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Abstract. Let H be a complex Hilbert space. We study the geometry of the
space of pairs (A,E), for A a (semidefinite bounded linear) positive operator
on H and E a (bounded linear) projection on H such that AE = E∗A.

1. Introduction

An orthogonalization method in a Hilbert space H is a tool which converts
a sequence of linearly independent vectors in a sequence of orthonormal vectors,
with some additional properties. But one can also think that an orthogonalization
method provides to every closed subspace S ofH a projection with image S which
is orthogonal with respect to a certain inner product. In this sense, a setting which
unifies different orthogonalization methods is given by the set Z consisting of all
pairs (〈 , 〉′, E), where 〈 , 〉′ is a inner product or, more generally, a semi-inner
product on H and E is a bounded linear projection acting on H. In order to
maintain the situation under control, we shall only admit bounded semi-inner
products (with respect to the original inner product 〈 , 〉 of H). Therefore, 〈 , 〉′ is
indeed determined by a positive (semidefinite bounded linear) operator A acting
on H, by the rule 〈ξ, η〉′ = 〈Aξ, η〉, where ξ, η ∈ H. Thus, the object of our
present study is the set

Z = {(A,E) ∈ L(H)+ ×Q : AE = E∗A}
where L(H)+ is the cone of positive operators and Q is the subset of all (bounded
linear) projections acting on H. The identity AE = E∗A says, exactly, that the
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projection E is Hermitian with respect to the semi-inner product 〈 , 〉′ determined
by A.

For a fixed Hilbert space H, we say that a closed subspace S is compatible with
a positive (semidefinite bounded linear) operator A if there exists a (bounded
linear) projection E on H with image S such that AE = E∗A. Thus, such
E behaves like an orthogonal projection onto S with respect to the semi-inner
product 〈 , 〉A. Compatibility is automatic if H has finite dimension. However, in
the infinite dimensional case, there exist pairs (A,S) such that no such E exists.
If

P(A,S) = {E ∈ L(H) : E2 = E, R(E) = S, AE = E∗A}
then (A,S) is compatible if P(A,S) is not empty. If A is invertible then (A,S)
is compatible for every S and P(A,S) contains a single projection, denoted by
PA,S . The notion of compatibility has been implicitly used by A. Sard [21] in
1950’ and later by Hassi and Nordström [12], for A Hermitian. In [1], Ando
defined the notion of complementable matrices by a subspace, as a generalization
of Schur complements. It turns out that compatibility and complementability for
selfadjoint operators on a Hilbert space are equivalent, see [6]. For a complete
discussion on compatibility matters amd applications, the reader is referred to
the papers [5], [6], [7], [8], [16], [17]; see also [18].

Some relevant results are obtain if A ∈ GL(H)+ of all positive invertible oper-
ators. In particular, many facts are proven not for Z but for the set

Z◦ = {(A,E) ∈ Z : A ∈ GL(H)+}.
In some sense, the main interest of the sets Z and Z◦ is that every oblique
projection E ∈ Q is paired with all the semi-inner products 〈 , 〉A under which E
is orthogonal. This offers and interesting setting for problems where perturbations
of the scalar product appear naturally. The reader is referred to the paper by
Pasternak–Winiarski [19] with relevant bibliography. Also, in problems where the
conjugate gradient method is used (see, e.g., [13]) a setting like the mentioned
above may be useful.

The contents of the paper are the following. In Section 2 we collect some
notation and known facts about Dixmier angles between closed subspaces of a
Hilbert space. We also survey results about compatibility, referring the reader
to the papers [5], [6], [7], [8], [16], [17] for the corresponding proofs. However,
we include with a proof, a new result on compatibility, namely, that for a fixed
A ∈ L(H)+ every closed subspace S of H is compatible with A if and only if
R(A) is closed and dimR(A) < ∞ or dimN (A) < ∞, where R(A) denotes the
image of A and N (A) denotes its nullspace. In Section 3 we describe in several
ways the set Z and its natural projections onto L(H)+ and Q. The fibers ZA of
the first projection are described in Section 4. Section 5 contains a similar study
for the fibers ZE of the second projection. However, it should be noticed that the
similarity is only formal. In fact, each ZE is convex and, so topologically quite
simple. On the other side, each ZA is as complex as the setQ. Both sections 4 and
5 contain result describing some intersections of the type ZA1 ∩ZA2 , ZE1 ∩ZE2 ,
respectively. Finally, at Section 6 we study some topological facts about Z and
Z◦. In particular, we determine the connected components of Z and Z◦.
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2. Compatible pairs

Let Gr = Gr(H) denote the Grassmann manifold of H, i.e., the set of all closed
subspaces S ofH. Let L(H) denote the algebra of linear bounded operators acting
onH and for T ∈ L(H), denote byR(T ) the range of T and byN (T ) its nullspace.
Given A ∈ L(H)+ and S ∈ Gr we say that they are compatible (or that the pair
(A,S) is compatible) if there exists E ∈ Q such that AE = E∗A and R(E) = S.
As we said in the introduction, this means that E is Hermitian with respect to
the semi inner product 〈 , 〉A defined as 〈x, y〉A := 〈Ax, y〉, ∀x, y ∈ H. We refer
the reader to the papers [5], [6], [8] for the proofs of the results mentioned below.
Theorem 2.1 is new and we present a proof. The pair (A,S) is compatible if and
only if S+(AS)⊥ = H. Now, if we defined the Dixmier angle between two closed
subspaces M, W as the unique α ∈ [0, π/2] such that

cosα = c0(M,W) = sup{|〈m,w〉| : m ∈M, w ∈ W , ‖m‖ = ‖w‖ = 1},
then it follows that (A,S) is compatible if and only if c0(S⊥, AS) < 1. If A ∈
GL(H)+ then (A,S) is compatible for every S ∈ Gr. In fact in this case 〈 , 〉A is
equivalent to the original 〈 , 〉 and then, HA = (H, 〈 , 〉A) is also a Hilbert space, so
that for every closed subspace S (of H or, indistinctly, HA) there exists a unique
A-orthogonal projection PA,S onto S. It easily follows that APA,S = P ∗A,SA.

