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On the annihilators of formal local cohomology modules
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Abstract. Let a denote an ideal in a commutative Noetherian local ring (R, m) and
M a non-zero finitely generated R-module of dimension d. Let d := dim(M/aM).
In this paper we calculate the annihilator of the top formal local cohomology module
&"j(M) In fact, we prove that AnnR(&"i(M)) = Anng(M/Ugr(a, M)), where

Ur(a, M) :=U{N : N < M and dim(N/aN) < dim(M/aM)}.
We give a description of Ur(a, M) and we will show that
Anng (35 (M)) = Anng(M/ Np;eAsshpMv(a) Vi),

where 0 = (1_; N; denotes a reduced primary decomposition of the zero submodule

J
0 in M and Nj; is a p;-primary submodule of M, for all j =1,...,n.

Also, we determine the radical of the annihilator of Si(M) We will prove that

\/Anng(§¢(M)) = Anng(M/Ggr(a, M)),

where Gr(a, M) denotes the largest submodule of M such that Asshr(M) N V(a) C
Assp(M/GRr(a, M)) and Asshr(M) denotes the set {p € AssM : dim R/p = dim M }.
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Introduction

Throughout this paper, R is a commutative Noetherian ring with iden-

tity, a is an ideal of R and M is a non-zero finitely generated R-module.
Recall that the i-th local cohomology module of M with respect to a is
defined as

H (M) := lim ExtR(R/a", M).

n>1

For basic facts about commutative algebra see [7] and [11]; for local coho-

mology refer to [6].
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Let a be an ideal of a commutative Noetherian local ring (R, m) and
M a non-zero finitely generated R-module. For each i > 0; FL(M) =
im H, (M /a"M) is called the i-th formal local cohomology of M with re-

sgect to a. The basic properties of formal local cohomology modules are
found in [1], [5], [9], [12] and [14].

In [14] Schenzel investigated the structure of formal local cohomol-
ogy modules and gave the upper and lower vanishing and non-vanishing
to these modules. In particular, he proved that Sup{i € Z : (M) # 0} =
dim(M/aM). Thus oM (A1) # 0 if and only if dim(M/aM) = dim M
(cf. [14, 4.5]).

For an R-module M and an ideal a, the cohomological dimension of M
with respect to a is defined as cd(a, M) := max{i € Z : H,(M) # 0}. For
more details see [8]. For any ideal a of R, the radical of a, denoted by +/a,
is defined to be the set {x € R : 2™ € a for some n € N}.

A non-zero R-module M is called secondary if its multiplication map
by any element a of R is either surjective or nilpotent. A secondary rep-
resentation for an R-module M is an expression for M as a finite sum of
secondary modules. If such a representation exists, we will say that M is
representable. A prime ideal p of R is said to be an attached prime of M
if p = (N :g M) for some submodule N of M. If M admits a reduced
secondary representation, M = S; + Ss +--- + .5, then the set of attached
primes Attr(M) of M is equal to {/0:g S; : i =1,...,n} (see [10]).

Recall that Asshr (M) denotes the set {p € Ass M : dim R/p = dim M }.
It is well known that Attp FI™M (M) = {p € Asshr(M) : p D a} (cf. [5,
Theorem 3.1]).

There are many results about annihilators of local cohomology modules.
For example see [2], [3] and [4]. The following theorem is a main result of
[2] about the annihilators of the top local cohomology modules.

Theorem 1.1 ([2, Theorem 2.3])  Let R be a Noetherian ring and a an ideal
of R. Let M be a non-zero finitely generated R-module such that cd(a, M) =
dim M. Then Anng HI™M (M) = Anng(M/Tg(a, M)), where

Tr(a,M):=U{N : N <M and cd(a, N) < cd(a, M)}.

Note that, for a local ring (R, m), we have cd(m, M) = dim M (cf. [§]).
Thus
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Tr(m,M):=U{N: N <M and dim N < dim M},

which is the largest submodule of M such that dim(Tr(m, M)) < dim(M).

