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ABSTRACT. The zero-dilation index d(A) of an n-by-n complex matrix A is
the maximum size of the zero matrix which can be dilated to A. In this paper,
we determine the value of this index for the KMS matrix

[0 a a2 - a7l
0 a
Jn(a) = a2 , acCandn>1,
. a
L O 0 u
by using the Li—Sze characterization of higher-rank numerical ranges of a finite

matrix.

1. INTRODUCTION AND PRELIMINARIES

For any n-by-n complex matrix A, let d(A) denote the maximum size of a zero
matrix which can be dilated to A, called the zero-dilation index of A. Recall that
a k-by-k matrix B is said to dilate to A if B = V*AV for some n-by-k matrix
V with V*V = I, the k-by-k identity matrix, or, equivalently, if A is unitarily

similar to a matrix of the form [ f I } . Hence the zero-dilation index of A can
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also be expressed as

d(A) = max{k > 1: A is unitarily similar to [ i’f : :|}a

where 0j, denotes the k-by-k zero matrix. The study of d(A) was initiated in [1],
in which we established its basic properties and its relations with the eigenvalues
of A, and we determined the value of d(A) when A is a normal matrix or a
weighted permutation matrix with zero diagonals. The main tool we used there
is the Li—Sze characterization of higher-rank numerical ranges of A. Recall that
for any integer k, 1 < k < n, the rank-k numerical range Ax(A) of A is the subset
{\ € C: M}, dilates to A} of the complex plane. Note that A;(A) coincides with
the classical numerical range W(A) = {(Ax,z) : z € C",||z|| = 1} of A, where
(-,-) and || - || are the standard inner product and its associated norm in C". Li
and Sze gave in [9, Theorem 2.2] a specific description of Ax(A), namely,

Ar(A) = (YA € C:Re(e 7)) < Mp(Re (e 7 A))},

0eR

where, for a complex number z and a matrix B, Rez = (2 +%)/2 and Re B =
(B + B*)/2 are their real parts, and, for an n-by-n Hermitian matrix C, \;(C) >

- > A\ (C) denote its eigenvalues in decreasing order. In particular, it follows
that

d(A) = min{iso(Re (e7?A)) : § € R} (1.1)

for any matrix A, where isq(Re (e7*A)) denotes the number of nonnegative eigen-
values of Re (e ®A) (cf. [1, Theorem 2.2]).
The purpose of this paper is to compute d(A) when A is the KMS matriz

[0 a d? a” ]
a
Jp(a) = oo q2 |, aeCandn > 1.
o
The study of the numerical range of J,(a) was started by Gaaya in [I, 2] and
continued by the present authors in [5]. As a meeting ground of the classes of

nilpotent, Toeplitz, nonnegative, S,- and S, !-matrices, J,(a) has diverse and
interesting properties concerning its numerical range. The present paper is a
further exploration of such properties. In Section 2 below, we show that

n if a =0,
d(Jp(a)) =14 k if @ # 0 and cos 175 < |a| < cos ==~ (k 1)” 1 <E<[Z],
1 if la] > 1
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for any n > 2. This is proven via, in addition to the Li—Sze result, the congruence
of Re (e7%J,(a)) and the n-by-n matrix

[ —2lal cos @ 1
1 —2|alcos® 1

H,(a,0) = 1 ,

—2lalcosf 1
1 0

a € Cand 6 € R.

Here H,(a, ) is understood to be the 1-by-1 zero matrix. In the end of Section 2,
we carry over the result for J,(a) to that for the classes of S,- and S, !-matrices
with one single eigenvalue.

In the following, we use diag (ai, ..., a,) to denote the n-by-n diagonal matrix
with diagonals aq, ..., a,. For a subset K of C", \/ K denotes the subspace of C"
generated by vectors in K. If t is a real number, then |¢] (resp., [t]) denotes the
largest (resp., smallest) integer less than (resp., greater than) or equal to ¢. Our
reference for general properties of numerical ranges of matrices is [, Chapter 1].

