \mathcal{H} . In order to maintain the situation under control, we shall only admit bounded semi-inner products (with respect to the original inner product \langle , \rangle of \mathcal{H}). Therefore, \langle , \rangle' is indeed determined by a positive (semidefinite bounded linear) operator A acting on \mathcal{H} , by the rule $\langle \xi, \eta \rangle' = \langle A\xi, \eta \rangle$, where $\xi, \eta \in \mathcal{H}$. Thus, the object of our present study is the set

$$\mathcal{Z} = \{ (A, E) \in L(\mathcal{H})^+ \times \mathcal{Q} : AE = E^*A \}$$

where $L(\mathcal{H})^+$ is the cone of positive operators and \mathcal{Q} is the subset of all (bounded linear) projections acting on \mathcal{H} . The identity $AE = E^*A$ says, exactly, that the

Date: Received: 1 July 2013; Accepted: 18 September 2013.

^{*} Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 46C50; Secondary 46C05, 47A62.

projection E is Hermitian with respect to the semi-inner product \langle , \rangle' determined by A.

For a fixed Hilbert space \mathcal{H} , we say that a closed subspace \mathcal{S} is compatible with a positive (semidefinite bounded linear) operator A if there exists a (bounded linear) projection E on \mathcal{H} with image \mathcal{S} such that $AE = E^*A$. Thus, such E behaves like an orthogonal projection onto \mathcal{S} with respect to the semi-inner product $\langle \ , \ \rangle_A$. Compatibility is automatic if \mathcal{H} has finite dimension. However, in the infinite dimensional case, there exist pairs (A, \mathcal{S}) such that no such E exists. If

$$\mathcal{P}(A,\mathcal{S}) = \{ E \in L(\mathcal{H}) : E^2 = E, \mathcal{R}(E) = \mathcal{S}, AE = E^*A \}$$

then (A, \mathcal{S}) is compatible if $\mathcal{P}(A, \mathcal{S})$ is not empty. If A is invertible then (A, \mathcal{S}) is compatible for every \mathcal{S} and $\mathcal{P}(A, \mathcal{S})$ contains a single projection, denoted by $P_{A,\mathcal{S}}$. The notion of compatibility has been implicitly used by A. Sard [21] in 1950' and later by Hassi and Nordström [12], for A Hermitian. In [1], Ando defined the notion of complementable matrices by a subspace, as a generalization of Schur complements. It turns out that compatibility and complementability for selfadjoint operators on a Hilbert space are equivalent, see [6]. For a complete discussion on compatibility matters amd applications, the reader is referred to the papers [5], [6], [7], [8], [16], [17]; see also [18].

Some relevant results are obtain if $A \in GL(\mathcal{H})^+$ of all positive invertible operators. In particular, many facts are proven not for \mathcal{Z} but for the set

$$\mathcal{Z}^{\circ} = \{ (A, E) \in \mathcal{Z} : A \in GL(\mathcal{H})^+ \}.$$

In some sense, the main interest of the sets \mathcal{Z} and \mathcal{Z}° is that every oblique projection $E \in \mathcal{Q}$ is paired with all the semi-inner products $\langle \ , \ \rangle_A$ under which E is orthogonal. This offers and interesting setting for problems where perturbations of the scalar product appear naturally. The reader is referred to the paper by Pasternak–Winiarski [19] with relevant bibliography. Also, in problems where the conjugate gradient method is used (see, e.g., [13]) a setting like the mentioned above may be useful.

The contents of the paper are the following. In Section 2 we collect some notation and known facts about Dixmier angles between closed subspaces of a Hilbert space. We also survey results about compatibility, referring the reader to the papers [5], [6], [7], [8], [16], [17] for the corresponding proofs. However, we include with a proof, a new result on compatibility, namely, that for a fixed $A \in L(\mathcal{H})^+$ every closed subspace \mathcal{S} of \mathcal{H} is compatible with A if and only if $\mathcal{R}(A)$ is closed and $\dim \mathcal{R}(A) < \infty$ or $\dim \mathcal{N}(A) < \infty$, where $\mathcal{R}(A)$ denotes the image of A and $\mathcal{N}(A)$ denotes its nullspace. In Section 3 we describe in several ways the set \mathcal{Z} and its natural projections onto $L(\mathcal{H})^+$ and \mathcal{Q} . The fibers \mathcal{Z}_A of the first projection are described in Section 4. Section 5 contains a similar study for the fibers \mathcal{Z}^E of the second projection. However, it should be noticed that the similarity is only formal. In fact, each \mathcal{Z}^E is convex and, so topologically quite simple. On the other side, each \mathcal{Z}_A is as complex as the set \mathcal{Q} . Both sections 4 and 5 contain result describing some intersections of the type $\mathcal{Z}_{A_1} \cap \mathcal{Z}_{A_2}$, $\mathcal{Z}^{E_1} \cap \mathcal{Z}^{E_2}$, respectively. Finally, at Section 6 we study some topological facts about \mathcal{Z} and \mathcal{Z}° . In particular, we determine the connected components of \mathcal{Z} and \mathcal{Z}° .

2. Compatible pairs

Let $Gr = Gr(\mathcal{H})$ denote the Grassmann manifold of \mathcal{H} , i.e., the set of all closed subspaces \mathcal{S} of \mathcal{H} . Let $L(\mathcal{H})$ denote the algebra of linear bounded operators acting on \mathcal{H} and for $T \in L(\mathcal{H})$, denote by $\mathcal{R}(T)$ the range of T and by $\mathcal{N}(T)$ its nullspace. Given $A \in L(\mathcal{H})^+$ and $\mathcal{S} \in Gr$ we say that they are compatible (or that the pair (A, \mathcal{S}) is compatible) if there exists $E \in \mathcal{Q}$ such that $AE = E^*A$ and $\mathcal{R}(E) = \mathcal{S}$. As we said in the introduction, this means that E is Hermitian with respect to the semi inner product \langle , \rangle_A defined as $\langle x, y \rangle_A := \langle Ax, y \rangle$, $\forall x, y \in \mathcal{H}$. We refer the reader to the papers [5], [6], [8] for the proofs of the results mentioned below. Theorem [5], is new and we present a proof. The pair [5], is compatible if and only if [5] and [5] are [5]. Now, if we defined the Dixmier angle between two closed subspaces [5], [6], as the unique [6] such that

$$\cos \alpha = c_0(\mathcal{M}, \mathcal{W}) = \sup\{|\langle m, w \rangle| : m \in \mathcal{M}, w \in \mathcal{W}, ||m|| = ||w|| = 1\},$$

then it follows that (A, \mathcal{S}) is compatible if and only if $c_0(\mathcal{S}^{\perp}, \overline{A}\mathcal{S}) < 1$. If $A \in GL(\mathcal{H})^+$ then (A, \mathcal{S}) is compatible for every $\mathcal{S} \in Gr$. In fact in this case \langle , \rangle_A is equivalent to the original \langle , \rangle and then, $\mathcal{H}_A = (\mathcal{H}, \langle , \rangle_A)$ is also a Hilbert space, so that for every closed subspace \mathcal{S} (of \mathcal{H} or, indistinctly, \mathcal{H}_A) there exists a unique A-orthogonal projection $P_{A,\mathcal{S}}$ onto \mathcal{S} . It easily follows that $AP_{A,\mathcal{S}} = P_{A,\mathcal{S}}^*A$.

Concerning the existence of pairs (A, \mathcal{S}) which are not compatible, one can show some examples (see, for instance, [5]). However, the following result gives a complete answer.

Theorem 2.1. Let $A \in L(\mathcal{H})^+$. Then (A, \mathcal{S}) is compatible for every $\mathcal{S} \in Gr$ if and only if $\mathcal{R}(A)$ is closed and dim $\mathcal{R}(A) < \infty$ or dim $\mathcal{N}(A) < \infty$.

Proof. Suppose that $\mathcal{R}(A)$ is closed and consider $\mathcal{S} \in Gr$. If $\dim \mathcal{R}(A) < \infty$ then every subset of $\mathcal{R}(A)$ has finite dimension and therefore is closed. Then $c_0(\overline{AS}, \mathcal{S}^{\perp}) = c_0(AS, \mathcal{S}^{\perp}) < 1$, because $AS \cap \mathcal{S}^{\perp} = \{0\}$ and AS has finite dimension. If $\dim \mathcal{N}(A) < \infty$ then $S + \mathcal{N}(A)$ is automatically closed; this condition, if A has closed range, is equivalent to the compatibility of A and S, see [5].