Here, by using the above main result, we obtain some results about
annihilators of top formal local cohomology modules. In Section 2, at first
we define a new notation Ug(a, M) and we prove the following Theorem
which is a main result of this paper.

Theorem 1.2  Let a be an ideal of a local ring (R,m) and M a finitely
generated R-module of dimension d such that F¢(M) # 0. Then

Anng §4(M) = Anng M/Ug(a, M),

where Ug(a, M) := U{N : N < M and dim(N/aN) < dim(M/aM)}.

In Section 3, we obtain the radical of the annihilator of top formal local
cohomology module ™M (M), For this we define notation G g(a, M) and
we obtain the following main result.

Theorem 1.3 Let a be an ideal of a local ring (R,m) and M a finitely
generated R-module of dimension d such that F¢(M) # 0. Then

Anng F4M) = Anng M/Gg(a, M),

where Gr(a, M) denotes the largest submodule of M such that Asshr(M)N
V(a) C Assp(M/Gr(a, M)).

2. Annihilators of the top formal local cohomology modules

Let a be an ideal of a local ring (R,m) and M a finitely generated
R-module of dimension d such that dim(M/aM) = d. In this section, we
will calculate the annihilator of the formal local cohomology module F¢(M).
Note that the assumption dim(M/aM) = d implies that F¢(M) # 0 by (cf.
14, 4.5)).

Definition 2.1 Let a be an ideal of R and M be a non-zero finitely
generated R-module. We denote by Ug(a, M) the largest submodule of M
such that dim(Ug(a, M)/aUg(a, M)) < dim(M/aM). One can check that

Ur(a,M):=U{N: N < M and dim(N/aN) < dim(M/aM)}.
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The following lemma is needed in this section.

Lemma 2.2 Let (R,m) be a local ring and a an ideal of R. Let M be a
finitely generated R-module of finite dimension d such that dim(M /aM) = d.
Then

i) M/Ug(a, M) has no non-zero submodule of dimension less than d;
ii) Assp(M/Ug(a, M)) = Attr Fq(M);
iii) Assgr Ur(a, M) = Assg M — Attr §4(M);

) FUM) = F4(M/Ur(a, M)) = H;, (M/U(a, M)).

v

Proof. Let U :=Ug(a,M).

i) Suppose that L is a submodule of M such that U C L C M and
dim(L/U) < d. We will show that U = L. By [14, Theorem 1.1] and [14,
Theorem 3.11], the short exact sequence

0—-U—=L—L/U—0

induces an exact sequence
= FHU) = FUL) = FUL/U) — 0.

Since dim(L/U) < d we have §¢(L/U) = 0. On the other hand, by
Definition 2.1 dim(U/aU) < d and so ¢(U) = 0. Thus the above long exact
sequence implies that F¢(L) = 0. Hence dim(L/aL) < d. Since U C L, it
follows from the maximality of U that U = L.

ii) The short exact sequence

0—-U—->M-—>M/U—-0

induces an exact sequence
s FUU) = FYM) = FUM/U) — 0.

Since dim(U/aU) < d, by definition 2.1 we have F¢(U) = 0. So by using the
above long exact sequence we conclude that F¢(M) = §4(M/U). Therefore
Attr M) = Attr FE(M/U) C Ass M/U by [5, Theorem 3.1].

Now we show that Ass M/U C Attgr §4(M) = Attr F4(M/U). Note
that by (i) dim M/U = d and by [5, Theorem 3.1] Attr §4(M/U) = {p €
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Assp M/U : dim R/p = d and p D a}.

If p € AssM/U then there exists a submodule K of M such that
UCK < MandR/p~K/US< M/U. By (i) dimR/p = d and so it
suffices to show that a C p. If not, dimR/(a + p) < dim R/p = d. Thus
dim((K/U)/a(K/U)) = dim((R/p)/a(R/p)) = dim(R/(a + p)) < d. Hence
F4(K/U) = 0. But the exact sequence

0—-U—K—K/U—0
induces an exact sequence
= FUU) = FUK) — FUK/U) — 0.