Concerning the existence of pairs (A,S) which are not compatible, one can
show some examples (see, for instance, [5]). However, the following result gives
a complete answer.

Theorem 2.1. Let A ∈ L(H)+. Then (A,S) is compatible for every S ∈ Gr if
and only if R(A) is closed and dimR(A) <∞ or dimN (A) <∞.

Proof. Suppose that R(A) is closed and consider S ∈ Gr. If dimR(A) < ∞
then every subset of R(A) has finite dimension and therefore is closed. Then
c0(AS,S⊥) = c0(AS,S⊥) < 1, because AS ∩ S⊥ = {0} and AS has finite dimen-
sion. If dimN (A) <∞ then S +N (A) is automatically closed; this condition, if
A has closed range, is equivalent to the compatibility of A and S, see [5].

Conversely, suppose that R(A) is not closed; consider y ∈ R(A) such that
y /∈ R(A), y 6= 0 and consider S⊥ = [y] the subspace generated by y. Then
(AS)⊥ = A−1(S⊥) = A−1([y]∩R(A)) = A−1({0}) = N (A). Therefore, by taking

orthogonal complement, AS = R(A); in this case AS ∩S⊥ = R(A)∩S⊥ = S⊥ =
[y] 6= {0}. Hence c0(AS,S⊥) = 1 so that (A,S) is not compatible. See [2].

If R(A) is closed and dimR(A) = dimN (A) = ∞, then it is possible to
construct a closed subspace S such that c(S,N (A)) = 1, or equivalently, such
that S +N (A) is not closed, see [11]. Therefore (A,S) is not compatible. This
ends the proof. �

If (A,S) is compatible, then the set

P(A,S) = {E ∈ Q : R(E) = S, AE = E∗A}
is not empty. It is a closed affine manifold of L(H), with a distinguished element
PA,S which corresponds to the direct decomposition H = S+̇((AS)⊥	S), where
the sum is direct and (AS)⊥ 	 S := (AS)⊥ ∩ (S ∩ (AS)⊥)⊥. It can be shown
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that P(A,S) contains a single element if and only if (A,S) is compatible and
N (A) ∩ S = {0}. In fact P(A,S) can be parametrized as

P(A,S) = PA,S + L(S⊥,S ∩ N (A)).

3. Z as a set

This section is devoted to the study of the set

Z = {(A,E) : A ∈ L(H)+, E ∈ Q, AE = E∗A},
with the natural projections

p1 : Z −→ L(H)+, p1(A,E) = A,

p2 : Z −→ Q, p2(A,E) = E,

and the corresponding fibers

p−1
1 ({A}), forA ∈ L(H)+; p−1

2 ({E}), forE ∈ Q.

Proposition 3.1. For every T ∈ L(H) and E ∈ Q, the pair (T ∗T,E) belongs to
Z if and only if TR(E) is orthogonal to TN (E).

To prove this proposition we will use the following lemma.

Lemma 3.2. The following conditions are equivalent.

(1) The pair (A,E) belongs to Z.
(2) N (E) ⊆ AR(E)⊥.
(3) AN (E) ⊆ N (E∗).
(4) AR(E) ⊆ R(E∗).

Proof. 1 ↔ 2: Suppose that the pair (A,E) ∈ Z then AE = E∗A. If x ∈ N (E)
then 0 = AEx = E∗Ax. Hence Ax ∈ N (E∗) = R(E)⊥, or equivalently, x ∈
A−1(R(E)⊥) = A(R(E))⊥. Then N (E) ⊆ A(R(E))⊥.

Conversely, if N (E) ⊆ AR(E)⊥, then by taking orthogonal complement we

get AR(E) ⊆ R(E∗). Therefore R(AE) ⊆ R(E∗), which implies AE = E∗AE,
and this shows that AE is Hermitian, i.e., AE = E∗A.

From this identity AR(E)⊥ = A−1(R(E)⊥) the equivalences 2 ↔ 3 and 3 ↔ 4
are straightforward. �

Proof. (of the proposition) Let T = UA1/2 be the polar decomposition of T

with A = T ∗T and U a partial isometry from R(A1/2) onto R(T ). If (A,E) ∈
Z then, by the previous lemma, H = R(E)+̇N (E) ⊆ R(E) + A−1(R(E)⊥).
Applying A1/2 to both sides of the equality, R(A1/2) = A1/2R(E) + A1/2N (E)
and A1/2N (E) ⊆ A1/2A−1(R(E)⊥) ⊆ A−1/2(R(E)⊥) = A1/2R(E)⊥. Therefore
the sum is orthogonal, i.e., R(A1/2) = A1/2R(E)⊕ A1/2N (E). Finally, applying
U to this equality we get that R(T ) = TR(E) ⊕ TN (E) because U preserves
orthogonality when applied to subsets of R(A1/2).

