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Introduction.

The aim of this paper is twofold : to establish orthogonal expansion
as a convenient tool in the theory of Boolean algebra; and to render it
useful in discussions concerning the structure of the system of
mathematical logic particularly in the intrinsic meaning of quantifiers.

In Chapter I, we deal mainly with the orthogonal expansions of
propositional polynomials, which are somewhat different from the
conjunctive normalform and the disjunctive normalform of logical
formulas™® and are much more convenient to applications than them.
Incidentally, our conclusion will be that any (generalized) truth
function can be constructed by five operations: logical sum, logical
product, negation, universal quantifier and existensive quantifier. Though
our discussion is conducted with propositions, yet it should be made
clear that the same procedure can be followed with Boolean algebra.

In Chapter II, we consider the structure of the system of mathe-
matical logic. To understand this, let us observe the following fact.

Define the universal quantifier and the existensive quantifier by
the axioms

e) (Va)F (x) > F(y),
f) F(y) = (dz)F (7),
as in HirBerr and ACKERMANN'S®,
Replace
1) (Vz)F (x) by F(1)v F(2)

and

(1) Cf. Hirr and AckrrMany : Grundziige der theoretischen Logik, 2-te Aufl, 1938, p. 14.
(2) Cf. Hitgrrr and AckrRMANN, loc. cit., p. 56.
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2) @n)F(x) by F(1). F(2),

and eliminate the quantifiers of those axioms, following the pattern
given in Hirert and AckerMann‘”, Then we get

(Vy)[ (Vo) F(z) = F ()]

((Va)F(z) = F(1)) v ((V2)F(z) = F(2))

(FQ)v FE@)=>FL) v ((FQ) v F®)>F@2)
((AvB)> A) v ((Av B)> B)
and

(V[ F(y) = @z)F(2)]

(F(1) > @) F @) v (F(2) = (@) F))

(F)SFQ) - F@)) v (EE@>SEQD - F@2))
(A>A.-B)v (B> A-B).

Clearly, these two propositions thus obtained are always true
while, oddly enough, in 1) and 2), the universal quantifier and the
existensive quantifier have replaced their intrinsic meanings with each
other.

This shows that the azioms e) and f) can not determine the charac-
taristic properties of quantifiers completely. And so we ask: what are
the axioms which determine them ? The answer will be given in
Theorem ]I 1.

The notations are the same as the ones of my note of this volume®,
except the following: a) the negation of the formula 9l is denoted by
9-', D) the propositional function F'(x) is denoted by F, and c) the
universal quantifier and the existensive quantifier are denoted by ()
and (E) respectively, and the notations (V) and (&) are used to denote
the formally defined quantifiers (cf. Definition II 1). The set of all
mappings of the set X to the set Y is denoted by Y. If we deal with
the range of infinite objects, we must assume part of set theory and
need to introduce the definitions whose numbers are marked by a =
Of course, one’s acquaintance of mathematical logic is taken for granted
in this matter.

(1) Cf. Hu.perr and AckERMANN, loc. cit., pp. 74 75.
(2) Cf. my note: Some remarks concerning identity.
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CHAPTER . ORTHOGONAL EXPANSIONS OF
PROPOSITIONAL POLYNOMIALS.

§ 1. Propositions and propositional functions.

Let R be a non-empty set of objects, and B the set of two ifitegers
1 and —1. The value of a function f€ ¢ =B* at « is denoted by I
and called z-component of f. Consider a set S8 with the property

1. If fe @ ard x € R, then (f,=1) € B.

2. If P€ SR, then P71 € B.

3. IfP,Qe S, then PvQe B ard P-Q € B.

8. If P‘é’e R, 1 € 4, then 3, P € P cmdlélAPm e R.

Acd

An element of S} is called proposition. The proposition f, =1 is
called primitive. For the sake of brevity, f.=1 and (f,=1)"" are
denoted by f. and f;. P~'is the negation of P, and PvQ@ and P-Q
are the sum and the prcduct of P, Q. 2, P® and II({'AP‘“ are called

acd
the generalized sum (abbreviated gs) and the generalized prcduct (abb. gp)
of the indexed system P, and are defined as follows :

