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Introduction. \’E. Kosmanek has studied [2] a characteristic property
of K\"ahler manifolds of constant holomorphic sectional curvature. In this
paper, we shall show the following theorem making use of an analogous
method of in [2].

THEOREM. Let M_{-}^{2n+}’
,

n\geqq 2 , be a Riemannian manifold with Sasakian
structure (\xi, \varphi, g) . Assume the property (P) to be valid in M^{2n+1} :

(P); For each point p of M^{2n+1} and every geodesic \gamma(t) starting from p
whose velocity vector at p is orthogonal to \xi_{p} , there exist functions f(t) and
h(t) such that f\varphi T’+h\xi is a Jacobi fifield along \gamma and f(0)\neq 0 .

Then M is a space of constant \varphi-holomorphic sectional curvature.
Conversely, a Sasakian space of constant \varphi-holomorphic sectional curva-

ture satisfifies the property (P).
Here and throughout the paper, t means an affine parameter.

\S 1. Lemmas. Let (M^{2n+1}, g) be a Riemannian space. A unit Killing
vector field in M is called a Sasakian structure if it satisfies

(1. 1) (\nabla_{X}\varphi)Y=g(\xi, Y)X-g(X, Y)\xi , where \varphi X=\nabla x\xi .

A Sasakian manifold is a Riemannian manifold which admits a Sasakian
structure. In such a space, we know
(1. 2) R(\xi, X)Y=g(X, Y)\xi-g(\xi, Y)Xt

We define the subspace D_{p} of T_{p}(M) by D_{p}=\{X|g(\xi, X)=0, X\in T_{p}(M)\} .
LEMMA 1. Let M be a Sasakian manifold and \gamma be a geO&sic. If

the velocity vector \gamma’ of \gamma at a point p is orthogonal to \xi_{p} , then \gamma’ is or-
thogonal to \xi on \gamma .

Lemma 1 follows from \nabla_{r’}(g(\xi, \gamma’))=g(\varphi \mathcal{T}’, \mathcal{T}’)=0 .
LEMMA 2. Assume that a Sasakian space M satisfifies (P). Then, for

vectors X, Y\in D_{p} such that g(\varphi X, Y)=0 , we have

g (R(X, \varphi X)X , Y)=0 .
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PROOF. Consider any point p\in M and vector X\in D_{p} . Let \gamma(t) be a
geodesic such that \gamma(0)=p , \gamma’(0)=X. By assumption, there exist functions

f and h such that f(0)\neq 0 and f\varphi\gamma’+h\xi is a Jacobi field along \gamma . A Jacobi
field J along a geodesic \gamma , by definition, satisfies the Jacobi differential
equation

\frac{D^{2}J}{dt^{2}}-R(\gamma’, J)^{\gamma’}=0 .

As t is an affine parameter, g(\gamma’, \gamma’) is a constant. Putting a=g(\gamma’, \gamma’) and
noticing (1. 1) and Lemma 1,

(1. 3) fR(\gamma’, \varphi\gamma’)\gamma’=(f’-af+2h’)\varphi \mathcal{T}’-(2af’-h’)\xi .
Hence, evaluating at p, we have

g (R(X, \varphi X)X, Y)=0 , for Y\in D_{p} , g(\varphi X, Y)=0 .
LEMMA 3. Under the assumption (P), R(X, \varphi X)X is proportional to

\varphi X for every vector fifield X such that g(X, \xi)=0 .
PROOF. We can denote as

R(X, \varphi X)X=\lambda(X)\varphi X+\mu(X)Y+\nu(X)\xi ,

where Y is some non-zero vector field, orthogonal to \xi, \varphi X and \lambda(X) , \mu(X),
\nu(X) are some functions of M. Since g(R(X, \varphi X)X, Y)=\mu(X)g(Y, Y), by
Lemma 2, we have \mu(X)=0 for every point. Similarly, noticing (1. 2), we
have \nu(X)=0 .