Conversely, if TR(E) is orthogonal to TN (E) then R(T ) = TR(E)⊕TN (E).
Therefore, TN (E) = TR(E)⊥∩R(T ) and then N (E) = T−1(TR(E)⊥∩R(T )) =
T−1(TR(E)⊥) = T−1(T ∗−1(R(E)⊥)) ⊆ (T ∗T )−1(R(E)⊥). �
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Remark 3.3. As we have shown in the proof of the proposition above, (T ∗T,E) ∈
Z if and only if TR(E)⊕ TN (E) = R(T ); in particular, (A,E) ∈ Z if and only
if A1/2R(E) ⊕ A1/2N (E) = R(A1/2). Observe that the subspaces TR(E) and
TN (E) (resp. A1/2R(E), A1/2N (E)) need not to be closed. However, if T is
invertible, then, obviously, TR(E) and TN (E) are closed and it is easy to see
that (T ∗T,E) ∈ Z if and only if TR(E)⊕ TN (E) = H.

We collect some facts about the projections p1 and p2.

Proposition 3.4. The following assertions hold:

(1) For every E ∈ Q, θ(E) = E∗E + (I − E∗)(I − E) ∈ GL(H)+ and the
mapping s(E) = (θ(E), E) verifies s(E) ∈ Z for all E ∈ Q and p2◦s = IQ
(i.e. s is a global section of p2).

(2) p1 : Z −→ L(H)+ is surjective.
(3) p2 : Z −→ Q is surjective.
(4) For every E ∈ Q, p−1

2 ({E}) is convex.

Proof. 1. It is easy to see that N (θ(E)) = N (E) ∩ R(E) = {0} so that θ(E)
is injective. To see that θ(E) is surjective observe that R(E∗E) ⊆ R(θ(E)).
Since R(E) is closed, R(E∗E) = E∗(R(E)) = E∗(N (E∗)⊥) = R(E∗). Then
R(E∗) ⊆ R(θ(E)). In a similar way, N (E∗) = R(I − E∗) ⊆ R(θ(E)). Then
R(θ(E)) = H.

The rest of the assertion follows easily.
2. Given A ∈ L(H)+, the pair (A, I) ∈ Z and p1(A, I) = A.
3. Given E ∈ Q, by 1, the pair (θ(E), E) ∈ Z and p2(θ(E), E) = E. �

From now on, we identify the fiber p−1({A}) = {(A,E) : (A,E) ∈ Z} with

ZA := {E ∈ Q : AE = E∗A},

and p−1
2 ({E}) = {(A,E) : (A,E) ∈ Z} with

ZE := {A ∈ L(H)+ : AE = E∗A}.

The next two sections are devoted to the characterization of fibers ZA and ZE

for any A ∈ L(H)+, E ∈ Q. Thus, for A ∈ L(H)+ the set ZA contains all oblique
projections which are ”orthogonalized” by A, and, for E ∈ Q the set ZE contains
all positive operators which “orthogonalize” E.

4. The set ZA

Observe that

ZA =
⋃
S

P(A,S)

where S runs over Gr. Of course, a given S adds some projections only if A and
S are compatible. Notice also that it is a disjoint union.

The following subset of P is helpful to characterize the set ZA. Define

PA = {P ∈ P : R(PA1/2) ⊆ R(A1/2)}.
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Observe that P ∈ PA if and only if the equation PA1/2 = A1/2X admits a
solution.

For A ∈ L(H)+ denote by PA the orthogonal projection onto R(A).

If P ∈ PA then P (R(A1/2)) ⊆ R(A) so that P (R(A)) ⊆ R(A) and then
PPA = PAPPA. Therefore, PPA is positive; in particular PPA and P (I−PA) are
both (orthogonal) projections and P = PPA +P (I−PA). Hence, the projections
of PA can be written as the sum of two orthogonal projections, one with range
included in R(A) and the other with range included in N (A).

Theorem 4.1. Given A ∈ L(H)+,

ZA = {
[
E1 0
W E2

]
: E1 = A1/2†PA1/2|R(A), P ∈ PA, E

2
2 = E2, E2W = W (I−E1)},

where the matrix representation is that induced by the decomposition H = R(A)⊕
N (A).

The proof of this theorem relies on the following lemmas.

Lemma 4.2. Let A ∈ L(H)+ and E an A-selfadjoint projection. Then PAE and
E(I − PA) are A-selfadjoint projections.

Proof. IfAE = E∗A then, APAE = E∗PAA = (PAE)∗A and PAE isA-selfadjoint.
Since PAE = A†E∗A, it follows that PAE = PAEPA. Then (PAE)2 = PAEPAE =
PAE

2 = PAE.
Also (I−PA)E(I−PA) = (E−PAE)(I−PA) = (E−PAEPA)(I−PA) = E(I−

PA). Then, E(I−PA) is a projection and AE(I−PA) = A(I−PA)E(I−PA) = 0,
so that it is A-selfadjoint. �

Lemma 4.3. Let A ∈ L(H)+. Then, E is an A-selfadjoint projection if and only
if

E =

[
E1 0
W E2

]
,

where E1 ∈ L(R(A)) is an A-selfadjoint projection, E2 ∈ L(N (A)) is an oblique
projection and W ∈ L(R(A),N (A)) satisfies that E2W = W (I − E1).

