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\S 0. Introduction.

Let V^{m} be a closed orientable hypersurface twice differentiably imbedded
in an (m+1)-dimensional Euclidean space E^{m+1}(m+1\geqq 3) and k_{1} , \cdots , k_{m} be
the m principal curvatures at a point P of V^{m} . The \nu-th mean curvature
H_{\nu} of V^{m} at P is d.efifined by

(\begin{array}{l}m\nu\end{array})H_{\nu}=\sum k_{1}\cdots k_{\nu} (\nu=1,2, \cdots, m) ,

where the right hand member denotes the \nu-th elementary symmetric func-
tion of k_{1} , \cdots , k_{m} . It is convenient to define H_{0}=1 . C. C. Hsiung [1]^{1)} proved

(0. 1) \int_{r^{m}}(H_{\nu+1}p+H_{\nu})dA=0 (\nu=0,1, \cdots, m-1) ,

where p denotes the oriented distance from a fixed point O in E^{m+1} to the
tangent space of V^{m} at P and dA is the area element of V^{m} . Let \overline{V}^{m} be
a closed orientable hypersurface parallel to the given V^{m} . Then, the integral
formulas (0. 1) have been derived by comparison between associated quantities
of V^{m} and \overline{V}^{m} .

Let R^{m+1} be an (m+1)-dimensional Riemann space of class C^{r}(r\geqq 3) ,
which admits an infinitesimal conformal transformation

(0. 2) x^{i}=x^{i}+\xi^{i}arrow(x)\delta\tau
‘

We assume that a closed orientable hypersurface V^{m} does not pass through
any singular point of a tangent vector field of the paths with respect to
the infinitesimal transformation (0.2). Since the transformation is conformal,
there exists a scalar field \Phi and the vector \xi^{i} satisfies the relation

(0. 3) \xi_{i;f}+\xi_{f;i}=2\Phi g_{if} ,

where \xi_{i}=g_{if}\xi^{f} and the symbol “ ;” means covariant differentiation with
respect to Riemann connection determined by the metric tensor g_{if} of R^{m+1}

1) Numbers in brackets refer to the references at the end of the paper.
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(K. Yano [2]). As the generalizations of (0. 1) for a Riemann space, Y.
Katsu’rada [3] derived

(0. 4) \int_{r^{m}}(H_{1}p+\Phi)dA=0

for V^{m} in R^{m+1} and when R^{m+1} is a constant curvature space, proved

(0. 5) \int_{r^{m}}(H_{\nu+1}p+H_{\nu}\Phi)dA=0 (\nu=I, 2, \cdots, m-1) ,

where p=n^{i}\xi_{i} and n^{i} is the unit normal vector of V^{m} . The integral formulas
(0. 4) and (0. 5) have been derived by applying Stokes’ theorem to the rela-
tions obtained by exterior differentiation of certain differential forms on V^{m}.

Certain generalizations of (0. 4) and (0.5) for a closed orientable sub-
manifold of codimension greater than 1 have been given by Y. Katsurada
and H. K\^ojy\^o [4].

These integral formulas have been applied by many authors to the study
of closed orientable submanifolds with constant \nu-th mean curvature in a
Euclidean space and a Riemann space.

Recently, K. Amur [5] derived (0. 1) in a different way and also proved
for V^{m} in E^{m+1}

(0. 6) \int_{V^{n}}(\nabla H_{\nu}\cdot X)dA+m\int_{V^{\eta l}}(H_{1}H_{\nu}-H_{\nu+1})pdA=0\tau (\nu=0,1,\cdots, m-1)

where the integrand of the first term in the left hand member denotes inner
product of grad H_{\nu} and the position vector X of V^{m} .

Some generalizations of (0.6) for a closed orientable submanifold of
codimension greater than 1 in E^{m+1} have been derived by K. Yano and
B. Y. Chen [6].

The main purpose of the present paper is to give an integral formula
which is similar to (0. 6) and valid for a closed orientable hypersurface V^{m}

in a constant curvature space R^{m+1} . In accordance with the idea given by
Y. Katsurada [3], we also assume that R^{m+1} admits a conformal Killing
vector field \xi^{i} and use it in place of the position vector X in (0.6). The
method of calculations is learned much from the paper of K. Amur [5].
\S 1 is devoted to give some notations and fundamental relations which will
be used in the following section. Some integral formulas will be given in \S 2.