\S 2. Proof of Theorem. The necessity follows from the following:

THEOREM. (Tanno ([4])) A Sasakian manifold, n\geqq 2 , is of constant
\varphi-holomorphic sectional curvature, if and only if

R(X, \varphi X)X is proportional to \varphi X

for every vector fifield X such that g(X, \xi)=0 .
We prove the converse. Assume that M is of constant \varphi-holomorphic

sectional curvature k. Let \gamma(t) be an arbitrary geodesic such that \gamma’(0)\in D_{\gamma(0)} .
Consider a function f on \gamma which is a solution of the differential equation

\frac{d^{2}f}{dt^{2}}+(k+3)af=0 , f(0)\neq 0 ,

and put h=2a \int fdt. So it follows that
\nabla_{l’}\nabla_{l’}(f\varphi \mathcal{T}’+h\xi)=(f’-2f+2h’)\varphi \mathcal{T}’-(2af’-h’+ah)\xi

=-kaf\varphi \mathcal{T}’-ah\xi .
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On the other hand, the curvature tensor of a Sasakian space with constant
\varphi-holomorphic sectional curvature is represented as

4R(X, Y)Z=(k+3)\{g(Y, Z)X-g(X, Z)Y\}+(k-1)\{\eta(X)\eta(Z)Y+\eta(Y)g(X, Z)\xi

-\eta(Y)\eta(Z)X-\eta(X)g(Y, Z)\xi-g(\varphi X, Z)\varphi Y-g(\varphi Z, Y)\varphi X-2g(\varphi X, Y)\varphi Z\} ,

where we put \eta(X)=g(\xi, X) , ([3]). So, R(\gamma’, \varphi\gamma’)\mathcal{T}’=-k\varphi \mathcal{T}’ . Then as

R(\gamma’, f\varphi \mathcal{T}’+h\xi)\gamma’=-fak\varphi\gamma’-ah\xi.
,

we have
\nabla_{\gamma’}\nabla_{\gamma’}(f\varphi^{\gamma’}+h\xi)-R(T’, f\varphi^{\gamma’}+h\xi)\gamma’=0 ,

i.e. f\varphi\gamma’+h\xi is a Jacobi field. Q. E. D.
We consider the case where h=0. We suppose that a Sasakian space

M has property (P) with h=0. Then M is a space of constant \varphi-hol0-
morphic sectional curvature by the theorem. Since we can assume that
g(\gamma’, \gamma’)=1 , (2. 2) reduces to

fR(\gamma’, \varphi^{\gamma’})\mathcal{T}’=(f’-f)\varphi \mathcal{T}’-2f’\xi .

Taking inner product with \xi, we have

-2f’=fg (R(^{\gamma’}, \varphi \mathcal{T}’)\mathcal{T}’ , \xi)=0l

Therefore R(\gamma’, \varphi\gamma’)\gamma’=-\varphi\gamma’ , which implies k=1.

Conversely, suppose M to be of constant \varphi-holomorphic sectional cur-
vature 1. For any geodesic \gamma, we know

R(\gamma’, c\varphi \mathcal{T}’)\gamma’=-cg(\gamma’, \gamma’)\varphi \mathcal{T}’ , \nabla_{\gamma’}\nabla_{\gamma’}(c\varphi^{\gamma’})=-cg(\gamma’, \gamma’)\varphi^{\gamma’} ,

where c is non zero constant. Then c\varphi\gamma’ is a Jacobi field along \gamma . As a
space of constant \varphi-holomorphic sectional curvature 1 is one of constant
curvature, thus we have

COROLLARY 1. Let M^{2n+1}, n\geqq 2 , be a Sasakian manifold. For any
point p and every geodesic \gamma starting from p(\gamma’(0)\in D_{p}), if there exists a
function f such that f\varphi \mathcal{T}’ is a Jacobi fifield along \gamma and f(0)\neq 0, thm M is

of constant curvature 1. The converse is ture.
In this case, f is necessarily constant.
As a corollary we can get.

COROLLARY 2. If a space with Sasakian 3-structure satisfifies the prop-
erty (P) with respect to one of the three structures, it is of constant cumature.
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In fact, it follows from the fact that if a space with Sasakian 3-structure
is of constant \varphi-holomorphic sectional curvature, then it is of constant
curvature, ([\prime 1]) .
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