A generalization of P. Roquette's theorems

Dedicated to Professor Yoshie Katsurada on her 60th birthday

By .Tadashige OkAda and Ryô Saitô

Introduction

Throughout this paper, we assume that every ring has an identity 1 , every module over a ring is unitary and a ring extension A / B has the same identity 1. For a commutative ring R, we consider only R-algebras which are finitely generated as R-modules. By [5], an R-algebra Λ is called left semisimple if any finitely generated left Λ-module is (Λ, R)-projective. Similarly we can define right semisimple R-algebras, and an R-algebra Λ is called semisimple if Λ is left and right semisimple. When R is indecomposable, an R-algebra Λ is called simple if (1) Λ is semisimple, (2) there exists left Λ-module ${ }_{1} E$ which is finitely generated projective completely faithful and (Λ, R)-irreducible ([12]). We call an R-algebra A a division R-algebra if Δ is semisimple and (Δ, R)-irreducible. Obviously division algebras are simple algebras.

The followings are well known. Let K be a field (a field means commutative field) and let A be a finite dimensional central simple K-algebra. Then there exists a central division K-algebra D such that $A \cong(D)_{n}(n \times n$ full matrix ring over D), and the free rank of D over $K([D: K])$ equals s^{2} where $s(\geqq 1)$ is an integer. This s is called the Schur index of A and D is called a division algebra to which A belongs.

Let Δ be a division R-algebra and Λ be a simple R-algebra. If there exists a Morita module ${ }_{1} M_{\Delta}$ ([9]), Δ is called a division R-algebra to which Λ belongs. By [12], any simple R-algebra belongs to some division R-algebra. Now, let R be a Hensel ring ([2], [10]) and Λ be a simple R-algebra. Then $\Lambda \cong(\Delta)_{n}$ where Δ is a division R-algebra to which Λ belongs. Moreover, Δ is uniquely determined up to isomorphisms and n is uniquely determiend ([12]).

The purpose of this paper is to extend some properties with respect to the Schur index concerning fields to the case of that R is a Noetherian Hensel ring.

We prove the followings.
THEOREM 2.2. Let R be a semilocal ring (not necessarily Noetherian
and has maximal ideals of finite numbers) which has no proper idempotents (i,e, R has no idempotents except 0 and 1), S be a commutative ring, a ring extension S / R be a finite Galois extension with Galois group G, and Λ be a central separable R-algebra. We put $\Gamma=\Lambda \underset{R}{\otimes} S$. Tnen, $H^{1}(G, I(\Gamma)) \xrightarrow{\boldsymbol{\delta}} H^{2}(G$, $U(S)$) is injective. Here, $U(S)$ denotes the unit group of $S, I(\Gamma)=U(\Gamma) / U(S)$, and $U(\Gamma)$ denotes the unit group of Γ.

Theorem 2.7. Let R be a Noetherian Hensel ring, S be a commutative ring and a ring extension S / R be a finite Galois extension with Galois group G such that S has no proper idempotents. Let $\left[c_{\sigma, \tau}\right] \in H^{2}(G, U(S))$, $\Lambda=(R)_{l}$ and $T=\Delta\left(c_{\sigma, r}, S, G\right)$ (crossed product). Then $\left[c_{\sigma, r}\right]$ is contained in the image of δ if and only if the Schur index of T (see definition 1.3.) divides l.

Theorem 2.2 was proved in [11], when R is a field and $\Lambda=(R)_{t}$ for an integer $t \geqq 1$. Theorem 2.7 was proved in [11], when R is a field.

The authors extend their hearty thanks to Professor Y. Miyashita for his helpful suggestion and encouragement.

§1. The Schur indexes of central separable algebras

In this section, so far as we don't especially state, let R be a Noetherian Hensel ring with unqiue maximal ideal \mathfrak{m}.

Lemma 1.1. ([6]. Theorem 4.) If Λ is a central separable R-algebra, then it is a central simple R-algebra.

Proposition 1.2. Let Λ be a central separable R-algebra, and Δ be a division R-algebra to which Λ belongs. Then Δ is free R-module and $[\Delta ; R]=s^{2}(s$ is an integer $\geqq 1)$.