Conversely, suppose that $\mathcal{R}(A)$ is not closed; consider $y \in \overline{\mathcal{R}(A)}$ such that $y \notin \mathcal{R}(A)$, $y \neq 0$ and consider $\mathcal{S}^{\perp} = [y]$ the subspace generated by y. Then $(A\mathcal{S})^{\perp} = A^{-1}(\mathcal{S}^{\perp}) = A^{-1}([y] \cap \mathcal{R}(A)) = A^{-1}(\{0\}) = \mathcal{N}(A)$. Therefore, by taking orthogonal complement, $\overline{AS} = \overline{\mathcal{R}(A)}$; in this case $\overline{AS} \cap \mathcal{S}^{\perp} = \overline{\mathcal{R}(A)} \cap \mathcal{S}^{\perp} = \mathcal{S}^{\perp} = [y] \neq \{0\}$. Hence $c_0(\overline{AS}, \mathcal{S}^{\perp}) = 1$ so that (A, \mathcal{S}) is not compatible. See [2].

If $\mathcal{R}(A)$ is closed and $\dim \mathcal{R}(A) = \dim \mathcal{N}(A) = \infty$, then it is possible to construct a closed subspace \mathcal{S} such that $c(\mathcal{S}, \mathcal{N}(A)) = 1$, or equivalently, such that $\mathcal{S} + \mathcal{N}(A)$ is not closed, see [11]. Therefore (A, \mathcal{S}) is not compatible. This ends the proof.

If (A, \mathcal{S}) is compatible, then the set

$$\mathcal{P}(A,\mathcal{S}) = \{ E \in \mathcal{Q} : \mathcal{R}(E) = \mathcal{S}, AE = E^*A \}$$

is not empty. It is a closed affine manifold of $L(\mathcal{H})$, with a distinguished element $P_{A,\mathcal{S}}$ which corresponds to the direct decomposition $\mathcal{H} = \mathcal{S} \dot{+} ((A\mathcal{S})^{\perp} \ominus \mathcal{S})$, where the sum is direct and $(A\mathcal{S})^{\perp} \ominus \mathcal{S} := (A\mathcal{S})^{\perp} \cap (\mathcal{S} \cap (A\mathcal{S})^{\perp})^{\perp}$. It can be shown

that $\mathcal{P}(A, \mathcal{S})$ contains a single element if and only if (A, \mathcal{S}) is compatible and $\mathcal{N}(A) \cap \mathcal{S} = \{0\}$. In fact $\mathcal{P}(A, \mathcal{S})$ can be parametrized as

$$\mathcal{P}(A,\mathcal{S}) = P_{A,\mathcal{S}} + L(\mathcal{S}^{\perp}, \mathcal{S} \cap \mathcal{N}(A)).$$

3. \mathcal{Z} AS A SET

This section is devoted to the study of the set

$$\mathcal{Z} = \{ (A, E) : A \in L(\mathcal{H})^+, E \in \mathcal{Q}, AE = E^*A \},$$

with the natural projections

$$p_1: \mathcal{Z} \longrightarrow L(\mathcal{H})^+, \quad p_1(A, E) = A,$$

 $p_2: \mathcal{Z} \longrightarrow \mathcal{Q}, \quad p_2(A, E) = E,$

and the corresponding fibers

$$p_1^{-1}(\{A\}), \text{ for } A \in L(\mathcal{H})^+; p_2^{-1}(\{E\}), \text{ for } E \in \mathcal{Q}.$$

Proposition 3.1. For every $T \in L(\mathcal{H})$ and $E \in \mathcal{Q}$, the pair (T^*T, E) belongs to \mathcal{Z} if and only if $T\mathcal{R}(E)$ is orthogonal to $T\mathcal{N}(E)$.

To prove this proposition we will use the following lemma.

Lemma 3.2. The following conditions are equivalent.

- (1) The pair (A, E) belongs to \mathcal{Z} .
- (2) $\mathcal{N}(E) \subset A\mathcal{R}(E)^{\perp}$.
- (3) $A\mathcal{N}(E) \subseteq \mathcal{N}(E^*)$.
- (4) $A\mathcal{R}(E) \subseteq \mathcal{R}(E^*)$.

Proof. $1 \leftrightarrow 2$: Suppose that the pair $(A, E) \in \mathcal{Z}$ then $AE = E^*A$. If $x \in \mathcal{N}(E)$ then $0 = AEx = E^*Ax$. Hence $Ax \in \mathcal{N}(E^*) = \mathcal{R}(E)^{\perp}$, or equivalently, $x \in A^{-1}(\mathcal{R}(E)^{\perp}) = A(\mathcal{R}(E))^{\perp}$. Then $\mathcal{N}(E) \subseteq A(\mathcal{R}(E))^{\perp}$.

Conversely, if $\mathcal{N}(E) \subseteq A\mathcal{R}(E)^{\perp}$, then by taking orthogonal complement we get $\overline{A\mathcal{R}(E)} \subseteq \mathcal{R}(E^*)$. Therefore $\mathcal{R}(AE) \subseteq \mathcal{R}(E^*)$, which implies $AE = E^*AE$, and this shows that AE is Hermitian, i.e., $AE = E^*A$.

From this identity $A\mathcal{R}(E)^{\perp} = A^{-1}(\mathcal{R}(E)^{\perp})$ the equivalences $2 \leftrightarrow 3$ and $3 \leftrightarrow 4$ are straightforward.

Proof. (of the proposition) Let $T=UA^{1/2}$ be the polar decomposition of T with $A=T^*T$ and U a partial isometry from $\overline{\mathcal{R}(A^{1/2})}$ onto $\overline{\mathcal{R}(T)}$. If $(A,E)\in\mathcal{Z}$ then, by the previous lemma, $\mathcal{H}=\mathcal{R}(E)\dot{+}\mathcal{N}(E)\subseteq\mathcal{R}(E)+A^{-1}(\mathcal{R}(E)^{\perp})$. Applying $A^{1/2}$ to both sides of the equality, $\mathcal{R}(A^{1/2})=A^{1/2}\mathcal{R}(E)+A^{1/2}\mathcal{N}(E)$ and $A^{1/2}\mathcal{N}(E)\subseteq A^{1/2}A^{-1}(\mathcal{R}(E)^{\perp})\subseteq A^{-1/2}(\mathcal{R}(E)^{\perp})=A^{1/2}\mathcal{R}(E)^{\perp}$. Therefore the sum is orthogonal, i.e., $\mathcal{R}(A^{1/2})=A^{1/2}\mathcal{R}(E)\oplus A^{1/2}\mathcal{N}(E)$. Finally, applying U to this equality we get that $\mathcal{R}(T)=T\mathcal{R}(E)\oplus T\mathcal{N}(E)$ because U preserves orthogonality when applied to subsets of $\mathcal{R}(A^{1/2})$.

Conversely, if $T\mathcal{R}(E)$ is orthogonal to $T\mathcal{N}(E)$ then $\mathcal{R}(T) = T\mathcal{R}(E) \oplus T\mathcal{N}(E)$. Therefore, $T\mathcal{N}(E) = T\mathcal{R}(E)^{\perp} \cap \mathcal{R}(T)$ and then $\mathcal{N}(E) = T^{-1}(T\mathcal{R}(E)^{\perp} \cap \mathcal{R}(T)) = T^{-1}(T\mathcal{R}(E)^{\perp}) = T^{-1}(T^{*-1}(\mathcal{R}(E)^{\perp})) \subseteq (T^*T)^{-1}(\mathcal{R}(E)^{\perp})$. Remark 3.3. As we have shown in the proof of the proposition above, $(T^*T, E) \in \mathcal{Z}$ if and only if $T\mathcal{R}(E) \oplus T\mathcal{N}(E) = \mathcal{R}(T)$; in particular, $(A, E) \in \mathcal{Z}$ if and only if $A^{1/2}\mathcal{R}(E) \oplus A^{1/2}\mathcal{N}(E) = \mathcal{R}(A^{1/2})$. Observe that the subspaces $T\mathcal{R}(E)$ and $T\mathcal{N}(E)$ (resp. $A^{1/2}\mathcal{R}(E)$, $A^{1/2}\mathcal{N}(E)$) need not to be closed. However, if T is invertible, then, obviously, $T\mathcal{R}(E)$ and $T\mathcal{N}(E)$ are closed and it is easy to see that $(T^*T, E) \in \mathcal{Z}$ if and only if $T\mathcal{R}(E) \oplus T\mathcal{N}(E) = \mathcal{H}$.