Proof. Suppose that E is a projection such that AE = E∗A, then, by Lemma
4.2 PAE = PAEPA, E(I − PA) = (I − PA)E(I − PA) so that E = PAE + E(I −

PA)+(I−PA)EPA =

[
E1 0
W E2

]
, where E1 = PAE|R(A), E2 = E(I−PA)|N (A) and

W = (I−PA)EPA|R(A). By Lemma 4.2, E1 and E2 are A-selfadjoint projections.

It is easy to see that E2W = W (I − E1) = (EPA − EPAE)|R(A).

Conversely, if E =

[
E1 0
W E2

]
, with E1 and E2 projections and E2W = W (I −

E1), then E2 =

[
E1 0

WP + E2W E2

]
= E and E is a projection. Also, AE =[

AE1 0
0 0

]
=

[
E∗1A 0

0 0

]
= E∗A, because E1 is A-selfadjoint. �



134 G. CORACH, A. MAESTRIPIERI

Lemma 4.4. Let A ∈ L(H)+ and E ∈ Q such that R(E) ⊆ R(A). Then, E is

A-selfadjoint if and only if E = A1/2†PA1/2, where P ∈ PA.

Proof. Using Douglas’ theorem, it is easy to verify that if P ∈ PA then E =

A1/2†PA1/2 is well defined and is a bounded A-selfadjoint projection. Conversely,
applying Proposition 3.4 of [7] the converse follows immediately. �

In particular, if A has closed range, the A-selfadjoint projections such R(E) ⊆
R(A), are given by E = A1/2†PA1/2, where P ∈ P verifies that R(P ) ⊆ R(A).

Lemma 4.5. Let A ∈ L(H)+. Then E ∈ ZA ∩ P if and only if E = E1 + E2,

where E1, E2 ∈ P, R(E1) ⊆ R(A), R(E2) ⊆ N (A) and R(AE1) ⊆ R(E1).

Proof. Suppose that E = E1 + E2, with E1, E2 ∈ P, R(E1) ⊆ R(A), R(E2) ⊆
N (A) and R(AE1) ⊆ R(E1). Then E1E2 = 0 = E2E1 so that E2 = E = E∗.
To see that E ∈ ZA, observe that AE = AE1 = E1AE1, because R(E2) ⊆ N (A)
and R(AE1) ⊆ R(E1). Then AE is positive so that AE = E∗A.

Conversely, if E ∈ ZA, by Lemma 4.3,

E =

[
E1 0
W E2

]
,

where E1 ∈ L(R(A)) is an A-selfadjoint projection, E2 ∈ L(N (A)) is an oblique
projection and W ∈ L(R(A),N (A)) satisfies that E2W = W (I − E1). If E
belongs also to P then E∗1 = E1, E

∗
2 = E2 and W = 0. Then E = E ′1 +E ′2, where

E ′1 and E ′2 are the orthogonal projections acting on H defined by E ′1 = E1PA

and E ′2 = E2(I − PA), with PA the orthogonal projection onto R(A). Finally
E is A-selfadjoint if and only if AE = EA or equivalently AE ′1 = E ′1A because
AE ′2 = 0 = E ′2A. Hence R(AE ′1) ⊆ R(E ′1). �

Proposition 4.6. Let A ∈ L(H)+, and B ∈ GL(H)+ such that ZA ⊆ ZB, then
there exists λ > 0 such that B = λA. In particular A is invertible and ZA = ZB.

Proof. First consider B = I. In this case ZB = P . Suppose that ZA ⊆ P. If
A = 0 then ZA = Q which is not included in P ; therefore A 6= 0. Moreover A
must be injective. Suppose on the contrary that N (B) 6= {0} and consider the

operator E defined by its matrix decomposition in terms of R(A) and N (A) as

E =

[
0 0
W I

]
, where W 6= 0 ( this is possible because R(A) 6= 0 and N (A) 6= 0).

It is easy to see that E is a projection and AE = 0 = E∗A so that E is A-
selfadjoint, but E /∈ P . Let us see that A si also surjective: if x ∈ H, x 6= 0,
then the pair (A, [x]) is compatible because [x] is finite dimensional. Since A is
injective there exists only one projection onto [x] which is A-selfadjoint and it is
given by PA,[x] = P[x]//A[x]⊥ . Using that ZA ⊆ P, it must hold that A[x]⊥ = [x]⊥,
or equivalently, A[x] = [x]. Therefore, there exists λ such that Ax = λx so that
x ∈ R(A). Then R(A) = H and A is invertible. In this case, by Theorem 4.1,
the set ZA = {A−1/2PA1/2 : P ∈ P} = A−1/2PA1/2. If ZA ⊆ P, for every P ∈ P ,
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A−1/2PA1/2 ∈ P. Hence, A−1/2PA1/2 = A1/2PA−1/2 so that PA = AP for every
P ∈ P . By [11], there exists λ > 0 such that A = λI.

For any B ∈ GL(H)+ the condition ZA ⊆ ZB = B−1/2PB1/2 is equiva-
lent to B1/2ZAB

−1/2 ⊆ P. It holds that B1/2ZAB
−1/2 = ZB−1/2AB−1/2 ; hence

B−1/2AB−1/2 = λI or, equivalently A = λB. �

Denote by QS the subset of Q of oblique projections with range S.

Proposition 4.7. Let A ∈ L(H)+.