The present author wishes to express his sincere appreciation to PrO-
fessor Y. Katsurada for her kind guidance.

\S 1. Preliminaries.
Let R^{m+1}(m+1\geqq 3) be an (m+1)-dimensional Riemann space and x^{l}
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and g_{ij} be the local coordinate and the positive definite metric tensor of
R^{m+1} . We consider that a closed orientable hypersurface V^{m} in R^{m+1} is
expressed locally by parametric equations

x^{i}=x^{i}(u^{a}) . (i=1,2, \cdots, m+1:\alpha=1,2, \cdots, m)^{2)}

If we put

B_{\alpha}^{\dot{l}}= \frac{\partial x^{i}}{\partial u^{\alpha}} (\alpha=1,2, \cdots, m),

the m vectors B_{\alpha}=(B_{\alpha}^{1}, \cdots, B_{\alpha}^{m+1}) are linearly independent and span the tangent

space of V^{m}. The induced metric tensor g_{a\beta} of V^{m} is given by

g_{\alpha\beta}=g_{if}B_{\alpha}^{i}B_{\beta}^{f}

and g^{\alpha\beta} is defined by g^{\alpha\beta}g_{\beta\gamma}=\delta_{\gamma}^{\alpha} , where \delta_{\gamma}^{\alpha} denotes the Kronecker delta.
Denoting by N=(n^{1_{ }},\cdots, n^{m+1}) a contravariant vector such that

(1. 1) g_{if}B_{\alpha}^{i}n^{f}=0 , g_{if}n^{i}n^{f}=0,\cdot

(1. 2) det. (B_{1}, \cdots, B_{m}, N)>0 ,

then we can see that N is determined uniquely at each point of V^{m} and
is the unit normal vector of V^{m} .

If we denote by the symbol “ ;” the covariant differentiation due to
van der Waerden-Bortolotti, we have the following Gauss and Weingarten
formfila :

(1. 3) B_{\alpha;\beta}^{i}=b_{\alpha\beta}n^{i} ,

(1. 4) n^{i}.,=-\alpha b_{\alpha}^{\gamma}B_{\gamma}^{i} ,

where b_{\alpha\theta} is the second fundamental tensor of V^{m} and b_{\alpha}^{\gamma}=b_{\alpha\beta}g^{\gamma\beta} .
Let k_{1} , \cdots , k_{m} be the roots of the characteristic equation

det. (b_{\alpha\beta}-kg_{\alpha\beta})=0 ,

then the \nu-th mean curvature H_{J}. of V^{m} is defined to be the \nu-th elementary
symmetric function of k_{1} , \cdots , k_{m} divided by the number of terms, i.e.

(\begin{array}{l}n\iota\nu\end{array}) H_{\nu}= \sum k_{1}\cdots k_{\nu} (\nu=1,2, \cdots, m) .

As usual we put H_{0}=1 .
We denote by \epsilon_{i_{1}\cdots i_{m+1}} and \epsilon^{i_{1}\cdots i_{m}}+1 the \epsilon-tensor in R^{m+1}, that is

2) Throughout the present paper the Latin indices run from 1 to m+1 and the Greek
indices run from 1 to m.



On certain integral formulas for hypersurfaces in a constant cumature space 257

\epsilon_{i_{1}\cdots i_{m+1}}=\sqrt\overline{G}e_{i_{1}\cdots i_{m+1}} ,

\epsilon^{i\cdots i}1m+1=(\sqrt\overline{G})^{-1}e^{\eta j\cdots i}1m+1 ,

where G=det.(g_{if}) and the quantites e_{i_{1}\cdots i_{m+1}}=e^{i\cdots i_{m+1}}‘ are defined to be zero,
when two or more of the indices are the same, and to be 1 or -1 when
the indices are obtainable from the natural sequence 1, 2, \cdots , m+1 by an
even or odd permutation.