2. MAIN RESULT
The main result of this paper is the following theorem.
Theorem 2.1. For a in C and n > 2, we have
A(Ju()) = iso(Re Jn(a))
if a =0,
if a#0 and cos 2% < |a] < COS%,
if |a| > 1.

n
1

This will be proven after the next two lemmas, the first of which gives the
congruence of Re (e~ J,(a)) and H,(a, ) for any real . Recall that two n-by-n
matrices A and B are congruent if X AX* = B for some invertible matrix X. By
Sylvester’s law of inertia [7, Theorem 4.5.8], two Hermitian matrices A and B
are congruent if and only if they have the same numbers of positive, negative and
zero eigenvalues. Thus, for congruent A and B, we have d(A) = d(B) by (1.1).

Lemma 2.2. If a # 0 in C and n > 2, then Re (e "?.J,(a)) is congruent to
H,(a,0) for any real 6.

Proof. Since J,(a) and J,(|a|) are unitarily similar by [5, Proposition 2.1 (a)], we

may assume that a > 0. Let A =Re (e *J,(a)), E; = I;_1 & [ (1) 71a ] @ Ih—j1
fori1<j<n-—1,and F=E,_1--- ExyF;. Then
[ —2a%cos @ e ¥q ]
e'a —2a’cosf e Pq
FAFE® = — efq
—2a’cosf e ¥q
| e?a 0 |
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If W = \/2/a diag (1,e7?,e729 ... 719 then WEAE*W* = H,(a,0),

which shows the congruence of Re (e=*.J,(a)) and H,(a,0). O
Forn > 1, let
01
In = 0
1
0

denote the n-by-n Jordan block. It is known that the eigenvalues of Re J, are
cos(jm/(n+ 1)), 1 < j < n (cf. [6, p. 373]). The next lemma relates the two
Hermitian matrices H,(a,f) and Re J,,_o.

Lemma 2.3. For any complez a, integer n > 3 and real 8, the following hold:

(a) det H,(a,0) = —2"2det((Re J,_2) — (|a| cos 0)1, ),

(b) 0 is an eigenvalue of Hy(a, ) if and only if |a| cos @ = cos(jm/(n—1)) for
some j, 1 <j3<n—2,

(C) izo(Hn(a, 0)) = izo((Re Jn_g) - (|CL| COS Q)In_g) + ]_, and

(d) izo(Hn(a,01>> S iZO(Hn(CL,HQ)) fO?" 0 S 91 S 02 S .

Proof. For convenience, let A = H,(a,0) and B,, = 2((Re J,,) — (|a| cos0)1,,).
(a) To evaluate det A, we expand it by minors on the last row of A and then
on the last column of the resulting (n — 1)-by-(n — 1) submatrix to obtain

det A= —det B,_o = —2"?det((Re J,_2) — (|a] cos )1, ).

(b) This follows from (a) and the remark before the statement of this lemma.

(c) Note that A is cyclic in the sense that there is a vector z = [1 0... 0]7 in C"
such that z, Ax, ..., A" 'z generate C". Hence C" = \/{z, (A — A\[,,))z,..., (A —
AI,)"x} for any complex \. If A is an eigenvalue of A, then the range of A—\I,
is not equal to C™ and thus, from above, x is not in this range. In this case, we
deduce that rank (A — A\[,,) =n — 1 or dimker(A — AI,,) = 1. In particular, this
shows that the eigenvalues of A are all distinct. Let oy > a9 > -+ > «,, and
(1 > P > -+ > (B, 2 be the eigenvalues of A and B,,_5, respectively. Since B,,_»
is a principal submatrix of A, the interlacing property for their eigenvalues |7,
Theorem 4.3.8] yields that o; > ; for all j, 1 < j <n—2. If a;, = 3, for some
Jo, then apply the interlacing property for A, B,,_; and B,,_, to infer that 3, is
also an eigenvalue of B, ;. This is impossible since the eigenvalues of B, _; and
B, are 2(cos(jm/n)—|a|cosf), 1 < j <n—1, and 2(cos(kn/(n—1))—|a| cos ),
1 <k < n—2, respectively, which are distinct from each other. Thus «; > 3; for
all 7, 1 <j <n—2. Similarly, we have o; < 3;_5 for 3 < j <n.