We collect some facts about the projections p_1 and p_2 .

Proposition 3.4. The following assertions hold:

- (1) For every $E \in \mathcal{Q}$, $\theta(E) = E^*E + (I E^*)(I E) \in GL(\mathcal{H})^+$ and the mapping $s(E) = (\theta(E), E)$ verifies $s(E) \in \mathcal{Z}$ for all $E \in \mathcal{Q}$ and $p_2 \circ s = I_{\mathcal{Q}}$ (i.e. s is a global section of p_2).
- (2) $p_1: \mathcal{Z} \longrightarrow L(\mathcal{H})^+$ is surjective.
- (3) $p_2: \mathcal{Z} \longrightarrow \mathcal{Q}$ is surjective.
- (4) For every $E \in \mathcal{Q}$, $p_2^{-1}(\{E\})$ is convex.

Proof. 1. It is easy to see that $\mathcal{N}(\theta(E)) = \mathcal{N}(E) \cap \mathcal{R}(E) = \{0\}$ so that $\theta(E)$ is injective. To see that $\theta(E)$ is surjective observe that $\mathcal{R}(E^*E) \subseteq \mathcal{R}(\theta(E))$. Since $\mathcal{R}(E)$ is closed, $\mathcal{R}(E^*E) = E^*(\mathcal{R}(E)) = E^*(\mathcal{N}(E^*)^{\perp}) = \mathcal{R}(E^*)$. Then $\mathcal{R}(E^*) \subseteq \mathcal{R}(\theta(E))$. In a similar way, $\mathcal{N}(E^*) = \mathcal{R}(I - E^*) \subseteq \mathcal{R}(\theta(E))$. Then $\mathcal{R}(\theta(E)) = \mathcal{H}$.

The rest of the assertion follows easily.

- 2. Given $A \in L(\mathcal{H})^+$, the pair $(A, I) \in \mathcal{Z}$ and $p_1(A, I) = A$.
- 3. Given $E \in \mathcal{Q}$, by 1, the pair $(\theta(E), E) \in \mathcal{Z}$ and $p_2(\theta(E), E) = E$.

From now on, we identify the fiber $p^{-1}(\{A\}) = \{(A, E) : (A, E) \in \mathcal{Z}\}$ with

$$\mathcal{Z}_A := \{ E \in \mathcal{Q} : AE = E^*A \},$$

and $p_2^{-1}(\{E\}) = \{(A, E): (A, E) \in \mathcal{Z}\}$ with

$$\mathcal{Z}^E := \{ A \in L(\mathcal{H})^+ : AE = E^*A \}.$$

The next two sections are devoted to the characterization of fibers \mathcal{Z}_A and \mathcal{Z}^E for any $A \in L(\mathcal{H})^+$, $E \in \mathcal{Q}$. Thus, for $A \in L(\mathcal{H})^+$ the set \mathcal{Z}_A contains all oblique projections which are "orthogonalized" by A, and, for $E \in \mathcal{Q}$ the set \mathcal{Z}^E contains all positive operators which "orthogonalize" E.

4. The set \mathcal{Z}_A

Observe that

$$\mathcal{Z}_A = \bigcup_{\mathcal{S}} \mathcal{P}(A, \mathcal{S})$$

where S runs over Gr. Of course, a given S adds some projections only if A and S are compatible. Notice also that it is a disjoint union.

The following subset of \mathcal{P} is helpful to characterize the set \mathcal{Z}_A . Define

$$\mathcal{P}_A = \{ P \in \mathcal{P} : \mathcal{R}(PA^{1/2}) \subseteq \mathcal{R}(A^{1/2}) \}.$$

Observe that $P \in \mathcal{P}_A$ if and only if the equation $PA^{1/2} = A^{1/2}X$ admits a solution.

For $A \in L(\mathcal{H})^+$ denote by P_A the orthogonal projection onto $\overline{\mathcal{R}(A)}$.

If $P \in \mathcal{P}_A$ then $P(\mathcal{R}(A^{1/2})) \subseteq \overline{\mathcal{R}(A)}$ so that $P(\overline{\mathcal{R}(A)}) \subseteq \overline{\mathcal{R}(A)}$ and then $PP_A = P_A PP_A$. Therefore, PP_A is positive; in particular PP_A and $P(I - P_A)$ are both (orthogonal) projections and $P = PP_A + P(I - P_A)$. Hence, the projections of \mathcal{P}_A can be written as the sum of two orthogonal projections, one with range included in $\overline{\mathcal{R}(A)}$ and the other with range included in $\mathcal{N}(A)$.

Theorem 4.1. Given $A \in L(\mathcal{H})^+$,

$$\mathcal{Z}_A = \{ \begin{bmatrix} E_1 & 0 \\ W & E_2 \end{bmatrix} : E_1 = A^{1/2\dagger} P A^{1/2} |_{\overline{\mathcal{R}(A)}}, P \in \mathcal{P}_A, \ E_2^2 = E_2, \ E_2 W = W(I - E_1) \},$$

where the matrix representation is that induced by the decomposition $\mathcal{H} = \overline{\mathcal{R}(A)} \oplus \mathcal{N}(A)$.

The proof of this theorem relies on the following lemmas.

Lemma 4.2. Let $A \in L(\mathcal{H})^+$ and E an A-selfadjoint projection. Then P_AE and $E(I - P_A)$ are A-selfadjoint projections.

Proof. If $AE = E^*A$ then, $AP_AE = E^*P_AA = (P_AE)^*A$ and P_AE is A-selfadjoint. Since $P_AE = A^{\dagger}E^*A$, it follows that $P_AE = P_AEP_A$. Then $(P_AE)^2 = P_AEP_AE = P_AE^2 = P_AE$.

Also $(I-P_A)E(I-P_A)=(E-P_AE)(I-P_A)=(E-P_AEP_A)(I-P_A)=E(I-P_A)$. Then, $E(I-P_A)$ is a projection and $AE(I-P_A)=A(I-P_A)E(I-P_A)=0$, so that it is A-selfadjoint.

Lemma 4.3. Let $A \in L(\mathcal{H})^+$. Then, E is an A-selfadjoint projection if and only if

$$E = \begin{bmatrix} E_1 & 0 \\ W & E_2 \end{bmatrix},$$

where $E_1 \in L(\overline{\mathcal{R}(A)})$ is an A-selfadjoint projection, $E_2 \in L(\mathcal{N}(A))$ is an oblique projection and $W \in L(\mathcal{R}(A), \mathcal{N}(A))$ satisfies that $E_2W = W(I - E_1)$.

Proof. Suppose that E is a projection such that $AE = E^*A$, then, by Lemma 4.2 $P_AE = P_AEP_A$, $E(I - P_A) = (I - P_A)E(I - P_A)$ so that $E = P_AE + E(I - P_A) + (I - P_A)EP_A = \begin{bmatrix} E_1 & 0 \\ W & E_2 \end{bmatrix}$, where $E_1 = P_AE|_{\overline{\mathcal{R}(A)}}$, $E_2 = E(I - P_A)|_{\mathcal{N}(A)}$ and $W = (I - P_A)EP_A|_{\overline{\mathcal{R}(A)}}$. By Lemma 4.2, E_1 and E_2 are $E_1 = E_1$ -selfadjoint projections. It is easy to see that $E_2W = W(I - E_1) = (EP_A - EP_AE)|_{\overline{\mathcal{R}(A)}}$.

Conversely, if $E = \begin{bmatrix} E_1 & 0 \\ W & E_2 \end{bmatrix}$, with E_1 and E_2 projections and $E_2W = W(I - E_1)$, then $E^2 = \begin{bmatrix} E_1 & 0 \\ WP + E_2W & E_2 \end{bmatrix} = E$ and E is a projection. Also, $AE = \begin{bmatrix} AE_1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} E_1^*A & 0 \\ 0 & 0 \end{bmatrix} = E^*A$, because E_1 is A-selfadjoint.