Proof. Δ is a central separable R-algebra ([12]. Proposition 3.) and R is a local ring (not necessarily Noetherian). Hence Δ is a free R-module. $\Delta / \mathfrak{m} \Delta$ is a central division R / \mathfrak{m}-algebra ([12]. Theorem 8, [1]. Corollary 1.6.). $[\Delta: R]=[\Delta / \mathfrak{m} \Delta: R / \mathfrak{m}]=s^{2}$. Q.E.D.

Definition 1.3. The s which is obtaihed in Proposition 1.2 is called the Schur index of Λ.

Proposition 1.4. Let Λ be a central separable R-algebra, and Δ be a division R-algebra to which Λ belongs. Then a division R / \mathfrak{m}-algebra to which $\Lambda / \mathfrak{m} \Lambda$ belongs is $\Delta / \mathfrak{m} \Delta$, and the Schur index of Λ equals the Schur index of $\Lambda / \mathrm{m} \Lambda$.

Proof. By our assumptios, $\Lambda \cong(\Delta)_{n}$ and $\Lambda / \mathfrak{m} \Lambda \cong(\Delta / \mathrm{m} \Delta)_{n}$. Q.E.D.

When R is a field, the following Proposition 1.5, 1.6 and 1.7 are well known. By $\operatorname{Br}(R)$, we denote the Brauer group of R. When R is a Hensel ring (not necessarily Noetherian) with unique maximal ideal \mathfrak{m}, if we use the fact that $\operatorname{Br}(R) \cong \operatorname{Br}(R / \mathfrak{m})$ ([2]), these Propositions are easily proved. By [4], we denote the element of $\operatorname{Br}(R)$ represented by the central separable R-algebra Λ.

Proposition 1.5. For any $[\Lambda] \in \operatorname{Br}(R),[\Lambda]^{s}=[R]$ where s is the Schur index of Λ.

Proposition 1.6. Let e be the exponent of $[4] \in \operatorname{Br}(R)$ (that is, e is the minimal integer $n \geqq 1$ such that $[\Lambda]^{n}=[R]$), and p be a prime number such that p divides s. Then p divides e.

Proposition 1.7. Let Δ be a central separable division R-algebra, and the Schur index of $\Delta=\prod_{i=1}^{n} p_{i}^{a_{i}}$ (unique factorization to prime numbers). Then there exist central separable division R-algebras $\Delta_{1}, \cdots, \Delta_{n}$ such that $\Delta \cong \Delta_{1}$

Proof. $\Delta / \mathrm{m} \Delta$ is a central division R / m-algebra, and the Schur index of $\Delta / \mathfrak{m} \Delta=\prod_{i=1}^{n} p_{i}^{\alpha_{i}}$. Hence $\Delta / \mathfrak{m} \Delta=U_{1} \otimes \cdots \otimes \otimes_{R / \mathrm{m}} U_{n / \mathrm{m}}$ where each U_{i} is a central division R / m-algebra, and the Schur index of U_{i} equals a power of p_{i}. As R is a Hensel ring, there exists a central separable division R-algebra Δ_{i} such that $\Delta_{i} / \mathfrak{m} \Delta_{i} \cong U_{i}(i=1, \cdots, n)$ ([12]. Proposition 14, Theorem 8.).
 ([12]. Proposition 14.). The Schur index of Δ_{i} equals that of U_{i}. Q.E.D.

Proposition 1.8. Let 1 be a central separable R-algebra, and Δ and Δ^{\prime} be division R-algebras such that $\Lambda=(\Lambda)_{n}=\left(\Delta^{\prime}\right)_{n}$. Then an R-algebra isomorphism $\beta: \Delta \rightarrow \Delta^{\prime}$ (see introduction) is a restriction of an inner automorphism of Λ.

Proof. As R is a Hensel ring, β can be extended to an inner automorphism of Λ ([3]. Theorem 1.2). Hence there exists a $\lambda \in U(\Lambda)$ (the unit group of Λ such) that $\Delta^{\prime}=\lambda \Delta \lambda^{-1}$. Q.E.D.

§ 2. A generalization of P. Roquette's theorems

In this section, we state about a generalization of [11] §3.
Lemma 2.1. Let R be a commutative ring and A be an R-algebra which is flat and faithful as an R-module (not necessarily finitely generated). Let B be an R-module which is finitely generated, projective and faithful.