(1) ZA ∩QS = P(A,S).
(2) ZA ∩QS is not empty if and only if (A,S) is compatible.
(3) If A ∈ GL(H)+ then ZA ∩QS = {PA,S}.
(4) ZA ∩QS contains a single element if and only if (A,S) is compatible and

N (A) ∩ S = {0}.

5. The set ZE

Given a fixed projection E we look for the positive operators A such that E is
A-selfadjoint, i.e., the set ZE = {A ∈ L(H)+ : AE = E∗A}. Observe that. by
Proposition 3.4, ZE is a convex set.

Theorem 5.1. Given E ∈ Q,

ZE = {A = A1 + A2 : A1, A2 ∈ L(H)+, R(A1) ⊆ R(E∗), R(A2) ⊆ N (E∗)}.

Proof. Suppose that A = A1+A2, with A1 and A2 positive and such thatR(A1) ⊆
R(E∗), R(A2) ⊆ N (E∗). Then A is positive. To see that E is A-selfadjoint,
observe that AE = (A1 + A2)E = A1E = E∗A1E, because R(E) ⊆ N (A2) and
R(A1) ⊆ R(E∗). Noticing that E∗AE is positive, AE = E∗AE = E∗A.

Conversely, if A ∈ ZE then A is positive and AE = E∗A = E∗AE so that
(I − E∗)AE = 0 = E∗A(I − E). Therefore, A = E∗AE + (I − E∗)A(I − E).
If A1 = E∗AE and A2 = (I − E∗)A(I − E), then A = A1 + A2, A1 and A2 are
positive, R(A1) ⊆ R(E∗), R(A2) ⊆ N (E∗). �

Remark 5.2. By the above proposition, it is easy to see that

ZE = {A = A1PR(E∗) + A2PN (E∗) : A1 ∈ L(R(E∗))+, A2 ∈ L(N (E∗))+}.
Then the set ZE can be identified with the product

L(R(E∗))+ × L(N (E∗))+.

through the map
ZE −→ L(R(E∗))+ × L(N (E∗))+,

A −→ (AE|R(E∗), A(I − E)|N (E∗)).

For every E ∈ Q the set ZE ∩ P is not empty. In fact, P = PN (E)⊥ has the

same nullspace as E and then PE = P = E∗P , which proves that P ∈ ZE ∩ P .
The next proposition characterizes the set ZE ∩ P .

Proposition 5.3. Let E ∈ Q. Then

ZE∩P = {P = P1+P2 : P1, P2 ∈ P , P1P2 = 0, R(P1) ⊆ R(E∗),R(P2) ⊆ N (E∗)}.



136 G. CORACH, A. MAESTRIPIERI

Proof. If P = P1 + P2 with Pi ∈ P, i=1,2, P1P2 = 0, R(P1) ⊆ R(E∗) and
R(P2) ⊆ N (E∗) then P is an orthogonal projection. To see that P ∈ ZE observe
that E∗P = E∗(P1 + P2) = P1 = P ∗1 = PE.

Conversely, if P ∈ ZE ∩P then, by Proposition 5.1 P = A1 +A2, with A1 and
A2 positive, R(A1) ⊆ R(E∗) and R(A2) ⊆ N (E∗). From P 2 = P it follows that

A2
1 + A2

2 + A1A2 + A2A1 = A1 + A2. (5.1)

Multiplying to the left by E∗ and noticing that E∗A1 = A1 = A1E and E∗A2 =
0 = A2E it follows that A2

1 +A1A2 = A1; multiplying by E to the right, A2
1 = A1.

In a similar way, A2
2 = A2. Therefore A1 and A2 are orthogonal projections

because they are positive. It follows from (5.1) that A1A2 + A2A1 = 0, then
A1A2 = 0 = A2A1. �

It is an old result by Penrose [20] and Greville [10] ( see also an infinite di-
mensional treatment in [4]) that every Q ∈ Q can be decomposed as the Moore–
Penrose inverse of a product of two orthogonal projections. More precisely, if E
is the oblique projection with R(E) = W and N (E) = M⊥ then E† = PM⊥PW
and therefore, E = (PM⊥PW)†. Thus

ZE∩P = {P ∈ P : PE = E∗P} = {PN ∈ P : PN (PM⊥PW)† = (PWPM⊥)†PN}.
The next two propositions exhibit a sort of disjoint behaviour of the fibers ZE.

Proposition 5.4. Let E,F ∈ Q. If ZE ⊆ ZF then EF = 0 or E(I − F ) = 0.

Proof. Suppose first that E and F are selfadjoint projections. If ZE ⊆ ZF then
E ∈ ZF because E ∈ ZE. Therefore EF = FE. In this case, EF = PR(E)∩R(F ),
E(I − F ) = PR(E)∩N (F ) and E = EF + E(I − F ).

Suppose that EF and E(I − F ) are both different from zero; let x ∈ R(E) ∩
N (F ), ‖x‖ = 1, and y ∈ R(E) ∩ R(F ), ‖y‖ = 1/2 and define Bx = y and
B = 0 in the orthogonal complement of x, [y]⊥. The operator B is bounded and
‖B‖ = 1/2; also R(B) = [y] ⊆ R(E); then R(E)⊥ ⊆ [y]⊥ = N (B). Therefore,

R(B∗) = R(B∗) = N (B)⊥ ⊆ R(E). Define A = E + B + B∗; then A is
selfadjoint, R(A) ⊆ R(E). In fact A is positive: first observe that B + B∗ =
E(B + B∗)E because R(B + B∗) ⊆ R(E); then for x ∈ H, |〈(B + B∗)x, x〉| =
|〈(B + B∗)Ex,Ex〉| ≤ 2‖B‖‖Ex‖2 = ‖Ex‖2. Therefore |〈Ax, x〉| = |(E + B +
B∗)x, x〉| ≥ ‖x‖2 − ‖Ex‖2 = 0.