Lemma 4.4. Let $A \in L(\mathcal{H})^+$ and $E \in \mathcal{Q}$ such that $R(E) \subseteq \overline{\mathcal{R}(A)}$. Then, E is A-selfadjoint if and only if $E = A^{1/2^{\dagger}}PA^{1/2}$, where $P \in \mathcal{P}_A$.

Proof. Using Douglas' theorem, it is easy to verify that if $P \in \mathcal{P}_A$ then $E = A^{1/2^{\dagger}}PA^{1/2}$ is well defined and is a bounded A-selfadjoint projection. Conversely, applying Proposition 3.4 of [7] the converse follows immediately.

In particular, if A has closed range, the A-selfadjoint projections such $R(E) \subseteq \mathcal{R}(A)$, are given by $E = A^{1/2^{\dagger}}PA^{1/2}$, where $P \in \mathcal{P}$ verifies that $R(P) \subseteq \mathcal{R}(A)$.

Lemma 4.5. Let $A \in L(\mathcal{H})^+$. Then $E \in \mathcal{Z}_A \cap \mathcal{P}$ if and only if $E = E_1 + E_2$, where $E_1, E_2 \in \mathcal{P}$, $\mathcal{R}(E_1) \subseteq \overline{\mathcal{R}(A)}$, $\mathcal{R}(E_2) \subseteq \mathcal{N}(A)$ and $\mathcal{R}(AE_1) \subseteq \mathcal{R}(E_1)$.

Proof. Suppose that $E = E_1 + E_2$, with $E_1, E_2 \in \mathcal{P}$, $\mathcal{R}(E_1) \subseteq \overline{\mathcal{R}(A)}$, $\mathcal{R}(E_2) \subseteq \mathcal{N}(A)$ and $\mathcal{R}(AE_1) \subseteq \mathcal{R}(E_1)$. Then $E_1E_2 = 0 = E_2E_1$ so that $E^2 = E = E^*$. To see that $E \in \mathcal{Z}_A$, observe that $AE = AE_1 = E_1AE_1$, because $\mathcal{R}(E_2) \subseteq \mathcal{N}(A)$ and $\mathcal{R}(AE_1) \subseteq \mathcal{R}(E_1)$. Then AE is positive so that $AE = E^*A$.

Conversely, if $E \in \mathcal{Z}_A$, by Lemma 4.3,

$$E = \begin{bmatrix} E_1 & 0 \\ W & E_2 \end{bmatrix},$$

where $E_1 \in L(\overline{\mathcal{R}(A)})$ is an A-selfadjoint projection, $E_2 \in L(\mathcal{N}(A))$ is an oblique projection and $W \in L(\mathcal{R}(A), \mathcal{N}(A))$ satisfies that $E_2W = W(I - E_1)$. If E belongs also to \mathcal{P} then $E_1^* = E_1$, $E_2^* = E_2$ and W = 0. Then $E = E_1' + E_2'$, where E_1' and E_2' are the orthogonal projections acting on \mathcal{H} defined by $E_1' = E_1 P_A$ and $E_2' = E_2(I - P_A)$, with P_A the orthogonal projection onto $\overline{\mathcal{R}(A)}$. Finally E is A-selfadjoint if and only if AE = EA or equivalently $AE_1' = E_1'A$ because $AE_2' = 0 = E_2'A$. Hence $\mathcal{R}(AE_1') \subseteq \mathcal{R}(E_1')$.

Proposition 4.6. Let $A \in L(\mathcal{H})^+$, and $B \in GL(H)^+$ such that $\mathcal{Z}_A \subseteq \mathcal{Z}_B$, then there exists $\lambda > 0$ such that $B = \lambda A$. In particular A is invertible and $\mathcal{Z}_A = \mathcal{Z}_B$.

Proof. First consider B=I. In this case $\mathcal{Z}_B=\mathcal{P}$. Suppose that $\mathcal{Z}_A\subseteq\mathcal{P}$. If A=0 then $\mathcal{Z}_A=\mathcal{Q}$ which is not included in \mathcal{P} ; therefore $A\neq 0$. Moreover A must be injective. Suppose on the contrary that $\mathcal{N}(B)\neq\{0\}$ and consider the operator E defined by its matrix decomposition in terms of $\overline{\mathcal{R}(A)}$ and $\mathcal{N}(A)$ as $E=\begin{bmatrix}0&0\\W&I\end{bmatrix}$, where $W\neq 0$ (this is possible because $\mathcal{R}(A)\neq 0$ and $\mathcal{N}(A)\neq 0$). It is easy to see that E is a projection and $AE=0=E^*A$ so that E is A-selfadjoint, but $E\notin\mathcal{P}$. Let us see that A si also surjective: if $x\in\mathcal{H}, x\neq 0$, then the pair (A,[x]) is compatible because [x] is finite dimensional. Since A is injective there exists only one projection onto [x] which is A-selfadjoint and it is given by $P_{A,[x]}=P_{[x]//A[x]^\perp}$. Using that $\mathcal{Z}_A\subseteq\mathcal{P}$, it must hold that $A[x]^\perp=[x]^\perp$, or equivalently, A[x]=[x]. Therefore, there exists λ such that $Ax=\lambda x$ so that $x\in\mathcal{R}(A)$. Then $\mathcal{R}(A)=\mathcal{H}$ and A is invertible. In this case, by Theorem 4.1, the set $\mathcal{Z}_A=\{A^{-1/2}PA^{1/2}: P\in\mathcal{P}\}=A^{-1/2}\mathcal{P}A^{1/2}$. If $\mathcal{Z}_A\subseteq\mathcal{P}$, for every $P\in\mathcal{P}$,

 $A^{-1/2}PA^{1/2} \in \mathcal{P}$. Hence, $A^{-1/2}PA^{1/2} = A^{1/2}PA^{-1/2}$ so that PA = AP for every $P \in \mathcal{P}$. By [11], there exists $\lambda > 0$ such that $A = \lambda I$.

For any $B \in GL(\mathcal{H})^+$ the condition $\mathcal{Z}_A \subseteq \mathcal{Z}_B = B^{-1/2}\mathcal{P}B^{1/2}$ is equivalent to $B^{1/2}\mathcal{Z}_AB^{-1/2} \subseteq \mathcal{P}$. It holds that $B^{1/2}\mathcal{Z}_AB^{-1/2} = \mathcal{Z}_{B^{-1/2}AB^{-1/2}}$; hence $B^{-1/2}AB^{-1/2} = \lambda I$ or, equivalently $A = \lambda B$.

Denote by $\mathcal{Q}_{\mathcal{S}}$ the subset of \mathcal{Q} of oblique projections with range \mathcal{S} .

Proposition 4.7. Let $A \in L(\mathcal{H})^+$.

- (1) $\mathcal{Z}_A \cap \mathcal{Q}_S = \mathcal{P}(A, \mathcal{S}).$
- (2) $\mathcal{Z}_A \cap \mathcal{Q}_S$ is not empty if and only if (A, S) is compatible.
- (3) If $A \in GL(\mathcal{H})^+$ then $\mathcal{Z}_A \cap \mathcal{Q}_S = \{P_{A,S}\}.$
- (4) $\mathcal{Z}_A \cap \mathcal{Q}_S$ contains a single element if and only if (A, \mathcal{S}) is compatible and $\mathcal{N}(A) \cap \mathcal{S} = \{0\}.$

5. The set
$$\mathcal{Z}^E$$

Given a fixed projection E we look for the positive operators A such that E is A-selfadjoint, i.e., the set $\mathcal{Z}^E = \{A \in L(\mathcal{H})^+ : AE = E^*A\}$. Observe that. by Proposition 3.4, \mathcal{Z}^E is a convex set.

Theorem 5.1. Given $E \in \mathcal{Q}$,

$$\mathcal{Z}^E = \{ A = A_1 + A_2 : A_1, A_2 \in L(\mathcal{H})^+, \mathcal{R}(A_1) \subseteq \mathcal{R}(E^*), \mathcal{R}(A_2) \subseteq \mathcal{N}(E^*) \}.$$

Proof. Suppose that $A = A_1 + A_2$, with A_1 and A_2 positive and such that $\mathcal{R}(A_1) \subseteq \mathcal{R}(E^*)$, $\mathcal{R}(A_2) \subseteq \mathcal{N}(E^*)$. Then A is positive. To see that E is A-selfadjoint, observe that $AE = (A_1 + A_2)E = A_1E = E^*A_1E$, because $\mathcal{R}(E) \subseteq \mathcal{N}(A_2)$ and $\mathcal{R}(A_1) \subseteq \mathcal{R}(E^*)$. Noticing that E^*AE is positive, $AE = E^*AE = E^*A$.