Then the followings are true.
(1) If S is a subset of A, then $V_{A \otimes B}(S)=V_{A}(S) \otimes_{R}^{\otimes} B$ where we can consider $A \otimes B(A, A)$-bimodule under $\left(\sum_{i} a_{i} \otimes b_{i}\right) a=\sum_{i} a_{i} a \otimes b_{i}$ and $a\left(\sum_{i} a_{i} \otimes b_{i}\right)=\sum_{i} a a_{i} \otimes b_{i}$.
(2) Moreover, let B be an R-algebra. Let S and T be subrings of A and B respectively. If $V_{A}(S)$ is a finitely generated and projective R-module, then $V_{A \otimes B}(S \otimes T)=V_{A}(S) \otimes_{R}^{\otimes} V_{B}(T)$ where $S \otimes T=$ $\left\{\sum_{i} s_{i} \otimes t_{i} \in A \underset{R}{\otimes} B \mid s_{i} \in S, t_{i} \in T\right\}$.
Here, $V_{A}(S)=\{a \in A \mid a s=$ sa for all $s \in S\}$ and $V_{A \otimes_{R}^{B}}(S \otimes T)=\left\{\sum_{i} a_{i} \otimes b_{i} \in A \otimes B \mid\right.$, $\left(\sum_{i} a_{i} \otimes b_{i}\right) x=x\left(\sum_{i} a_{i} \otimes b_{i}\right)$ for all $\left.x \in S \otimes T\right\}$.

Proof. (1) First, we prove in the case that B is a free R-module. $V_{A A B B}(S) \supset V_{A}(S) \otimes_{R} B$ is trivial. Let $\left\{b_{i} \mid i=1, \cdots, l\right\}$ be a free base of B. For any $\sum_{i=1}^{i} a_{i} \otimes b_{i} \in V_{R}^{A \otimes B}(S)\left(a_{i} \in A\right),\left(\sum a_{i} \otimes b_{i}\right) s=\sum s a_{i} \otimes b_{i}=\sum s a_{i} \otimes b_{i}=s\left(\sum a_{i} \otimes b_{i}\right)$, As $1 \otimes b_{1}, \cdots, 1 \otimes b_{i}$ are linearly independent over A in $A \otimes B, a_{i} s=s a_{i}$ for all $i=1, \cdots, l$. Hence $a_{i} \in V_{A}(S)$. In the case that B is a finitely generated, projective and faithful, there exists a finitely generated and free R-module F such that $F=B \oplus B^{\prime}$ (direct sum as an R-module).

$$
\begin{align*}
& V_{A \notin B}(S)=A \otimes_{R}^{\otimes} B \cap V_{A \otimes_{R} F}(S) \\
& =A \otimes_{R}^{\otimes} B \cap\left(V_{A}(S)_{R}^{\otimes} F\right) \\
& =A \underset{R}{\otimes} B \cap\left\{\left(V_{A}(S){\underset{R}{R}}_{\otimes}^{\otimes}\right) \oplus\left(V_{A}(S){\underset{R}{R}}_{\otimes} B^{\prime}\right)\right\} \\
& =V_{A}(S)_{R}^{\otimes} B . \\
& V_{A \otimes B}(S \otimes T)=V_{A \otimes B}(S) \cap V_{A \otimes B B}(T) \tag{2}\\
& =V_{V_{A}(S) \otimes_{R}^{B}}(T)
\end{align*}
$$

Q.E.D.

Let R be a semi local ring (not necessarily Noetherian and has maximal ideals of finite numbers) which has no proper idempotents (i.e. has no idempotents except 0 and 1), S be a commutative ring, a ring extension S / R be a finite Galois extension with Galois group G, and Λ be a central separable R-algebra. If we put $\Gamma=\Lambda \otimes S, \Gamma / \Lambda$ is a Galois extension with Galois group G ([8]). For a ring A, we denote the unit gryup of A by $U(A)$. Then we have a G-exact sequence

$$
1 \longrightarrow U(S) \longrightarrow U(\Gamma) \xrightarrow{h} I(\Gamma) \longrightarrow 1
$$

where $I(\Gamma)=U(\Gamma) / U(S)$ and h is the canonical map. From this exact sequence, we obtain an exact sequence
$\left(^{*}\right) \quad H^{1}(G, U .(S)) \longrightarrow H^{1}(G, U(\Gamma)) \longrightarrow H^{1}(G, I(\Gamma)) \xrightarrow{\delta} H^{2}(G, U(S))$

([11]. §2.).