Observe that L(R(E))+ ⊆ ZE; in particular A ∈ ZE. But A /∈ ZF : since
F = F ∗, a positive operator A ∈ ZF if and only if FA(I − F ) = 0 but, in this
case, FA(I − F ) = F (E +B +B∗)(I − F ) = FB(I − F ) = B 6= 0.

Therefore, EF = 0 or E(I − F ) = 0, which ends the proof in the special case
where E and F are orthogonal projections.

In the general case, observe that if F is an oblique projection and we consider
an invertible A ∈ ZF , then, by the comment above, B ∈ ZF if and only if
A−1/2BA−1/2 ∈ ZA1/2FA−1/2

, where A1/2FA−1/2 ∈ P, i. e., A−1/2ZFA−1/2 =
ZA1/2QA−1/2

. Let E and F be oblique projections such that ZE ⊆ ZF and consider
an invertible A ∈ ZE. Then A ∈ ZF so that ZE ⊆ ZF , i.e., ZA1/2EA−1/2 ⊆
ZA1/2FA−1/2

. But this last inclusion implies that A1/2EA−1/2 = A1/2EFA−1/2
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or A1/2EA−1/2 = A1/2E(I − F )A−1/2, by the first part, and cancelling the A′s,
E = EF or E = E(I − F ). �

Corollary 5.5. Let E, F ∈ Q such that E 6= 0 and F 6= I. If ZE ⊆ ZF then
F = E or F = I − E, so that ZE = ZF .

Proof. As in the proof of the above proposition, we can suppose that E,F ∈ P . If
ZE ⊆ ZF then by Proposition 5.4, E = EF or EF = 0. Since ZE = Z(I−E), we
deduce that I−E = (I−E)F or (I−E)F = 0. If E = EF and I−E = (I−E)F
then F = I. If E = EF and (I − E)F = 0 then E = F . If EF = 0 and
I − E = (I − E)F then F = I − E. Finally, if EF = 0 and (I − E)F = 0 then
F = 0. �

Proposition 5.6. Consider A ∈ L(H)+ and E ∈ Q, such that the representations

of A and E induced by the decomposition H = R(E) ⊕R(E)⊥ are A =

[
a b
b∗ c

]
and E =

[
1 r
0 0

]
respectively. Then the following conditions are equivalent.

(1) A ∈ ZE ∩ ZE∗
.

(2) AE = EA = AE∗.
(3) A = A1 + A2 with A1, A2 ∈ L(H)+ such that

R(A1) ⊆ R(E) ∩N (E)⊥, R(A2) ⊆ R(E)⊥ ∩N (E).

(4) A =

[
a 0
0 c

]
with ar = rc = 0.

Proof. 1 → 2: A ∈ ZE ∩ ZE∗
if and only if AE = E∗A and AE∗ = EA. Hence

A2E = AE∗A = EA2. Since A is positive it follows that AE = EA and the
first equality holds. Taking adjoint to the last equality A and E∗ also commute.
Therefore AE = E∗A = AE∗ and the second equality follows.

2 → 3: If AE = EA = AE∗ then AE∗ = E∗A and A ∈ ZE∗
. By Proposition

5.1, A ∈ ZE∗
if and only if A = A1 + A2, with A1, A2 ∈ L(H)+, R(A1) ⊆ R(E)

and R(A2) ⊆ N (E). Also AE = EA if and only if A1E + A2E = EA1 because
EA1 = A1 and EA2 = 0, or equivalently A2E = A1(I − E). Therefore A2E = 0
and A1(I − E) = 0 because R(A1) ∩ R(A2) = {0}. Hence R(E) ⊆ N (A2) and
N (E) ⊆ N (A1). Then R(A2) ⊆ N (E) ∩R(E)⊥ and R(A1) ⊆ R(E) ∩N (E)⊥.

3 → 4: if A = A1 + A2 as in item 3 then PA = PAP = A1, PA(I − P ) = 0
and (I − P )A(I − P ) = A2, where P is the orthogonal projection onto R(E).
Therefore a = A1|R(E), b = 0 and c = A2|N (E). Also ar = A1PE(I − P )|R(E)⊥ =
A1(E − P )|R(E)⊥ = 0 because A1(E − P ) = A1E −A1P = A1 −A1 = 0; the last

equality follows from the fact that R(E)⊥ and N (E) are subsets of N (A1). The
equality rc = 0 follows in a similar way.

4 → 1: It is straightforward. �

Corollary 5.7. If E 6= E∗ then ZE ∩ZE∗
contains no (positive) invertible oper-

ator. More generally, ZE ∩ ZE∗
contains no injective A ∈ L(H)+.
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Remark 5.8. If P ∈ P then ZP = {A ∈ L(H)+ : AP = PA} = (P ′)+, i.e., the
cone of positive elements of the commutant algebra of P in L(H). Consequently,⋂

P∈P

ZP = {λI : λ ∈ <+}.