Since F¢(U) = F4(K/U) = 0 by the above long exact sequence we have
F4(K) = 0. Thus dim(K/aK) < d. But U € K and so from the maximality
of U we get a contradiction. Therefore a C p and the proof is complete.

iii) Let p € AssgU. Then there exists a submodule L of U such that
R/p ~ L <U. Thus

dim R/(a + p) = dim((R/p)/a(R/p)) < dim(U/aU) < dim(M/aM) = d.

Now, if p € Attg F4(M) then a C p and dim R/p = d. Hence dim R/(a+p) =
d which is a contradiction. Therefore Assg U C Assg M — Attr F¢(M). On
the other hand,

Assp M — AttRS"j(M) C Assp M C Assgp U U Assg M/U.

But by (ii) Assg M/U = AttrF4(M). Thus Assp M — Attp (M) C
Assg U. Therefore Assgp M — Attg §4(M) = Assg U.

iv) Since Attg §¢(M) C V(a), it follows that Ass(M/U) C V(a) by (ii).
Thus a € Nyeass(vyvyp = +/(0: (M/U)). This yields that M/U is an a-
torsion R-module. Hence by [5, Lemma 2.1], (M /U) = H% (M/U). But
in the proof of (ii) we saw that F¢(M/U) = F¢(M). Therefore F4(M) =
HY (M/U). O

Now we can prove the following main result.

Theorem 2.3 Let a be an ideal of a local ring (R,m) and M a finitely
generated R-module of dimension d such that dim(M/aM) = d. Then
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Anng §4(M) = Anng M/Ug(a, M).

Proof. Let U := Ug(a,M). By Lemma 2.2 (iv), §4(M) = HL(M/U).
Thus Anng(§%(M)) = Anng(H% (M/U)). But by Theorem 1.1 we have

Annp(Hg, (M/U)) = Anng((M/U)/Tr(m, M/U)).
Since Tr(m, M/U) = 0 by Lemma 2.2 (i), we conclude that
Anng 34(M) = Anng(HE (M /U)) = Anng M/Ug(a, M),

as required. O

Proposition 2.4  Let a be an ideal of a local ring (R,m) and M a finitely
generated R-module of dimension d such that dim(M/aM) = d. Then

V(Anng §4(M)) = Suppg(M/Ugr(a, M)).
Proof. By Theorem 2.3,
V(Anng 34(M)) = V(Anng M/Ug(a, M)) = Suppg(M/Ug(a, M)),

as required. O

Theorem 2.5 Let a be an ideal of a complete local ring (R, m) and M
a finitely generated R-module of dimension d such that dim(M/aM) = d.
Then

AttR 3g(M) = Min SuppR(M/UR(a7 M)) = ASSR M/UR(a’ M)

Proof. By [13, Theorem 2.11 (ii)] Attg §¢(M) = Min V(Anng F¢(M)).

Now the result follows by Proposition 2.4 and Lemma 2.2 (ii). O
The next Theorem gives us a description of Ug(a, M).

Theorem 2.6 Let a be an ideal of a local ring (R,m) and M a finitely

generated R-module of dimension d such that dim(M/aM) = d. Then

UR(C(, M) = mijAsshR MﬁV(u)Nja
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where 0 = ﬂ?zl N; denotes a reduced primary decomposition of the zero
submodule 0 in M and N; is a pj-primary submodule of M, for all j =
1,...,n.

Proof.  Set N := Ny cAsshp MV (a)Nj- At first we show that dim(N/alV) <
d. By [14, Lemma 2.7] Assg M/N = Asshg M N V(a) and Assg N =
Assp M — Asshgp M NV (a). If dim N/aN = d then there exists a prime ideal
p € Suppy N N'V(a) such that dim R/p = d. Thus p € Asshg M N'V(a) and
so p ¢ Assg N. Since p € Suppp N and dim R/p = d we have p € Assg N
which is a contradiction. Therefore dim(/N/aN) < d and so N C Ug(a, M)
by Definition 2.1.