Theorem 2.2. (cf. [11]. §3. Corollary of Proposition 3.) Under the above assumptions, δ is injective.

Proof. Let $\Delta(\Gamma, G)=\sum_{\sigma \in G} \oplus \sigma \Gamma$ and $\Delta(S, G)=\sum_{\sigma \in G} \oplus \sigma S$ be trivial crossed products. Then $\Delta(\Gamma, G)=\Lambda \underset{R}{\otimes} \Delta(S, G)$. Hence $\Delta\left(\Gamma^{\prime}, G\right)$ is a central separable R-algebra ([1]. Proposition 1.5.). When we put $\mathbb{G}=\cup_{\sigma \in G} \pi U(\Gamma) \subset U(\Delta(\Gamma, G)$, (8) is a splitting extension of $U(\Gamma)$ by G as a G-group. That is, $G U(\Gamma)=\mathbb{C}$, $G \cap U(\Gamma)=1$ and $U(\Gamma) \triangleleft \mathscr{C}$ (normal subgroup). We put $\mathscr{H}=\{\mathfrak{L} \subset(\mathscr{C} \mid \mathfrak{S}$ is a G-subgroup of $\mathbb{G}, \mathfrak{S} \cap U(\Gamma)=U(S)$ and $\mathfrak{S} U(\Gamma)=\mathscr{G}\}$. That is, each element of \mathscr{I} is an extension of $U(S)$ by G as a G-group. For \mathfrak{b} and $\mathfrak{W}^{\prime} \in \mathscr{M}$, we define $\mathfrak{W} \sim \mathfrak{S}^{\prime}$ by existence of $a \in U(\Gamma)$ such that $\mathfrak{S}^{\prime}=a^{-1} \mathfrak{W} a$. It is well known that $\mathfrak{K} \sim \mathfrak{K}^{\prime}$ implies that \mathfrak{K} and \mathfrak{g}^{\prime} are the same extension type. Then by [11] $\S 2$ Proposition 1 , the following diagram is commutative.