Let
V_{(\lambda)}=(v_{(\lambda)}^{1}, \cdots, v_{(\lambda)}^{m+1}) , (\lambda=1,2, \cdots,p)

W_{(,1)}=(w_{(\mu)\alpha}^{1}du^{\alpha}, \cdots, w_{(\mu)\alpha}^{m+1}du^{\alpha}) , (\mu=p+1,p+2, \cdots, m)

be contravariant vectors and vector valued differential forms in R^{m+1}, then
we define a combined product [ ]_{i} and its exterior differential \delta [ ]_{i} by

[V_{(1)}, \cdots, V_{(p)}, W_{(p+1)}, \cdots,W_{(m)}]_{i}

=\epsilon_{i_{1}\cdots i_{m}i}v_{(1)}^{i_{1}}\cdots v_{(p)}^{i_{p}}w_{(p+1)\alpha_{p+1}}^{i_{p+1}}\cdots w_{(m)\alpha_{m}}^{i_{m}}du^{\alpha_{\mathcal{D}+1}}\Lambda\cdots\Lambda du^{\alpha_{m}} ,

\delta[V_{(1)}, \cdots, V_{(p)}, W_{(p+1)}, \cdots,W_{(m)}]_{i}

=(\epsilon_{i_{1}\cdots i_{m}i}v_{(1)}^{i_{1}}\cdots v_{(p)}^{i_{p}}w_{(p+1)\alpha_{p+1}}^{i_{\Phi\dagger 1}}\cdots w_{(m)a_{m}}^{i_{lh}})_{;e\prime}du^{\alpha}\Lambda du^{\alpha_{p+1}}\Lambda\cdots\Lambda du^{\alpha_{n\iota}}9

where \Lambda means exterior product.
By means of (1. 1) and (1. 2), we have

(1. 5) \epsilon_{i_{1}\cdots i_{m^{i}}}B_{1}^{i_{1}}\cdots B_{m}^{i_{m}}n^{i}=\sqrt\overline{g} ,

where g=det.(g_{\alpha\beta}) . Making use of (1. 5), we can see that
(1. 6) [B_{1}, \cdots, B_{m}]_{i}=\sqrt\overline{g}n_{i} ,

(1. 7) [N, B_{1}, \cdots, B_{\alpha-1}, B_{\alpha+1}, \cdots, B_{m}]_{i}=(-1)^{\alpha}\sqrt\overline{g}B_{i}^{a} ,

where B_{i}^{a}=g_{if}gB_{\beta}^{J}\alpha\beta .
If we put

U_{\alpha}=(-1)^{\alpha}\sqrt\overline{g}du^{1}\Lambda\cdots\Lambda du^{\alpha-1}\Lambda du^{\alpha+1}\Lambda\cdots\Lambda du^{m}.
,

we can verify that U_{a} are transformed under parameter transformation
\overline{u}^{\lambda}=\overline{u}^{\lambda}(u^{\alpha}) such that

U_{\alpha}= \frac{\partial\overline{u}^{\lambda}}{\partial u^{\alpha}}\overline{U}_{\lambda\prime}.

where \overline{U}_{\lambda}=(-1)^{\lambda}\Gamma\overline{g}d\overline{u}^{1}\Lambda\cdots\Lambda d\overline{u}^{\lambda-1}\Lambda da^{\lambda+1}\Lambda\cdots\Lambda d\overline{u}^{m} . Therefore U_{\alpha} is a
covariant vector.

Denoting by dx the vector valued differential form
dx=(dx^{1_{ }},\cdots, dx^{m+1}) ,
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where dx^{i}=B_{\alpha}^{i}du^{\alpha} , then by means of (1.7) we get

\langle 1. 8) [N, dx, \cdots, dx]_{i}=(m-1) ! B_{i}^{\alpha}U_{\alpha} .
From (1. 8) it follows that
(1. 9) dx^{i}[N, dx, \cdots, dx]_{i}=-m ! dA,

where we put dA=\sqrt\overline{g}du^{1}\Lambda\cdots\Lambda du^{m} and dA is the area element of V^{m} .
From (1. 4) we have \delta n^{i}=-b_{\alpha}^{\gamma}B_{\gamma}^{i}du^{\alpha} . Therefore, we obtain

(1. 10) \delta n^{i}[N, dx, \cdots, dx]_{i}=m ! H_{l}dA ,

(1. 11)
[ \overline{\delta N,}\overline{\cdots,\delta}N\nu,\frac{m-\nu}{dx,\cdots,dx}]_{i}=(-1)^{\nu}m

! H_{\nu}n_{i}dAr

If f is a scalar field on V^{m} , by means of (1.8) we have

\langle 1. 12) df \Lambda[N, dx, \cdots, dx]_{i}=-(m-1)!\frac{\partial f}{\partial u^{\alpha}}B_{i}^{\alpha}dA .