Conversely, if $A \in \mathcal{Z}^E$ then A is positive and $AE = E^*A = E^*AE$ so that $(I - E^*)AE = 0 = E^*A(I - E)$. Therefore, $A = E^*AE + (I - E^*)A(I - E)$. If $A_1 = E^*AE$ and $A_2 = (I - E^*)A(I - E)$, then $A = A_1 + A_2$, A_1 and A_2 are positive, $\mathcal{R}(A_1) \subseteq \mathcal{R}(E^*)$, $\mathcal{R}(A_2) \subseteq \mathcal{N}(E^*)$.

Remark 5.2. By the above proposition, it is easy to see that

$$\mathcal{Z}^E = \{ A = A_1 P_{\mathcal{R}(E^*)} + A_2 P_{\mathcal{N}(E^*)} : A_1 \in L(\mathcal{R}(E^*))^+, A_2 \in L(\mathcal{N}(E^*))^+ \}.$$

Then the set \mathcal{Z}^E can be identified with the product

$$L(\mathcal{R}(E^*))^+ \times L(\mathcal{N}(E^*))^+.$$

through the map

$$\mathcal{Z}^E \longrightarrow L(\mathcal{R}(E^*))^+ \times L(\mathcal{N}(E^*))^+,$$

 $A \longrightarrow (AE|_{\mathcal{R}(E^*)}, A(I-E)|_{\mathcal{N}(E^*)}).$

For every $E \in \mathcal{Q}$ the set $\mathcal{Z}^E \cap \mathcal{P}$ is not empty. In fact, $P = P_{\mathcal{N}(E)^{\perp}}$ has the same nullspace as E and then $PE = P = E^*P$, which proves that $P \in \mathcal{Z}^E \cap \mathcal{P}$. The next proposition characterizes the set $\mathcal{Z}^E \cap \mathcal{P}$.

Proposition 5.3. Let $E \in \mathcal{Q}$. Then

$$\mathcal{Z}^E \cap \mathcal{P} = \{ P = P_1 + P_2 : P_1, P_2 \in \mathcal{P}, P_1 P_2 = 0, \mathcal{R}(P_1) \subseteq \mathcal{R}(E^*), \mathcal{R}(P_2) \subseteq \mathcal{N}(E^*) \}.$$

Proof. If $P = P_1 + P_2$ with $P_i \in \mathcal{P}$, i=1,2, $P_1P_2 = 0$, $\mathcal{R}(P_1) \subseteq \mathcal{R}(E^*)$ and $\mathcal{R}(P_2) \subseteq \mathcal{N}(E^*)$ then P is an orthogonal projection. To see that $P \in \mathcal{Z}^E$ observe that $E^*P = E^*(P_1 + P_2) = P_1 = P_1^* = PE$.

Conversely, if $P \in \mathcal{Z}^{E} \cap \mathcal{P}$ then, by Proposition 5.1 $P = A_1 + A_2$, with A_1 and A_2 positive, $\mathcal{R}(A_1) \subseteq \mathcal{R}(E^*)$ and $\mathcal{R}(A_2) \subseteq \mathcal{N}(E^*)$. From $P^2 = P$ it follows that

$$A_1^2 + A_2^2 + A_1 A_2 + A_2 A_1 = A_1 + A_2. (5.1)$$

Multiplying to the left by E^* and noticing that $E^*A_1 = A_1 = A_1E$ and $E^*A_2 = 0 = A_2E$ it follows that $A_1^2 + A_1A_2 = A_1$; multiplying by E to the right, $A_1^2 = A_1$. In a similar way, $A_2^2 = A_2$. Therefore A_1 and A_2 are orthogonal projections because they are positive. It follows from (5.1) that $A_1A_2 + A_2A_1 = 0$, then $A_1A_2 = 0 = A_2A_1$.

It is an old result by Penrose [20] and Greville [10] (see also an infinite dimensional treatment in [4]) that every $Q \in \mathcal{Q}$ can be decomposed as the Moore–Penrose inverse of a product of two orthogonal projections. More precisely, if E is the oblique projection with $\mathcal{R}(E) = \mathcal{W}$ and $\mathcal{N}(E) = \mathcal{M}^{\perp}$ then $E^{\dagger} = P_{\mathcal{M}^{\perp}} P_{\mathcal{W}}$ and therefore, $E = (P_{\mathcal{M}^{\perp}} P_{\mathcal{W}})^{\dagger}$. Thus

$$\mathcal{Z}^E \cap \mathcal{P} = \{ P \in \mathcal{P} : PE = E^*P \} = \{ P_{\mathcal{N}} \in \mathcal{P} : P_{\mathcal{N}} (P_{\mathcal{M}^{\perp}} P_{\mathcal{W}})^{\dagger} = (P_{\mathcal{W}} P_{\mathcal{M}^{\perp}})^{\dagger} P_{\mathcal{N}} \}.$$

The next two propositions exhibit a sort of disjoint behaviour of the fibers \mathcal{Z}^E .

Proposition 5.4. Let
$$E, F \in \mathcal{Q}$$
. If $\mathcal{Z}^E \subseteq \mathcal{Z}^F$ then $EF = 0$ or $E(I - F) = 0$.

Proof. Suppose first that E and F are selfadjoint projections. If $\mathcal{Z}^E \subseteq \mathcal{Z}^F$ then $E \in \mathcal{Z}^F$ because $E \in \mathcal{Z}^E$. Therefore EF = FE. In this case, $EF = P_{\mathcal{R}(E) \cap \mathcal{R}(F)}$, $E(I - F) = P_{\mathcal{R}(E) \cap \mathcal{N}(F)}$ and E = EF + E(I - F).

Suppose that EF and E(I - F) are both different from zero; let $x \in \mathcal{R}(E) \cap \mathcal{N}(F)$, ||x|| = 1, and $y \in \mathcal{R}(E) \cap \mathcal{R}(F)$, ||y|| = 1/2 and define Bx = y and B = 0 in the orthogonal complement of x, $[y]^{\perp}$. The operator B is bounded and ||B|| = 1/2; also $\mathcal{R}(B) = [y] \subseteq \mathcal{R}(E)$; then $\mathcal{R}(E)^{\perp} \subseteq [y]^{\perp} = \mathcal{N}(B)$. Therefore, $\mathcal{R}(B^*) = \overline{\mathcal{R}(B^*)} = \mathcal{N}(B)^{\perp} \subseteq \mathcal{R}(E)$. Define $A = E + B + B^*$; then A is selfadjoint, $\mathcal{R}(A) \subseteq \mathcal{R}(E)$. In fact A is positive: first observe that $B + B^* = E(B + B^*)E$ because $\mathcal{R}(B + B^*) \subseteq R(E)$; then for $x \in \mathcal{H}$, $|\langle (B + B^*)x, x \rangle| = |\langle (B + B^*)x, x \rangle| > ||x||^2 - ||Ex||^2 = 0$.

Observe that $L(\mathcal{R}(E))^+ \subseteq \mathcal{Z}^E$; in particular $A \in \mathcal{Z}^E$. But $A \notin \mathcal{Z}^F$: since $F = F^*$, a positive operator $A \in \mathcal{Z}^F$ if and only if FA(I - F) = 0 but, in this case, $FA(I - F) = F(E + B + B^*)(I - F) = FB(I - F) = B \neq 0$.

Therefore, EF = 0 or E(I - F) = 0, which ends the proof in the special case where E and F are orthogonal projections.

In the general case, observe that if F is an oblique projection and we consider an invertible $A \in \mathcal{Z}^F$, then, by the comment above, $B \in \mathcal{Z}^F$ if and only if $A^{-1/2}BA^{-1/2} \in \mathcal{Z}^{A^{1/2}FA^{-1/2}}$, where $A^{1/2}FA^{-1/2} \in \mathcal{P}$, i. e., $A^{-1/2}\mathcal{Z}^FA^{-1/2} = \mathcal{Z}^{A^{1/2}QA^{-1/2}}$. Let E and F be oblique projections such that $\mathcal{Z}^E \subseteq \mathcal{Z}^F$ and consider an invertible $A \in \mathcal{Z}^E$. Then $A \in \mathcal{Z}^F$ so that $\mathcal{Z}^E \subseteq \mathcal{Z}^F$, i.e., $\mathcal{Z}^{A^{1/2}EA^{-1/2}} \subseteq \mathcal{Z}^{A^{1/2}FA^{-1/2}}$. But this last inclusion implies that $A^{1/2}EA^{-1/2} = A^{1/2}EFA^{-1/2}$

or $A^{1/2}EA^{-1/2}=A^{1/2}E(I-F)A^{-1/2}$, by the first part, and cancelling the A's, E=EF or E=E(I-F).