where f is a bijection and defined by the following way. We denote an element of \mathscr{H} / \sim containing \mathfrak{G} by [\mathfrak{k}]. When a [\mathfrak{b}] is given, for any $\sigma \in G$, we can write $\sigma=u_{\sigma} a_{\sigma}^{-1}$ where $u_{\sigma} \in \mathfrak{G}$ and $a_{\sigma} \in U\left(I^{\prime}\right)$. Put $h\left(a_{\sigma}\right)=b_{\sigma}$. Then we can find that the $\left\{b_{\theta} \mid \sigma \in G\right\}$ is a crossed homomorphism, and when we write $\left[b_{a}\right] \in H^{1}(G, I(\Gamma)), f([\mathfrak{b}])=\left[b_{o}\right] . \quad f^{-1}$ is defined by the following way. That is, when $\left[b_{\sigma}\right] \in H^{1}(G, I(\Gamma))$, pick up any $a_{o} \in h^{-1}\left(b_{\sigma}\right)=\left\{x \in U(\Gamma) \mid h(x)=b_{o}\right\}$ $\subset U(\Gamma)$, and put $\mathfrak{G}=\cup \sigma \cup_{\sigma \in \mathscr{G}} U(S) \subset \mathfrak{G}$, then $\mathfrak{E} \in \mathscr{H}$. Let $\mathfrak{E} \in \mathscr{H}$ and $u_{\sigma}=\sigma a_{o}$ $\left(\boldsymbol{\sigma} \in G\right.$ and $\left.a_{\sigma} \in U(\Gamma)\right)$, then $u_{o} u_{\mathrm{F}} \equiv u_{\sigma}: \bmod (U(S))$. Hence if we put $u_{o} u_{\mathrm{r}}=$ $u_{\sigma \cdot} c_{o, \tau}\left(c_{\sigma, \tau} \in U(S)\right)$, the set $\left\{c_{o, \tau} \mid \sigma, \tau \in G\right\}$ is a factor set, and $(\delta \circ f)([\mathfrak{F}])=\left[c_{o, \tau}\right] \in$ $H^{2}(G, U(S)) . \alpha([\mathfrak{W}])$ is the class of the same extension type as \mathfrak{K}. Let \mathfrak{W} and \mathfrak{g}^{\prime} be the same extension type, and by the above methods, let factor
sets $\left\{c_{\sigma, \tau}\right\}$ and $\left\{c_{\sigma, r}^{\prime}\right\}$ correspond to \mathfrak{S} and $\mathfrak{S}_{\mathcal{E}}^{\prime}$ respectively. Then $\left[c_{\sigma, \tau}\right]=\left[c_{\sigma, 7}^{\prime}\right] \in$ $H^{2}(G, U(S))$. That is, there exists the set $\left\{c_{\sigma} \mid \sigma \in G\right\} \subset U(S)$ such that $c_{\sigma, \tau}^{\prime}=$ $c_{\sigma, \tau} c_{\sigma}^{\tau} c_{\tau} c_{\sigma \tau}^{-1}$. Moreover $\Delta\left(c_{\sigma, \tau}, S, G\right) \xrightarrow{\Phi} \Delta\left(c_{\sigma, \tau}^{\prime}, S, G\right)\left(\sum_{\sigma \in G} v_{\sigma} s_{\sigma}{ }_{\Phi}^{\rightarrow} \sum_{\sigma \in G} v_{\sigma}^{\prime} c_{\sigma}^{-1} s_{\sigma}\right)$ is an isomorphism where $\Delta\left(c_{\sigma,-}, S, G\right)$ and $\Delta\left(c_{\sigma, \tau}^{\prime}, S, G\right)$ are crossed products, and $\left\{v_{\sigma} \mid \sigma \in G\right\}$ and $\left\{v_{\sigma}^{\prime} \mid \sigma \in G\right\}$ are free S-basis of $\Delta\left(c_{\sigma, \tau}, S, G\right)$ and $\Delta\left(c_{\sigma, \tau}^{\prime}, S, G\right)$ respectively. Then

is a commutative diagram, and $\Phi, \Phi^{\prime}, \varphi$ and ψ are R-algebra isomorphisms where $\varphi\left(\sum v_{\sigma} s_{\sigma}\right)=\sum u_{\sigma} s_{\sigma}$ and $\psi\left(\sum v_{\sigma}^{\prime} s_{s}\right)=\sum u_{\sigma}^{\prime} s_{\sigma}$. The facts that φ and ψ are isomorphisms due to the followings. $\sum_{\sigma \in G} u_{\sigma} S=\sum_{\sigma \in G} \oplus \sigma a_{\sigma} S \subset \sum_{\sigma \in G} \oplus \sigma \Gamma=\Delta(\Gamma, G)$. If $\sum u_{\sigma} s_{\sigma}=0, a_{\sigma} s_{\sigma}=0$ for all $\sigma \in G$. As $a_{\sigma} \in U(\Gamma), s_{\sigma}=0$ for all $\sigma \in G$. By φ and ϕ, we can identity $\Delta\left(c_{\sigma, \tau}, S, G\right)$ with $\sum u_{\sigma} S$ and $\Delta\left(c_{\sigma, \tau}^{\prime}, S, G\right)$ with $\sum u_{\sigma}^{\prime} S$. Then Φ^{\prime} is the restriction map of Φ on $\sum_{\sigma \in G} u_{\sigma} S$. As R is a semilocal ring and has no proper idempotents, by [3] Theorem 1.2, Φ can be extended to an inner automorphism Φ^{*} of $\Delta(\Gamma, G)$. That is, there exists a unit element $a \in U(\Delta(\Gamma, G))$ such that $\Phi^{*}(x)=a^{-1} x a$ for all $x \in \Delta(\Gamma, G)$.