DEFINITION 1*. SPYD = (E)N[Aie 4. PO,
Led
[I PP = () [1€ 4. PP .
icA

An element F of & = 3% is called propositional function (abb. pf)
on R. The x-component of F is denoted by F. The pf of which
z-component is f;* is called primitive and denoted by f*. The set R
on which pf are defined is called the range of variable. The negation
of a pf, the sum and the prcduct of two pf and the gs and the gp of

an indexed system of pf are defined by the
DEFINITION 2. (F,=(F,)™", (F'v G).=F,v G, (F+G)y=FpGs.
DEFINITION 2%. (S FV), = 3 FSh, (I FV), = IT FP,
Ao Acd AcAa AeA

Again we can introduce the notion =, =, ete., in ¥, and then
may consider it as the theory of propositions.

(1) Q = P means that the two propositions 2 and Q are the same.
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Let P° denote the pf whose components are all the same proposition
P, then by the correspondence P — P°, )} is imbeded isomorphically in
B%. Thus, identifying these notions, we denote P’ merely P, and call
it the proposition on R.

Moreover we can define the pf on B, x R, X +++ X R,. (@Y eee2)-
component of these pf are denoted by F,, ., G,y..cp *=+

§ 2. Propositional polynomials and truth functions.

We define recursively the notion of propositional polynomial (abb, pp)
of the symbol X:

DEFINITION 3. 1. Any proposition is a pp.

2. If v € R, then X, is a pp.

3. If A(X) ts a pp previously d-fined, then (91(X))™", the negation
of A (X), s a pp.

4. If A(X) and B(X) are pp previously d>fined, then 9(X) v B(X),
the sum of A (X) ard B(X), ard U (X) - B(X), the prcduct of
N(X) ard B(X), are pp.

4*. If AP (X), A€ 4 are pp previously dzfined, then AZA(?I“’(X) ), the

gs of UM (X), axd II (% (X), the gp of NP (X), are pp.
Ac4

The X of a pp 9 (X) is called the wvariable of 91 (X), we regard
this as the free pf on R. Let %(X) and B(X) be two pp, then

DEFINITION 4. AXH)=BX) .=.(F) [AF) .=. BF)].
The set of all pp of variable X is denoted by B [X].

LEMMA 1. If (X)) € P[X], then

I AF).=. B(G) whenever F .=. G.

Proof. If 91(X) is a proposition or a X, then the assertion is
obvious. If 9[ (X) (B(X))"'and B(F).=.B(G) whenever F.=.G,
then (B(F))' .=. B(G)). And so on.

The notion of pp can be generalized as follows:

DEFINITION 5. Every element 9 € 3% with the property (1) is
called truth function (abb. tf).

N is the F-component of 9. Let 9l and B be two tf, then
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DEFINITION 6. 9= .=. (F)[%r.=. B.].

The definition of the negation of a tf, the sum of two tf, ++- are
the same as definitions 2 and 2*. The set of all tf is denoted by .
Let 91(X) be a pp and 91 a tf, then we define a relation ~:

DEFINITION 7. 9~ (X)) .=. (F)[%r.=. A(F)].
By definition, [ (X) is equivalent to I, whenever 9| ~A(X).

LEMMA 2.  For any pp 9 (X), there corresponds a tf 9| such that
N~ AN (X), arnd this correspondence is one-to-one.

Proof. By definition 8, J[(F) € B for every F € . Define a
function 9l on & to B by 9, .=. 9 (F), then manifestly 9l € & and
9~ 9(X). The uniqueness and the univalence of this correspondence
is the consequence of definitions 6 and 4. ‘

Though a pp or a tf, say a tf 9, is not a proposition, yet sometimes
we let 9l denote the assertion that 9l =1 for brevity’s sake. For
instance, the 9| in the formula 9l v 9 = 9 is a tf, and the 9] in the
formula 9 v 9[.=. 9] is the assertion [=1. Thus, we .can treat pp and
tf like the proposition. For example, the definition of * implicatio’ﬁ ”
of pp is as follows: ‘

X)) 2. BX) = (X)) v B(X).

Moreover, we can define the tf on (& x &, X oo % Fpo

§ 3. Orthogonal expansion of pb.
LEMMA 3. For any formula ,, x =y « 9, .=. =9y + ,.

LEMMA 4. For any formula 9, (En[zr=y - UA,] .=. ., .

LEMMA 5. Ey) [z =y].