\S 2. Integral formulas.

THEOREM 2. 1. Let R^{m+1} be an (m+1)-dimensional Riemann space which
admits a conformal Killing vector field \xi^{\iota} and V^{m} a closed orientable hyper-
surface in R^{m+1}. Then

(2. 1) \int_{V^{n}}\frac{\partial H_{\nu}}{\partial u^{\alpha}}\xi^{\alpha}dA+m\int_{r^{m}}(H_{\nu}\Phi+H_{1}H_{\nu}p)dA=0 , (\nu=0,1, \cdots, m)

where \xi^{\alpha}=B_{i}^{\alpha}\xi^{i} .
PROOF. We have

\delta(H_{\nu}[N, dx, \cdots, dx]_{i})=dH_{\nu}\wedge[N, dx, \cdots, dx]_{i}+H_{\nu}\delta[\{N, dX^{ },\cdots, dx]_{i}t

Making use of (1. 11) and (1. 12) we get

\delta(H_{\nu}[N, dx, \cdots, dx]_{i})=-(m-1)!\frac{\partial H_{\nu}}{\partial u^{\alpha}}B_{i}^{a}dA-m ! H_{1}H_{\nu}n_{i}dA c

Therefore we have

(2. 2) \xi^{i}\delta(H_{\nu}[N, dx, \cdots, dx]_{i})=-(m-1)!\frac{\partial H_{\nu}}{\partial u_{\alpha}}\xi^{\alpha}dA-m ! H_{1}H_{\nu}pdA r

If we put

S=H_{\nu}\xi^{i}[N, dx, \cdots, dx]_{i} ,

then we have
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(2. 3) \xi^{i}\delta(H_{\nu}[N, dx, \cdots, dx]_{i})=dS-H_{d}.\delta\xi^{i}\wedge[N, d_{X^{ }},\cdots, dx]_{i}

In consequence of (0. 3) and (1. 7) it follows that
(2. 4) \delta\xi^{i}\wedge[N, d_{X^{ }},\cdots, dx]_{i}=-m ! \Phi dA .
By means of (2. 2), (2. 3) and (2. 4) we get

\frac{\partial H_{\nu}}{\partial u^{\alpha}}\xi^{\alpha}dA+m(H_{\nu}\Phi+H_{1}H_{\nu}p)dA+\frac{dS}{(m-1)!}=0 .

Since V^{m} is a closed orientable hypersurface, applying Stokes’ theorem to
the last relation, we obtain (2. 1).

THEOREM 2. 2. Let R^{m+1} be an (m+1)-dimensional constant cumature
space which admits a conformal Killing vector field \xi^{i} and V^{m} a closed
orientable hypersurface in R^{m+1} . Then

(2. 5) \int_{r^{m}}\frac{\partial H_{\nu}}{\partial u^{\alpha}}\xi^{\alpha}dA+m\int_{r^{m}}(H_{1}H_{\nu}-H_{\nu+1})pdA=0 . (\nu=0,1, \cdots, m-1)

PROOF. We put

(\Delta_{\nu})_{i}=[N,\tilde{\delta N,\cdots,\delta}N^{ \frac{m-\nu-1}{dx,\cdots,d}},x]_{i}\nu

.
Since R^{m+1} is a constant curvature space, we have \delta\delta N=0. Therefore,

by means of (1. 11) we get

(2. 6) \xi^{i}\delta(\Delta_{\nu})_{i}=(-1)^{\nu+1}m ! H_{\nu+1}pdA

On the other hand, as in [5] we obtain

( \Delta_{\nu})_{i}=(-1)^{\nu}\frac{m}{m-\nu}H_{\nu}[N, d_{X^{ }},\cdots, dx]_{i}