By the definition of Φ, Φ fixes all elements of S. Hence $a \in V_{\Delta(\Gamma, G)}(S)$. On the other hand, $\Gamma=V_{\Delta(\Gamma, \boldsymbol{\theta})}\left(V_{\Delta\left(\Gamma^{\prime}, \boldsymbol{\theta}\right)}(\Gamma)\right)=V_{\Delta(\Gamma, \boldsymbol{\theta})}(S) \ni a$. Because, by [7] Theorem 2,

$$
\begin{aligned}
& \Gamma=V_{\Delta(\Gamma, G)}\left(V_{\Delta(\Gamma, G)}(\Gamma)\right), \quad \text { and } \\
& \begin{aligned}
V_{\Delta(\Gamma, \boldsymbol{G})}(\Gamma) & =V_{\substack{\Lambda \Delta(S, G)}}\left(\Lambda \otimes_{R} S\right) \\
& =R \bigotimes_{R} V_{\Delta(S, G)}(S) \\
& =S \quad \text { (by LEMMA 2.1.). }
\end{aligned}
\end{aligned}
$$

As $\mathfrak{K}=\bigcup_{\sigma \in G} u_{\sigma} U(S)$ and $\mathfrak{S}^{\prime}=\bigcup_{\sigma \in G} u_{\sigma}^{\prime} U(S), \mathfrak{N}^{\prime}=a^{-1} \mathfrak{S} a$. That is, \mathfrak{S} and \mathscr{S}^{\prime} are con-
jugate under an element of $U(\Gamma)$. Hence our Theorem follows from [11] $\S 2$ Corollary of Proposition 1: Q.E.D.

Corollary 2.3. Under the same assumptions as in Theorem 2.2, we obtain $H^{1}(G, U(\Gamma))=1$.

Proof. The fact that $H^{1}(G, U(S))=1$ (Hilbert's Theorem 90, [1]. Theorem A. 9.) and the exact sequence $\left.{ }^{*}\right)$ lead us to the conclusion. Q.E.D.

Corollary 2.4. Under the same assumptions as in Theorem 2.2, and if S has no proper idempotents, we obtain a one to one onto correspondence between the image of δ and $\mathfrak{I}=\{$ isomorphism class of $T \mid R \subset S \subset$ $T \subset \Delta(\Gamma, G), T$ is a central separable R-algebra such that T contains S as a maximal commutative subalgebra\}.

Proof. The correspondence from an element [$c_{o, r}$] of the image of δ to an element an isomorphism class of $T=\Delta\left(c_{\sigma, r}, S, G\right)$ of \mathfrak{Z} gives its correspondence. For, let $[T] \in \mathfrak{I}$ be given. As R is a semilocal ring and S has no proper idempotents, each element of G can be extended to an inner automorphism of T ([3]. Theorem 1.2.). Hence by [1] Proposition A. 13, $T=\Delta\left(c_{o, r}, S, G\right)=\sum_{\sigma \in G} \oplus w_{o} S$ where $\left\{w_{\sigma} \mid \sigma \in G\right\}$ is a free S-base of T. If we put $\mathfrak{K}=\cup \bigcup_{o \in \mathcal{G}} w_{o} U(S) \subset T$, then $\mathfrak{S} \in \mathscr{N}$. For, if we put $\sigma^{-1} w_{o}=a_{o}$, for any $\alpha \in S$, $\alpha a_{\sigma}=\alpha \sigma^{-1} w_{\sigma}=\sigma^{-1} \alpha^{\sigma^{-1}} w_{\sigma}=\sigma^{-1} w_{o}\left(\alpha^{\sigma^{-1}}\right)^{\sigma}=\sigma^{-1} w_{o} \alpha=a_{o} \alpha$. Hence $a_{o} \in$ $V_{\Delta(\Gamma, \boldsymbol{\theta})}(S)=\Gamma$ (see Proof of Theorem 2.2) and $a_{o}=\sigma^{-1} w_{o} \in \Gamma_{\cap} U(\Delta(\Gamma, G))$ $=U(\Gamma)$. Hence $w_{a}=\sigma a_{o}\left(a_{o} \in U(\Gamma)\right) . \quad \mathfrak{S} U(\Gamma)=\left(\cup_{\sigma \in G} w_{o} U(S)\right) U(\Gamma)=\bigcup_{\sigma \in G} w_{d} U(\Gamma)=$ $\bigcup_{o \in G} \sigma a_{\sigma} U(\Gamma)=\bigcup_{o \in G} \sigma U(\Gamma)=\mathbb{B}$. For any $\beta \in \mathfrak{S}_{\cap} U(\Gamma)$ we can write $\beta=w_{\sigma} s(s \in U(S))$. Then σ must be 1. That is, $\beta=w_{1} s=c_{1,1} s \in U(S)$. Hence $\mathfrak{G} \in \mathscr{H}$. So, [11] § 2 Corollary of Proposition 1 leads us to the conclusion. Q.E.D.