6. On the topology of Z

In order to study the topology of Z, it is useful to consider the action of GL(H)
over Z given by

L : GL(H)×Z −→ Z
L(G, (A,E)) = (GAG∗, G∗−1EG∗).

By restriction, L defines actions over ZA and ZE.

Lemma 6.1. For every A ∈ L(H)+, E ∈ Q, G ∈ GL(H) it holds

ZG∗−1AG−1 = GZAG
−1,

ZGEG−1

= G∗−1ZEG−1.

This shows that, by choosing convenient A ∈ L(H)+, E ∈ Q, one can get
information on every ZA′ , ZE′

for E ′ similar to E and A′ congruent to A, provided
that we have that type of information on ZA or ZE.

Observe that Z is a closed subset of L(H)+×Q, if we provide L(H)+×Q with
the induced topology of L(H)× L(H).

Our main concerns deal with

Z◦ = {(A,E) ∈ Z : A ∈ GL(H)+},
with the fibers

Z◦A = {E ∈ Q : (A,E) ∈ Z◦} = ZA

and
(Z◦)E = {A ∈ GL(H)+ : (A,E) ∈ Z◦},

for A ∈ GL(H)+ and E ∈ Q.

Proposition 6.2. The mapping

φ : Z◦ −→ GL(H)+ × P

(A,E) −→ (A,A1/2EA−1/2)

is a homeomorphism with inverse

ψ : GL(H)+ × P −→ Z◦

(A,P ) −→ (A,A−1/2EA1/2).

Proof. It suffices to compute φ ◦ ψ and ψ ◦ φ. �

Consider the map
α : GL(H)+ ×Q −→ Q
α(A,E) = A1/2EA−1/2.
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Proposition 6.3.

α−1(P) = Z◦.

Proof. Suppose that (A,E) ∈ α−1(P). Then α(A,E) = P ∈ P ; this is equivalent
to A1/2EA−1/2 = A−1/2E∗A1/2. Therefore AE = E∗A so that (A,E) ∈ Z◦. This
shows that α−1(P) ⊆ Z◦. Conversely, if (A,E) ∈ Z◦ it has been shown that the
projection A1/2EA−1/2 is selfadjoint, or equivalently, α(A,E) ∈ Z◦. This proves
the other inclusion. �

Denote again α = α|Z◦ .

Corollary 6.4. The map α : Z◦ −→ P, α(A,E) = A1/2EA−1/2 = PR(A1/2E) is
continuous.

Proposition 6.5. For A ∈ GL(H)+, consider the map αA = α|ZA

αA : ZA −→ P

αA(E) = A1/2EA−1/2

is a homeomorphism, with inverse α−1
A (P ) = A−1/2PA1/2.

Corollary 6.6. There is a natural bijection between the sets of connected com-
ponents of Z◦ and P.

Proof. In fact, Z◦ is homeomorphic to GL(H)+×P and GL(H)+ is contractible,
by Kuiper’s theorem [15]. Thus, Z◦ has the homotopy type of P . In particular,
φ induces a bijection between the set of connected components of Z◦ and that of
P . �

We extend the map α : Z◦ −→ P to Z, but we are obliged to loose the
continuity. The reason behind this lost is the fact that inversion can not be
extended with continuity from GL(H).

Proposition 6.7. Let (A,E) ∈ Z. Then P = A1/2†E∗A1/2 is well defined and

P ∈ P. Moreover, P = PM, where M = R(A1/2E).

Proof. If (A,E) ∈ Z then, by Lemma 4.2, PAE ∈ ZA and R(PAE) ⊆ R(A). In
this case, applying Proposition 3.4 of [7], PM(R(A1/2)) ⊆ R(A1/2) and PAE =

A1/2†PMA
1/2, where M = R(A1/2E). Notice that the Moore–Penrose inverse

of A is not necessarily bounded and its domain is the (dense) set R(A1/2) ⊕
N (A). Therefore, A1/2E = A1/2PAE = PMA

1/2, or E∗A1/2 = A1/2PM. Hence,

A1/2†E∗A1/2 = PAPM = PM. �

In view of Proposition 6.7, we can extend α to Z, in the following way:

α̃ : Z −→ P , α̃(A,E) = A1/2†E∗A1/2 = PR(A1/2E)
,

where (A,E) ∈ Z. However, α̃ is no longer continuous.
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Proposition 6.8. For A ∈ L(H)+ consider α̃A : ZA −→ P, α̃A(E) = α̃(A,E) =

PR(A1/2E)
. Then α̃A(ZA) = {P ∈ PA : R(P ) ⊆ R(A)}. In particular, if A has

closed range then α̃A(ZA) = {P ∈ P : R(P ) ⊆ R(A)}.

For a fixed (I, P ) ∈ Z◦ define the map

π : GL(H) −→ Z◦, π(G) = L(G, (I, P )) = (GG∗, G∗−1PG∗).

Given (A,E) ∈ Z◦, the orbit of (A,E) given by the action L is the set

O(A,E) = {(B,R) ∈ Z◦ : (B,R) = LG((A,Q)) for G ∈ GL(H)}.

Observe that O(A,E) = O(I,E0), where E0 = A1/2EA−1/2 ∈ P. If U(H) denotes
the subgroup of GL(H) of unitary operators, then:

Proposition 6.9. Given (A,E) ∈ Z◦ and P ∈ P, then (A,E) ∈ O(I,P ) if and

only if E0 := A1/2EA−1/2 ∈ UP := {UPU∗ : U ∈ U(H)}.