(2. 7)
+(-1)^{\nu}\nu ! (m-\nu-1) ! \sum_{p=1}^{\nu}(-1)^{p}(\begin{array}{ll} m\nu -p\end{array})H_{\nu-p}K_{(p)i} ,

where we put

K_{(p)i}=B_{i}^{1}(k_{1})^{p}U_{1}+B_{i}^{2}(k_{2})^{p}U_{2}+\cdots+B_{i}^{m}(k_{m})^{p}U_{m} .
Making use of (1. 11) and (1. 12), we get from (2. 7)

\xi^{i}\delta(\Delta_{\nu})_{i}=(-1)^{\nu+1}\frac{m}{m-\nu}(m-1) ! ( \frac{\partial H_{\nu}}{\partial u^{\alpha}}\xi^{\alpha}+mH_{1}H_{\nu}p)dA

(2. 8)
+(-1)^{\nu}\nu ! (m-\nu-1) ! \sum_{p=1}^{y}(-1)^{p}(\begin{array}{ll} m\nu -p\end{array}) \xi^{i}\delta(H_{\nu-p}K_{(p)i}) .

If we put
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T=\xi^{i}H_{\nu-p}K_{(p)i} ,

it follows that
(2. 9) \xi^{i}\delta(H_{\nu-p}K_{(p)i})=dT-H_{\nu-- p}\delta\xi^{i}\wedge K_{(p\rangle i}

By virtue of (0.3), we can see that

(2. 10) \delta\xi^{i}\wedge K_{(p)i}=-\Phi\sum_{\lambda=1}^{m}(k_{\lambda})^{p}dAt

In consequence of (2. 9) and (2. 10), (2.8) can be rewritten as follows:

\xi^{i}\delta(\Delta_{\nu})_{i}=(-1)^{\nu+1}\frac{m}{m-\nu}(m-1) ! ( \frac{\partial H_{\nu}}{\partial u^{\alpha}}\xi^{\alpha}+mH_{1}H_{\nu}p)dA

(2. 11)
+(-1)^{\nu}\nu ! (m-\nu-1) ! \sum_{p=1}^{\nu}(-1)^{p}(\begin{array}{ll} m\nu -p\end{array}) (dT+ \Phi H_{\nu-p}\sum_{\lambda=1}^{m}(k_{\lambda})^{p}dA)

According to the identity of Newton for the elementary symmetric functions,
we have

(2. 12) \sum_{p=1}^{\nu}(-1)^{p}(\begin{array}{l}m\nu-p\end{array})H_{\nu-p}\sum_{\lambda=1}^{m}(k_{\lambda})^{p}=-\nu(\begin{array}{l}m\nu\end{array})H_{\nu} . (See [5])

Making use of (2. 6), (2. 11) and (2. 12), we obtain

( \frac{\partial H_{\nu}}{\partial u^{\alpha}}\xi^{\alpha}+mH_{1}H_{\nu}p-(m-\nu)H_{\nu+\nu}p+\nu\Phi H_{\nu})dA

- (\begin{array}{l}m\nu\end{array})\sum_{p=1}^{\nu}(-1)^{p}(\begin{array}{l}m\nu-p\end{array})dT=0

Since V^{m} is a closed orientable hypersurface, applying Stokes’ theorem to
the last relation we obtain

(2. 13) \int_{r^{m}}\frac{\partial H_{\nu}}{\partial u^{\alpha}}\xi^{\alpha}dA+m\int_{r^{m}}(H_{1}H_{\nu}-H_{\nu+1})pdA+\nu\int_{r^{m}}(H_{\nu+1}p+H_{\nu}\Phi)dA=0

Eliminating the term \int_{r^{m}}\frac{\partial H_{\nu}}{\partial u^{\alpha}}\xi^{\alpha}dA from (2. 1) and (2. 13), we obtain

(2. 14) \int_{V^{r\iota}}(H_{+1}.,p+H_{\nu}\Phi)dA=01

(2. 14) is the integral formulas (0. 5) obtained by Y. Katsurada [3]. In
consequence of (2. 1.3) and (2. 14), we obtain (2. 5).

Department of Mathematics,
Hokkaido University.
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