Corollary 5.5. Let $E, F \in \mathcal{Q}$ such that $E \neq 0$ and $F \neq I$. If $\mathcal{Z}^E \subseteq \mathcal{Z}^F$ then F = E or F = I - E, so that $\mathcal{Z}^E = \mathcal{Z}^F$.

Proof. As in the proof of the above proposition, we can suppose that $E, F \in \mathcal{P}$. If $\mathcal{Z}^E \subseteq \mathcal{Z}^F$ then by Proposition 5.4, E = EF or EF = 0. Since $\mathcal{Z}^E = \mathcal{Z}^{(I-E)}$, we deduce that I - E = (I - E)F or (I - E)F = 0. If E = EF and I - E = (I - E)F then F = I. If E = EF and (I - E)F = 0 then E = F. If EF = 0 and I - E = (I - E)F then F = I - E. Finally, if EF = 0 and (I - E)F = 0 then F = 0.

Proposition 5.6. Consider $A \in L(\mathcal{H})^+$ and $E \in \mathcal{Q}$, such that the representations of A and E induced by the decomposition $\mathcal{H} = \overline{\mathcal{R}(E)} \oplus \mathcal{R}(E)^\perp$ are $A = \begin{bmatrix} a & b \\ b^* & c \end{bmatrix}$ and $E = \begin{bmatrix} 1 & r \\ 0 & 0 \end{bmatrix}$ respectively. Then the following conditions are equivalent.

- (1) $A \in \mathcal{Z}^E \cap \mathcal{Z}^{E^*}$.
- $(2) AE = EA = AE^*.$
- (3) $A = A_1 + A_2$ with $A_1, A_2 \in L(\mathcal{H})^+$ such that

$$\mathcal{R}(A_1) \subseteq \mathcal{R}(E) \cap \mathcal{N}(E)^{\perp}, \ \mathcal{R}(A_2) \subseteq \mathcal{R}(E)^{\perp} \cap \mathcal{N}(E).$$

(4)
$$A = \begin{bmatrix} a & 0 \\ 0 & c \end{bmatrix}$$
 with $ar = rc = 0$.

Proof. $1 \to 2$: $A \in \mathcal{Z}^E \cap \mathcal{Z}^{E^*}$ if and only if $AE = E^*A$ and $AE^* = EA$. Hence $A^2E = AE^*A = EA^2$. Since A is positive it follows that AE = EA and the first equality holds. Taking adjoint to the last equality A and E^* also commute. Therefore $AE = E^*A = AE^*$ and the second equality follows.

 $2 \to 3$: If $AE = EA = AE^*$ then $AE^* = E^*A$ and $A \in \mathcal{Z}^{E^*}$. By Proposition 5.1, $A \in \mathcal{Z}^{E^*}$ if and only if $A = A_1 + A_2$, with $A_1, A_2 \in L(\mathcal{H})^+, \mathcal{R}(A_1) \subseteq \mathcal{R}(E)$ and $\mathcal{R}(A_2) \subseteq \mathcal{N}(E)$. Also AE = EA if and only if $A_1E + A_2E = EA_1$ because $EA_1 = A_1$ and $EA_2 = 0$, or equivalently $A_2E = A_1(I - E)$. Therefore $A_2E = 0$ and $A_1(I - E) = 0$ because $\mathcal{R}(A_1) \cap \mathcal{R}(A_2) = \{0\}$. Hence $\mathcal{R}(E) \subseteq \mathcal{N}(A_2)$ and $\mathcal{N}(E) \subseteq \mathcal{N}(A_1)$. Then $\mathcal{R}(A_2) \subseteq \mathcal{N}(E) \cap \mathcal{R}(E)^{\perp}$ and $\mathcal{R}(A_1) \subseteq \mathcal{R}(E) \cap \mathcal{N}(E)^{\perp}$.

 $3 \to 4$: if $A = A_1 + A_2$ as in item 3 then $PA = PAP = A_1$, PA(I - P) = 0 and $(I - P)A(I - P) = A_2$, where P is the orthogonal projection onto $\mathcal{R}(E)$. Therefore $a = A_1|_{\mathcal{R}(E)}$, b = 0 and $c = A_2|_{\mathcal{N}(E)}$. Also $ar = A_1PE(I - P)|_{\mathcal{R}(E)^{\perp}} = A_1(E - P)|_{\mathcal{R}(E)^{\perp}} = 0$ because $A_1(E - P) = A_1E - A_1P = A_1 - A_1 = 0$; the last equality follows from the fact that $\mathcal{R}(E)^{\perp}$ and $\mathcal{N}(E)$ are subsets of $\mathcal{N}(A_1)$. The equality rc = 0 follows in a similar way.

$$4 \rightarrow 1$$
: It is straightforward.

Corollary 5.7. If $E \neq E^*$ then $\mathcal{Z}^E \cap \mathcal{Z}^{E^*}$ contains no (positive) invertible operator. More generally, $\mathcal{Z}^E \cap \mathcal{Z}^{E^*}$ contains no injective $A \in L(\mathcal{H})^+$.

Remark 5.8. If $P \in \mathcal{P}$ then $\mathcal{Z}^P = \{A \in L(\mathcal{H})^+ : AP = PA\} = (P')^+$, i.e., the cone of positive elements of the commutant algebra of P in $L(\mathcal{H})$. Consequently,

$$\bigcap_{P \in \mathcal{P}} \mathcal{Z}^P = \{ \lambda I : \ \lambda \in \Re^+ \}.$$

6. On the topology of \mathcal{Z}

In order to study the topology of \mathcal{Z} , it is useful to consider the action of $GL(\mathcal{H})$ over \mathcal{Z} given by

$$L: GL(\mathcal{H}) \times \mathcal{Z} \longrightarrow \mathcal{Z}$$

$$L(G, (A, E)) = (GAG^*, G^{*-1}EG^*).$$

By restriction, L defines actions over \mathcal{Z}_A and \mathcal{Z}^E .

Lemma 6.1. For every $A \in L(\mathcal{H})^+$, $E \in \mathcal{Q}$, $G \in GL(\mathcal{H})$ it holds

$$\mathcal{Z}_{G^{*-1}AG^{-1}} = G\mathcal{Z}_AG^{-1},$$

 $\mathcal{Z}^{GEG^{-1}} = G^{*-1}\mathcal{Z}^EG^{-1}.$

This shows that, by choosing convenient $A \in L(\mathcal{H})^+$, $E \in \mathcal{Q}$, one can get information on every $\mathcal{Z}_{A'}$, $\mathcal{Z}^{E'}$ for E' similar to E and A' congruent to A, provided that we have that type of information on \mathcal{Z}_A or \mathcal{Z}^E .

Observe that \mathcal{Z} is a closed subset of $L(\mathcal{H})^+ \times \mathcal{Q}$, if we provide $L(\mathcal{H})^+ \times \mathcal{Q}$ with the induced topology of $L(\mathcal{H}) \times L(\mathcal{H})$.

Our main concerns deal with

$$\mathcal{Z}^{\circ} = \{ (A, E) \in \mathcal{Z} : A \in GL(\mathcal{H})^+ \},$$

with the fibers

$$\mathcal{Z}_A^{\circ} = \{ E \in \mathcal{Q} : (A, E) \in \mathcal{Z}^{\circ} \} = \mathcal{Z}_A$$

and

$$(\mathcal{Z}^{\circ})^E = \{ A \in GL(\mathcal{H})^+ : (A, E) \in \mathcal{Z}^{\circ} \},$$

for $A \in GL(\mathcal{H})^+$ and $E \in \mathcal{Q}$.