Proof. Given (A,E) ∈ Z◦ and P ∈ P , suppose that (A,E) ∈ O(I,P ); then, there

exists G ∈ GL(H) such that A = GG∗ and E = G∗−1PG∗; or, equivalently,
A1/2 = |G∗|, so that G = A1/2U , with U ∈ U(H). Then, E = A−1/2UPU∗A1/2,
or, E0 = A1/2EA−1/2 = UPU∗. Therefore, E0 ∈ UP .

Conversely, if E0 ∈ UP then there exists U ∈ U(H) such that E0 = UPU∗,
or equivalently, A1/2EA−1/2 = UPU∗, so that E = A−1/2UPU∗A1/2. Taking
G = A1/2U , then GG∗ = A and E = G∗−1PG∗. Hence, (A,E) ∈ O(I,P ). �

Corollary 6.10. Given (A,E) ∈ Z◦ and P ∈ P, then (A,E) ∈ O(I,P ) if and
only if dimR(E) = dimR(P ) and dimN (E) = dimN (P ), or equivalently if
E ∈ OP := {GPG−1 : G ∈ GL(H)}.

Proposition 6.11. The action L is locally transitive and the map π admits local
cross sections.

Proof. Let us see that the action L is locally transitive: given (A0, E0) ∈ Z◦,
we have to find an neighbourhood V = V(A0,E0) such that if (A,E) ∈ V then
there exists G ∈ GL(H) such that L(G, (A0, E0)) = (A,E). Suppose that such
G exists. Then G verifies that

GA0G
∗ = A, and G∗−1E0G

∗ = E.

Therefore, |A1/2
0 G∗| = A1/2 so that GA

1/2
0 = A1/2U , with U unitary. Hence,

G = A1/2UA
−1/2
0 .

Then, if G∗−1E0G
∗ = E, it follows that UA

1/2
0 E0A

−1/2
0 U∗ = A1/2EA−1/2. Ob-

serve that the projections P0 = A
1/2
0 E0A

−1/2
0 and P = A1/2EA−1/2 are selfadjoint

because (A0, E0), (A,E) ∈ Z◦.
If the pairs (A0, E0), (A,E) are close enough, the projections P and P0 verify

that ‖P − P0‖ < 1, because of the continuity of the functions involved and the
fact that E0 and E can be taken as close as necessary. Therefore it is possible
to find an unitary operator U such that P = UP0U

∗: in fact C = I − (P − P0)
2
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provides a positive invertible operator such that the operator U = PC−1/2P0 +
(I − P )C−1/2(I − P0) is unitary and and UP0U

∗ = P , see [14].
Using that L is locally transitive it is easy to see that π has local cross sec-

tions: in fact, if s : U −→ GL(H), s((A,E)) = A(EA−1/2C−1/2P + (I −
E)A−1/2C−1/2(I−P )), with C = I−(A1/2EA−1/2−P )2 and U is a neighbourhood
of P , given as before, then π(s((A,E)) = (A,E), for all (A,E) ∈ U . To obtain a
local cross section for another point of Z◦ consider (A0, E0) ∈ O(I,P ). Then, there
exists G ∈ GL(H) such that LG(I, P ) = (A0, E0). Therefore, s̃ = lG ◦ s ◦ LG−1 is
a local section in the neighborhood GU of (A0, E0). �

Proposition 6.12. Let (A,E), (A′, E ′) ∈ Z. Then (A,E), (A′, E ′) belong to the
same arc component if and only if E and E ′ belong to the same arc component.

Proof. Suppose that E and E ′ belong to the same arc component. Then there
exists a continuous curve of projections γ : [0, 1] −→ Q such that γ(0) = E
and γ(1) = E ′. Consider the curve β(t) = γ(t)∗γ(t) + (I − γ(t)∗)(I − γ(t)).
Then β(t) ⊆ GL(H)+ and β(t)γ(t) = γ(t)∗β(t), for every t ∈ [0, 1]. Therefore
the curve (β(t), γ(t)) connects the pairs (β(0), E) and (β(1), E ′) in Z. But the
positive operators β(0) and A belong to ZE, which is a convex set. Then the
segment tβ(0) + (1 − t)A, for 0 ≤ t ≤ 1, of positive operators joining them is
included in ZE. Therefore the curve (tβ(0) + (1 − t)A,E) joins (β(0), E) with
(A,E) in Z. In a similar way, the point (β(1), E ′) are (A′, E ′) are arc connected
in Z. This shows that (A,E), (A′, E ′) are arc connected in Z.

The converse is straightforward. �

Remark 6.13. Observe that, for every (A,E) ∈ Z◦ the fibres ZA,ZE are homoge-
neous spaces: in the first case the unitary group acts on P by similarity and, in
the second, the product group GL(R(E∗))×GL(N (E∗)) acts on ZE by restric-
tion of the map L defined above. See [3] for details on the geometric structure of
positive operators on a Hilbert space. See also [9].
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Instituto Argentino de Matemática - CONICET, Saavedra 15, Buenos Aires
(1083), Argentina.

E-mail address: gcorach@fi.uba.ar
E-mail address: amaestri@fi.uba.ar


	1. Introduction
	2. Compatible pairs
	3. Z as a set
	4. The set ZA
	5. The set ZE
	6. On the topology of Z
	References