Let k = i>9(Bn—2). If |a| cos is an eigenvalue of Re J,,_o, then 0 is an eigen-
value of B,_5 and of A by (b). From [;_1 > 0, 8x = 0 and (k1 < 0, we deduce
that o, > O = 0, agr1 = 0 and agyo < fr = 0. Therefore, iso(A) = kK + 1
in this case. On the other hand, if |a|cosf is not an eigenvalue of Re J, o,
then the o;’s and (;’s are all nonzero. From the preceding paragraph, we have

ap > B, > 0 and agyz < Bria < 0. Since [[7_ o) = —on—2 H;:f 5 by (a), we
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deduce that ajiopi2 < 0 and hence a1 > 0 > agyo. In this case, we again
have i>o(A) =k + 1.
(d) This is an easy consequence of (c). O

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Assume that a # 0. If n = 2, then a simple computa-
tion shows that the eigenvalues of Re (e™%Jy(a)) are +|a|/2, and thus d(A) =
i>o(Re Jo(a)) =1 by (1.1). For the remaining part of the proof, we assume that
n > 3. Then a combination of (1.1) and Lemmas 2.2 and 2.3 (d) yields that
d(J,(a)) = min{iso(Re (e J,(a))): 0 € R}

= min{i>o(Hy(a,0)): 60 € R}

= ix0(Hn(a,0))

= izo(Re Jn(CZ))

Since (Re J,,—2) — |a|l,,—2 has eigenvalues cos(jn/(n —1)) —|a|, 1 <j <n—2,if
cos(km/(n—1)) < |a| < cos((k —1)m/(n — 1)) for some k, 1 < k < |n/2], then
d(Ju(a)) = izo(Hn(a,0)) =izo((Re Ju-2) — lalln—2) +1

(k—=1)+1=k

by Lemma 2.3 (c¢). Similarly, if |a| > 1, then d(J,(a)) = 1. O

The KMS matrices are closely related to those S,- and S, !-matrices with one
single eigenvalue. Recall that an n-by-n matrix A is said to be of class S, if it is
a contraction, that is, || A]| = max,|=1 [|Az| < 1, all its eigenvalues have moduli
less than 1, and rank (I, — A*A) = 1. It is of class S, ! if all its eigenvalues have
moduli greater than 1 and rank (/,, — A*A) = 1. These two classes of matrices

were first studied in [10] and [3], respectively. They are related to KMS matrices
via affine functions: if 0 < |a|] < 1 (resp., |a| > 1), then ((1 — |a|*)/a)J,(a) —al,
is of class S, (resp., of class S;') with the single eigenvalue —a (cf. [5, Lemma

2.4]). Thus Theorem 2.1 may be transferred to one for S,- and S, !-matrices.

Corollary 2.4. If A is an S,-matriz (resp., S, '-matriz) with the single eigen-
value A, then d(A — A1) =k for cos(km/(n — 1)) < || < cos((k — 1)7/(n — 1)),
1<k < |n/2| (resp., d(A—\,) =1).

We remark that, in the preceding corollary, d(A—\I,,) = 1 for A an S, -matrix
can also be proven by the result in [3]. Indeed, let A = |\|e?, where 0 < 6 < 27,
and let A\; > Xy > --- > ), be the eigenvalues of Re (e7*A). Since \ is in W (A),
we have A; > |A| > 1. On the other hand, by [3, Lemma 2.9 (1)], we also have
A2 < 1. Thus the eigenvalues \; — [\, 1 < j < n, of Re (e7(A — A\I,)) are such
that A\; — |A| > 0 and Ay — |A| < Ay — 1 < 0. Therefore, d(A — A\I,) =1 by (1.1).
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