Proposition 6.2. The mapping

$$\phi: \mathcal{Z}^{\circ} \longrightarrow GL(\mathcal{H})^{+} \times \mathcal{P}$$
$$(A, E) \longrightarrow (A, A^{1/2}EA^{-1/2})$$

is a homeomorphism with inverse

$$\psi: GL(\mathcal{H})^+ \times \mathcal{P} \longrightarrow \mathcal{Z}^{\circ}$$

 $(A, P) \longrightarrow (A, A^{-1/2}EA^{1/2}).$

Proof. It suffices to compute $\phi \circ \psi$ and $\psi \circ \phi$.

Consider the map

$$\alpha: GL(\mathcal{H})^+ \times \mathcal{Q} \longrightarrow \mathcal{Q}$$

 $\alpha(A, E) = A^{1/2}EA^{-1/2}.$

Proposition 6.3.

$$\alpha^{-1}(\mathcal{P}) = \mathcal{Z}^{\circ}.$$

Proof. Suppose that $(A, E) \in \alpha^{-1}(\mathcal{P})$. Then $\alpha(A, E) = P \in \mathcal{P}$; this is equivalent to $A^{1/2}EA^{-1/2} = A^{-1/2}E^*A^{1/2}$. Therefore $AE = E^*A$ so that $(A, E) \in \mathcal{Z}^{\circ}$. This shows that $\alpha^{-1}(\mathcal{P}) \subseteq \mathcal{Z}^{\circ}$. Conversely, if $(A, E) \in \mathcal{Z}^{\circ}$ it has been shown that the projection $A^{1/2}EA^{-1/2}$ is selfadjoint, or equivalently, $\alpha(A, E) \in \mathcal{Z}^{\circ}$. This proves the other inclusion.

Denote again $\alpha = \alpha|_{\mathcal{Z}^{\circ}}$.

Corollary 6.4. The map $\alpha: \mathbb{Z}^{\circ} \longrightarrow \mathcal{P}$, $\alpha(A, E) = A^{1/2}EA^{-1/2} = P_{\mathcal{R}(A^{1/2}E)}$ is continuous.

Proposition 6.5. For $A \in GL(\mathcal{H})^+$, consider the map $\alpha_A = \alpha|_{\mathcal{Z}_A}$

$$\alpha_A:\mathcal{Z}_A\longrightarrow\mathcal{P}$$

$$\alpha_A(E) = A^{1/2} E A^{-1/2}$$

is a homeomorphism, with inverse $\alpha_A^{-1}(P) = A^{-1/2}PA^{1/2}$.

Corollary 6.6. There is a natural bijection between the sets of connected components of \mathbb{Z}° and \mathcal{P} .

Proof. In fact, \mathcal{Z}° is homeomorphic to $GL(\mathcal{H})^{+} \times \mathcal{P}$ and $GL(\mathcal{H})^{+}$ is contractible, by Kuiper's theorem [15]. Thus, \mathcal{Z}° has the homotopy type of \mathcal{P} . In particular, ϕ induces a bijection between the set of connected components of \mathcal{Z}° and that of \mathcal{P} .

We extend the map $\alpha: \mathbb{Z}^{\circ} \longrightarrow \mathcal{P}$ to \mathbb{Z} , but we are obliged to loose the continuity. The reason behind this lost is the fact that inversion can not be extended with continuity from $GL(\mathcal{H})$.

Proposition 6.7. Let $(A, E) \in \mathcal{Z}$. Then $P = A^{1/2^{\dagger}} E^* A^{1/2}$ is well defined and $P \in \mathcal{P}$. Moreover, $P = P_{\mathcal{M}}$, where $\mathcal{M} = \overline{\mathcal{R}(A^{1/2}E)}$.

Proof. If $(A, E) \in \mathcal{Z}$ then, by Lemma 4.2, $P_A E \in \mathcal{Z}_A$ and $\mathcal{R}(P_A E) \subseteq \overline{\mathcal{R}(A)}$. In this case, applying Proposition 3.4 of [7], $P_{\mathcal{M}}(\mathcal{R}(A^{1/2})) \subseteq \mathcal{R}(A^{1/2})$ and $P_A E = A^{1/2^{\dagger}} P_{\mathcal{M}} A^{1/2}$, where $\mathcal{M} = \overline{\mathcal{R}(A^{1/2}E)}$. Notice that the Moore–Penrose inverse of A is not necessarily bounded and its domain is the (dense) set $\mathcal{R}(A^{1/2}) \oplus \mathcal{N}(A)$. Therefore, $A^{1/2}E = A^{1/2}P_A E = P_{\mathcal{M}}A^{1/2}$, or $E^*A^{1/2} = A^{1/2}P_{\mathcal{M}}$. Hence, $A^{1/2^{\dagger}}E^*A^{1/2} = P_A P_{\mathcal{M}} = P_{\mathcal{M}}$.

In view of Proposition 6.7, we can extend α to \mathcal{Z} , in the following way:

$$\tilde{\alpha}: \mathcal{Z} \longrightarrow \mathcal{P}, \ \tilde{\alpha}(A, E) = A^{1/2\dagger} E^* A^{1/2} = P_{\mathcal{R}(A^{1/2}E)},$$

where $(A, E) \in \mathcal{Z}$. However, $\tilde{\alpha}$ is no longer continuous.

Proposition 6.8. For $A \in L(\mathcal{H})^+$ consider $\tilde{\alpha}_A : \mathcal{Z}_A \longrightarrow \mathcal{P}$, $\tilde{\alpha}_A(E) = \tilde{\alpha}(A, E) = P_{\overline{\mathcal{R}(A^{1/2}E)}}$. Then $\tilde{\alpha}_A(\mathcal{Z}_A) = \{P \in \mathcal{P}_A : \mathcal{R}(P) \subseteq \overline{\mathcal{R}(A)}\}$. In particular, if A has closed range then $\tilde{\alpha}_A(\mathcal{Z}_A) = \{P \in \mathcal{P} : \mathcal{R}(P) \subseteq \mathcal{R}(A)\}$.

For a fixed $(I, P) \in \mathcal{Z}^{\circ}$ define the map

$$\pi: GL(\mathcal{H}) \longrightarrow \mathcal{Z}^{\circ}, \ \pi(G) = L(G, (I, P)) = (GG^*, G^{*-1}PG^*).$$

Given $(A, E) \in \mathcal{Z}^{\circ}$, the *orbit* of (A, E) given by the action L is the set

$$\mathcal{O}_{(A,E)} = \{ (B,R) \in \mathcal{Z}^{\circ} : (B,R) = L_G((A,Q)) \text{ for } G \in GL(\mathcal{H}) \}.$$

Observe that $\mathcal{O}_{(A,E)} = \mathcal{O}_{(I,E_0)}$, where $E_0 = A^{1/2}EA^{-1/2} \in \mathcal{P}$. If $\mathcal{U}(\mathcal{H})$ denotes the subgroup of $GL(\mathcal{H})$ of unitary operators, then:

Proposition 6.9. Given $(A, E) \in \mathcal{Z}^{\circ}$ and $P \in \mathcal{P}$, then $(A, E) \in \mathcal{O}_{(I,P)}$ if and only if $E_0 := A^{1/2}EA^{-1/2} \in \mathcal{U}_P := \{UPU^* : U \in \mathcal{U}(\mathcal{H})\}.$

Proof. Given $(A, E) \in \mathcal{Z}^{\circ}$ and $P \in \mathcal{P}$, suppose that $(A, E) \in \mathcal{O}_{(I,P)}$; then, there exists $G \in GL(\mathcal{H})$ such that $A = GG^*$ and $E = G^{*-1}PG^*$; or, equivalently, $A^{1/2} = |G^*|$, so that $G = A^{1/2}U$, with $U \in \mathcal{U}(\mathcal{H})$. Then, $E = A^{-1/2}UPU^*A^{1/2}$, or, $E_0 = A^{1/2}EA^{-1/2} = UPU^*$. Therefore, $E_0 \in \mathcal{U}_P$.

Conversely, if $E_0 \in \mathcal{U}_P$ then there exists $U \in \mathcal{U}(\mathcal{H})$ such that $E_0 = UPU^*$, or equivalently, $A^{1/2}EA^{-1/2} = UPU^*$, so that $E = A^{-1/2}UPU^*A^{1/2}$. Taking $G = A^{1/2}U$, then $GG^* = A$ and $E = G^{*-1}PG^*$. Hence, $(A, E) \in \mathcal{O}_{(I,P)}$.