Now we prove the reverse inclusion. To do this, suppose that there exists
xz € U such that ¢ N. Thus there exists an integer ¢ € {1,...,n} such
that x ¢ Ny and p; € Asshg M NV (a). On the other hand, there exists an
integer k such that (v/Anng Rz)*z = 0. Thus (v/Anng Rz)*z C N;. Since
x ¢ Ny and Ny is a ps-primary submodule, it follows that Npcassy Rap =
VAnng Rx C p;. Thus there exists a prime ideal p € Assgp Rx C AsspU
such that p C p;. Then, as p € Assg M and dim R/p; = dim M it follows
that p = p;. Hence p € Asshp M NV (a) = Att F¢(M). Now Lemma 2.2 (iii)
implies that p ¢ Assg U which is a contradiction, because of p € Assg Rx C
Assgr U. This completes the proof. O

Corollary 2.7 Let a be an ideal of a local ring (R,m) and M a finitely
generated R-module of dimension d such that dim(M/aM) = d. Then
Anng(FLM)) = Anng(M/ Np, eAsshr MAV(a) V)

where 0 = ﬂ?zl N; denotes a reduced primary decomposition of the zero
submodule 0 in M and N; is a pj-primary submodule of M, for all j =
1,...,n.

Proof. The result follows from Theorems 2.3 and 2.6. (]
3. The radical of the annihilators of the top formal local coho-
mology modules

Let a be an ideal of a local ring (R, m) and M a finitely generated R-
module of dimension d such that dim(M/aM) = d. The aim of this section
will be to determine the radical of Anng(F¢(M)).
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Definition 3.1 Let M be a non-zero finitely generated R-module of finite
dimension. We denote by Gr(a, M) the largest submodule of M such that
Asshr(M)NV(a) C Assg(M/Ggr(a, M)).

Lemma 3.2 Let (R,m) be a local ring and a an ideal of R. Let M be a
finitely generated R-module of finite dimension d such that dim(M /aM) = d.
Then dim(M/Gg(a, M)) = d.

Proof.  Since dim(M/aM) = d we have (M) # 0. Thus Attp(F4(M)) =
Asshp M N V(a) # ¢.

Let p € AsshgM N V(a). Then p € Assg(M/Gr(a,M)).
Thus Suppr(R/p) € Suppr(M/Ggr(a,M)) and so d = dim(R/p) <
dim(M/GRr(a,M)). On the other hand, dim(M/Gr(a, M)) < dim M = d.
Therefore d = dim(M/Ggr(a, M)), as required. O

Lemma 3.3 Let a be an ideal of a local ring (R,m) and M a finitely
generated R-module of dimension d such that dim(M/aM) = d. Then

UR(G,M/GR(G,M)) = 0.

Proof. Let G := Gpg(a,M). Tt suffices to show that for any non-zero
submodule L/G of M/G we have dim((L/G)/a(L/G)) = dim((M/G)/
a(M/G)). It is easy to see that Asshr(M) N V(a) C Assp(M/G) C
Assp L/GUAssg M/L. If Asshr(M)NV(a) C Assg(M/L) then since G C L
from the maximality of G we get a contradiction. Thus there exists a prime
ideal p € Asshr(M) N V(a) such that p € Assp L/G. Hence
dim((R/p)/a(R/p) < dim((L/G)/a(L/G)) < dim((M/G)/a(M/G))

< dim(M/aM).

Since p € Asshr M, dim(R/p)=d. Also, p€V(a) and so dim((R/p)/a(R/p)
= dim(R/p) = d. Tt follows that

d < dim((L/G)/a(L/G)) < dim((M/G)/a(M/G)) < d.

Therefore dim((L/G)/a(L/G)) = dim((M/G)/a(M/QG)), as required. O

Lemma 3.4 Let a be an ideal of a local ring (R,m) and M a finitely
generated R-module of dimension d such that dim(M /aM) = d. Then
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Attr FU(M) = Attr F(M/Gr(a, M)).