Lemma 2. 5. (cf. [11]. §3. Lemma 2.). Let R be a Noetherian Hensel ring, S be a commutative ring which has no proper idempotents and S / R be a finite Galois extension with Galois group G. (In this case, by [10] $(43,15)$ and $(43,16), S$ is also a Hensel ring.) We put $T=\Delta\left(c_{o, r}, S, G\right)$. Then there exists a right T-module N_{T} such that N_{T} is finitely generated projective and (T, R)-irreducible uniquely up to an isomorphism and $[N: S]$ equals the Schur index of T.

Proof. There exists a division R-algebra Δ such that $T=(\Delta)_{n}$. We put $e_{i j}$ the matrix in $(\Delta)_{n}$ with 1 in the (i, j)-position and zeros elsewhere. We put $N=\sum_{j=1}^{n} e_{1 j} \Delta$. Then this Lemma is similarly proved as [11] §3 Lemma 2. Q.E.D.

Proposition 2.6. Let R be a Noetherian Hensel ring, S be a com-
mutative ring which has no proper idempotents, S / R be a finite Galois extension with Galois group G, A be a central separable R-algebra, $\Gamma=\Lambda \otimes_{R} S$, $\left[c_{o, r}\right] \in H^{2}(G, U(S)), T=\Delta\left(c_{\sigma, r}, S, G\right)$ and M_{A} be a finitely generated projective and (Λ, R)-irreducible right 1 -module. Then if $\left[c_{o, r}\right]$ is contained in the image of δ (i.e. $T \subset \Delta(\Gamma, G)$), s divides $[M: R]$ where s is the Schur index of T.

Proof. By the facts that M_{A} is a right Λ-module and $S_{\Delta(S, G)}$ is a right $\Delta(S, G)$-module, $M \otimes S$ is a right $\Delta(\Gamma, G)$-module. That is, $(m \otimes s)\left(\sigma\left(\lambda \otimes s^{\prime}\right)\right)$ $=m \lambda \otimes s^{\sigma} s^{\prime}$ or $(m \otimes s)\left(\sigma r_{\sigma}\right)=\left(m \otimes s^{s}\right) \gamma_{\sigma}\left(m \in M, s, s^{\prime} \in S, \sigma \in G, \lambda \in \Lambda, r_{\sigma} \in \Gamma\right)$. There exists an integer $n \geqq 1$ such that $\Lambda_{\Lambda} \cong M_{A}^{(n)}$ (an isomorphism as a right Λ module, [12]. Proposition 4.) where $M^{(n)}$ denotes a direct sum of n-copies of $M . M \underset{R}{\otimes} S$ is a finitely generated and projective right $\Delta(\Gamma, G)$-module. $\Delta(\Gamma, G)$ is a finitely generated and free right T-module. For, $\Delta(\Gamma, G) \cong$ $V_{A(r, G)}(T) \otimes{ }_{R} T(v t \longleftrightarrow v \otimes t)([1]$. Theorem 3.3), this isomorphism is an R algebra isomorphism and an isomorphism as a right T-module, and $V_{\Delta(\Gamma, G)}(T)$ is a central separable R-algebra ([1]. Theorem 3. 3.). Hence, $M \underset{\mu}{\otimes} S$ is a finitely generated and projective right T-module. Let N_{r} be a finitely generated, projective and (T, R)-irreducible right T-module. Then $M \underset{R}{\otimes} S_{T} \cong N_{T}^{(t)}$ (an isomorphism as a right T-module for an integer $t \geqq 1$). Hence, $[M: R]$ $=[M \underset{\mu}{\otimes} S: S]=\left[N^{(t)}: S\right]=t[N: S]=t s . \quad$ Q.E.D.

Theorem 2.7. (cf. [11] Corollary of Proposition 5.) Under the same assumptions as in Proposition 2.6, when $\Lambda=(R)_{l}$, we obtain that $\left[c_{c, r}\right]$ is contained in the image of δ if and only if s divides l.