Corollary 6.10. Given $(A, E) \in \mathcal{Z}^{\circ}$ and $P \in \mathcal{P}$, then $(A, E) \in \mathcal{O}_{(I,P)}$ if and only if $\dim \mathcal{R}(E) = \dim \mathcal{R}(P)$ and $\dim \mathcal{N}(E) = \dim \mathcal{N}(P)$, or equivalently if $E \in \mathcal{O}_P := \{GPG^{-1} : G \in GL(\mathcal{H})\}.$

Proposition 6.11. The action L is locally transitive and the map π admits local cross sections.

Proof. Let us see that the action L is locally transitive: given $(A_0, E_0) \in \mathcal{Z}^{\circ}$, we have to find an neighbourhood $V = V_{(A_0, E_0)}$ such that if $(A, E) \in V$ then there exists $G \in GL(\mathcal{H})$ such that $L(G, (A_0, E_0)) = (A, E)$. Suppose that such G exists. Then G verifies that

$$GA_0G^* = A$$
, and $G^{*-1}E_0G^* = E$.

Therefore, $|A_0^{1/2}G^*|=A^{1/2}$ so that $GA_0^{1/2}=A^{1/2}U$, with U unitary. Hence, $G=A^{1/2}UA_0^{-1/2}$.

Then, if $G^{*-1}E_0G^* = E$, it follows that $UA_0^{1/2}E_0A_0^{-1/2}U^* = A^{1/2}EA^{-1/2}$. Observe that the projections $P_0 = A_0^{1/2}E_0A_0^{-1/2}$ and $P = A^{1/2}EA^{-1/2}$ are selfadjoint because $(A_0, E_0), (A, E) \in \mathcal{Z}^{\circ}$.

If the pairs (A_0, E_0) , (A, E) are close enough, the projections P and P_0 verify that $||P - P_0|| < 1$, because of the continuity of the functions involved and the fact that E_0 and E can be taken as close as necessary. Therefore it is possible to find an unitary operator U such that $P = UP_0U^*$: in fact $C = I - (P - P_0)^2$

provides a positive invertible operator such that the operator $U = PC^{-1/2}P_0 + (I - P)C^{-1/2}(I - P_0)$ is unitary and and $UP_0U^* = P$, see [14].

Using that L is locally transitive it is easy to see that π has local cross sections: in fact, if $s: U \longrightarrow GL(\mathcal{H})$, $s((A, E)) = A(EA^{-1/2}C^{-1/2}P + (I - E)A^{-1/2}C^{-1/2}(I-P))$, with $C = I - (A^{1/2}EA^{-1/2}-P)^2$ and U is a neighbourhood of P, given as before, then $\pi(s((A, E)) = (A, E))$, for all $(A, E) \in U$. To obtain a local cross section for another point of \mathcal{Z}° consider $(A_0, E_0) \in \mathcal{O}_{(I,P)}$. Then, there exists $G \in GL(\mathcal{H})$ such that $L_G(I, P) = (A_0, E_0)$. Therefore, $\tilde{s} = l_G \circ s \circ L_{G^{-1}}$ is a local section in the neighborhood GU of (A_0, E_0) .

Proposition 6.12. Let (A, E), $(A', E') \in \mathcal{Z}$. Then (A, E), (A', E') belong to the same arc component if and only if E and E' belong to the same arc component.

Proof. Suppose that E and E' belong to the same arc component. Then there exists a continuous curve of projections $\gamma:[0,1]\longrightarrow \mathcal{Q}$ such that $\gamma(0)=E$ and $\gamma(1)=E'$. Consider the curve $\beta(t)=\gamma(t)^*\gamma(t)+(I-\gamma(t)^*)(I-\gamma(t))$. Then $\beta(t)\subseteq GL(\mathcal{H})^+$ and $\beta(t)\gamma(t)=\gamma(t)^*\beta(t)$, for every $t\in[0,1]$. Therefore the curve $(\beta(t),\gamma(t))$ connects the pairs $(\beta(0),E)$ and $(\beta(1),E')$ in \mathcal{Z} . But the positive operators $\beta(0)$ and A belong to \mathcal{Z}^E , which is a convex set. Then the segment $t\beta(0)+(1-t)A$, for $0\leq t\leq 1$, of positive operators joining them is included in \mathcal{Z}^E . Therefore the curve $(t\beta(0)+(1-t)A,E)$ joins $(\beta(0),E)$ with (A,E) in \mathcal{Z} . In a similar way, the point $(\beta(1),E')$ are (A',E') are arc connected in \mathcal{Z} . This shows that (A,E),(A',E') are arc connected in \mathcal{Z} .

The converse is straightforward.

Remark 6.13. Observe that, for every $(A, E) \in \mathcal{Z}^{\circ}$ the fibres $\mathcal{Z}_A, \mathcal{Z}^E$ are homogeneous spaces: in the first case the unitary group acts on \mathcal{P} by similarity and, in the second, the product group $GL(\mathcal{R}(E^*)) \times GL(\mathcal{N}(E^*))$ acts on \mathcal{Z}^E by restriction of the map L defined above. See [3] for details on the geometric structure of positive operators on a Hilbert space. See also [9].

Acknowledgement. This research partially supported by FONCYT (PICT 808/08), UBACYT I023.

References

- 1. T. Ando, Generalized Schur complements, Linear Algebra Appl. 27(1979) 173–186.
- G. Corach, C. Gonzalez and A. Maestripieri, Unbounded symmetrizable idempotents, Linear Algebra Appl. 437 (2012), 659–674.
- 3. G. Corach and A. Maestripieri, Differential and metrical structure of positive operators, Positivity 4 (1999) 297–315.
- 4. G. Corach and A. Maestripieri, *Products of orthogonal projections and polar decompositions*, Linear Algebra Appl. **434** (2011), 1594–1609.
- 5. G. Corach, A. Maestripieri and D. Stojanoff, *Oblique projections and Schur complements*, Acta Sci. Math. (Szeged), **67** (2001) 337–356.
- 6. G. Corach, A. Maestripieri and D. Stojanoff, Generalized Schur complements and oblique projections. Linear Algebra Appl. **341** (2002), 259–272.
- G. Corach, A. Maestripieri and D. Stojanoff, Oblique projections and abstract splines, J. Approx. Theory 117 (2002), 189–206.

- 8. G. Corach, A. Maestripieri and D. Stojanoff, A classification of projectors, Banach Center Publications 67 (2005), 145–160.
- M.E. Di Iorio Lucero, Geometry of the left action of the p-Schatten groups, Bannach J. Math. Anal. 7 (2013), 73–87.
- 10. T.N.E. Greville, Solutions of the matrix equation XAX = X, and relations between oblique and orthogonal projectors, SIAM J. Appl. Math. **26** (1974), 828–832.
- 11. P.R. Halmos, Introduction to Hilbert spaces and the theory of spectral multiplicity, Chelsea Publishing Company, New York, 1972.
- 12. S. Hass and K. Nordström, On projections in a space with an indefinite metric, Linear Algebra Appl. 208/209 (1994), 401–417.
- 13. M. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems. J. Research Nat. Bur. Standards 49 (1952), 409–436.
- 14. Y. Kato, An elementary proof of Sz-Nagy's theorem, Math. Japon. 20 (1975), 257–258.
- N. Kuiper, The homotopy type of the unitary group of Hilbert space, Topology 3 (1965), 1930.
- 16. A. Maestripieri and F. Martnez Pera, Decomposition of selfadjoint projections in Krein spaces Acta Sci. Math. (Szeged), 72 (2006), 611–638.
- 17. P. Massey and D. Stojanoff, Generalized Schur complements and P -complementable operators, Linear Algebra Appl. **393** (2004), 299–318.
- 18. D. Pappas, Minimization of constrained quadratic forms in Hilbert spaces, Ann. Funct. Anal. 2 (2011), 1–12.
- 19. Z. Pasternak-Winiarski, On the dependence of the orthogonal projector on deformations of the scalar product. Studia Math. 128 (1998), 1–17.
- R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955), 406–413.
- 21. A. Sard, Approximation and variance. Trans. Amer. Math. Soc. 73 (1952), 428-446.

DEPARTAMENTO DE MATEMÁTICA, FACULTAD DE INGENIERÍA, UBA, BUENOS AIRES (C1063ACV), ARGENTINA;

Instituto Argentino de Matemática - CONICET, Saavedra 15, Buenos Aires (1083), Argentina.

E-mail address: gcorach@fi.uba.ar E-mail address: amaestri@fi.uba.ar