Proof. Let G := Gpgr(a,M). By definition 3.1 Asshg M N V(a) C
Assg(M/G). Thus, by using Lemma 3.2 we conclude that

{p€Assg M : dimR/p =dim M} NV(a)

C{pecAssp M/G :dimR/p =dim M/G} NV(a)

and so Attg F4(M) C Attr §4(M/G). On the other hand, the exact se-
quence

0-G—->M—M/G—0

induces an exact sequence
= UG = FUM) = FUM/G) — 0.

Thus Attr(FL(M/G)) C Attr(F4M)).  Therefore AttrFL(M) =
Attr §¢(M/G), the proof is complete. O

Lemma 3.5 Let a be an ideal of a local ring (R,m) and M a finitely
generated R-module of dimension d such that dim(M/aM) = d. Then

\/AHI]R(M/GR(O, M)) = AHHR(M/GR(CL, M))

Proof. Let G := Ggr(a,M). Let x € \/Annr(M/G). There exists an
integer n such that ™M C G. Thus Lemma 3.4 implies that

Attr((§a(M)) = Attr((F5(M/G)) = Attr(F{(M/(z"M + G))).

Since Suppg(M /(2" M + G)) = Suppr(M/(xM + G)) by [5, Corollary 3.2]
we have Attg(F4M /(2" M + G))) = Attr(F4(M/(zM + G))). Hence

Attr(FLM)) = Attp(FLUM/ (@M + G))).
But Attg(FL(M/(zM + G))) C Assp(M/(zM + G)). Thus

Attr(§4(M)) = Asshg M N V(a) C Assp(M/(zM + G)).
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By definition of G we conclude that xM + G C G. Therefore xtM C G and
x € Anng(M/G), the proof is complete. O

The following result is the main result of this section.

Theorem 3.6 Let a be an ideal of a local ring (R,m) and M a finitely
generated R-module of dimension d such that dim(M/aM) = d. Then

Anng §4(M) = Anng M/Gg(a, M).
Proof. Let G := Ggr(a,M). By Lemma 3.4 and [6, 7.2.11] we have

VAmg F4M) = /Anng §4(M/G). But by Lemma 3.2 dim(M/G) = d
and so by Theorem 2.3 and Lemma 3.3,

Anng §4M/G) = Anng((M/G)/Ug(a, M/G)) = Anng M/G.

Now Lemma 3.5 implies that /Anngg¢(M/G) = /AmngM/G =
Anng M/G. Thus /Anng §¢(M) = Anng M /G, as required. O

Corollary 3.7 Let a be an ideal of a local ring (R,m) and M a finitely
generated R-module of dimension d such that dim(M/aM) = dim M. Then
ﬂpeAttR(gg(M))p = Anng M/GR(Cl, M)

Proof. 1t follows by [6, 7.2.11] and Theorem 3.6. O

In the next result, we obtain a necessary and sufficient condition for the
equality of the attached prime sets of the two top formal local cohomology
modules.

Proposition 3.8 Let (R,m) be a local ring and a an ideal of R. Let

M and N be two finitely generated R-modules of dimension d such that
dim(M/aM) = dim(N/aN) = d. Then

Attr §U(M) = Attr FEUN) if and only if
Suppr(M/Gr(a, M)) = Suppg(N/Gr(a, N)).

Proof. If Attp §¢(M) = Attg §¢(N) then Anng M/Ggr(a, M) = Anng N/
Gr(a, N) by Corollary 3.7 and so V(Anng(M/Ggr(a,M))) = V(Anng(N/
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Gr(a,N))). Thus Suppg(M/Gr(a, M)) = Suppr(N/Gr(a,N)).

Conversly, if Suppr(M/Gr(a,M)) = Suppr(N/Ggr(a, N)) then by [5,

Corollary 3.2] we have Attg(F¢(M/Gr(a, M))) = Attr(F4(N/Gr(a, N))).
Therefore Lemma 3.4 implies that Attr(FE(M)) = Attr(SI(N)), as re-
quired. O
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