Proof. In this case, as R is a division R-algebra and $[M: R]=l$. Hence we only require to prove if part. $\left[N^{\left(\frac{l}{s}\right)}: S\right]=\frac{l}{s}[N: S]=l$. Hence $N^{\left(\frac{l}{s}\right)} \cong M \otimes \underset{R}{\otimes} S$ as a S-module. As N_{T} is faithful, $T \subset \operatorname{End}_{R}\left(N^{\left(\frac{l}{s}\right)}\right) \cong \operatorname{End}_{R}(M$ $\underset{R}{\otimes} S) \cong \Delta(\Gamma, G)$. Hence Corollary 2.4 leads us to the conclusion. Q.E.D.

Proposition 2. 8. Let $L \supset K \supset k$ be extensions of fields such that $\cdot L / k$ and K / k are Galois extensions (finite or infinite) with Galois groups $G(L / k)$ and $G(K / k)$ respect?vely, and let 1 be a central simple k-algebra. We put $I(\Lambda \underset{k}{\otimes} K)=U(\Lambda \underset{k}{\otimes} K) / U(K)$ and $I(\Lambda \underset{k}{\otimes} L)=U(\Lambda \underset{k}{\otimes} L) / U(L)$. Then the following inflation map is injective.

$$
H^{1}(G(K / k), I(\Lambda \otimes \underset{k}{\otimes} K)) \underset{i n f}{\longrightarrow} H^{1}(G(L / k), \underset{k}{I(\Lambda \otimes))} .
$$

Proof. By Theorem 2.2, this is easily seen. Q.E.D.
Proposition' 2. 9. Let k be a finite dimensional algebraic number field, \bar{k} be an algebraic closure of $k,\{v\}$ be the set of all valuations over k, k_{v} be the completion of k by v, \bar{k}_{v} be an algebraic closure of k_{v} and m be an integer (>0). Then we can define canonical map

$$
\Phi_{v}: H^{1}\left(G(\bar{k} / k), P G L_{m}(\bar{k})\right) \longrightarrow H^{1}\left(G\left(\bar{k}_{v} / k_{v}\right), P G L_{m}\left(\bar{k}_{v}\right)\right) .
$$

Furthermore, for any $x \in H^{1}\left(G(\bar{k} / k), P G L_{m}(\bar{k})\right), \Phi_{v}(x)=1$ for almost all v and

$$
\left(\Phi_{v}\right): H_{1}\left(G(\bar{k} / k), P G L_{m}(\bar{k})\right) \longrightarrow \prod_{v} H^{1}\left(G\left(\bar{k}_{v} / k_{v}\right), P G L_{m}\left(\bar{k}_{v}\right)\right)
$$

is injective.
Proof. By Theorem 2.2 and Hasse's Theorem ([4]), this is easily proved. Q.E.D.

> Department of Mathematics, Hokkaido University

References

[1] M. Auslander and O. Goldman : The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409.
[2] G. Azumaya: On maximally central algebras, Nagoya Math. J. 2 (1951), 119-150.
[3] L. N. Childs and F. R. DeMEyER: On automorphisms of separable algebras, Pacific J. Math. 23 (1967), 25-34.
[4] M. Deuring: Algebren, Springer-Verlag (1935).
[5] A. Hattori : Semi simple algebras over a commutative ring, J. Math Soc. Japan 15 (1963), 404-419.
[6] A. HATtori: Simple algebras over a commutative ring, Nagoya Math. J. 27 (1966), 611-616.
[7] T. KANZAKI: On commutor rings and Galois theory of separable algebras, Osaka J. Math. 1 (1964), 103-115.
[8] Y. MiYashita: Finite outer Galois theory of non-commutative rings, J. Fac. Sci. Hokkaido Univ. XIX (1966), 114-134.
[9] Y. Miyashita: On Galois extension and crossed products, J. Fac. Sci. Hokkaido Univ. XXI (1970), 97-121.
[10] M. Nagata: Local rings, Interscience Publishers. (1962).
[11] P. Roquette: On Galois cohomology of the projective linear group and its applications to the construction of generic spliting fields of algebras, Math. Ann. 150 (1963), 411-439.
[12] Y. Watanabe: Simple algebras over a complete local ring, Osaka J. Math. 3 (1966), 13-20.