These lemmas® are often used in the following.

LEMMA 6.  IT (0Y* .=.f=g, for any f € @ ard primitive pf
g

Proof. Using lemma 8

(1) Cf. my note loc. cit..
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@)* 2 (fe=1.v. fi#zD) (@) 2 fo=1-(g2)" v.(fi==D"
@Y* 2 fi=leg: V. fo=—1-(@)" 2 fo=1leg,=1.v. fi=—1-
0.=—12 fi=lefi=g. .v.foi=—1-fo=¢9. 2 (fi=1.V.
fi=—1)fi=0. 32 f.=0.

Then H(g Y = H(fz—gx) (@)[zr€R .. fo=0.) & f=9.

In , logical equivalence is a congruence relation. T denotes the
quotient algebra of & by this relation, and F the residue class of
which representative is F.

LEMMA 7. ¢+ =T, where &+ is the set of all primitive pf.

Proof. For any F € {§, choose the function f € @ suchas f, =1 .=.
F, for every = 6 R, and define the mapping ¢: § — &* by ¢ (F)=f".
Then FF =G .=. ¢ (F) = ¢ (G), hence we can define the mapping ¢: T
—¢* by ¢ (F) = ¢ (F). It is clear that the mapping ¢ is an isomorphism

from J to ¢*. .

LEMMA 8. 9N (X)=B(X) whenever 9 (f*) .=. B(f*) for all
ft e o, ard 9 = B whenever 91f+ L= .éB/+ for all f+ € &*.

Proof. This is a combination of the lemma 7, definitions 4 and 6.

LEMMA 9. 2 1T X/ = 1.

Proof. For any g* € &

S (@Y 22 5 (= 9) temma 6) 2 (BS) [f = 0] (@efnition 17

1 (leoma 5).

Hence, by lemma 8, Zj‘, [,[ Xp =

LEMMA 10.  For any pp 9(X), 9(X) + 11 X7* = 9(f") - I X7

Proof. For any ¢g* € ¢*

Ag") - 11 (g y* = U@ - f=9 (emma6) = AU - f=9
lemma 3) = L (f*) « 17 (93)’* (again by lemma 6).

Hence, the assertion is the consequence of lemma 8.
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THEOREM 1.  For any pp 9 (X)
o NX) =3 [4 - IXF)=11[4 V5 X7
where A is a pf on @ such that A . 9[ (f*)
Proof. Using lemmas 9 and 10, we get
AX) =AX) - 1=AX) - 21T Xl = 2 X - a1 b:cka
=2 A - m X7
Similarly (Q0(X))™"' = [@(f+)™ - T X .
Negating both sides of this identity, we get (X) = I/ [A(f*)¥ X7
Hence defining A by 4;,.=.9(f*),
AX) =7 [4- X7 = 1[4 v X,

These representations are called the orthogonal expansions of 9(X),
or precisely, “ Y II-expansion” and “ Iy -zxpansion” respectively. The
A, f-component of A, is called the f-component of 9 (X) and A the
associated pf with 91 (X).

THEOREM 2. The correspondence A—9(X) is an isomorphism from
0% to SR [X]. Hence, to within equivalence, the orthogonal expanmsions and

the components of a pp are unique.

Proof. The uniqueness of this correspondence is obvious. Replacing
X by ¢* in the expansions ®, we get Ag .=. % (¢*). This shows the
univalence of the correspondence. Let A and B be associated pf with
91(X) and B(X) and 9 (X) = (B(X))™", then, replacing X by f*, we
get A,.=.B;'. The proof of the remainder is the same.

COROLLARY. N (X) ‘E.f]ejg A,, where A is the associated pf with
A (X).

Proof. A(X) =2 AX) =12 AX) =21 X7* (by lemma 9)
= AX) =2 (1 IX] 2 HA =1 by uniqueness of components) T

I A
Pl



120 Y. Sampet

THEOREM 3. For any tf 9
A~ [4, - 0 X7) =T[4+ & X777

where A is a pf on @ such that A;.=. QIf,, for every f € @. Hence, the
correspondence A — 91 is an isomorphism from P2 0 I, and 9 .=. IT A,.
7e

Proof. Define A, as designated in this theorem, then
Ae = 4, 2 T[4, U (62)7].
Hence by the definition 7 91~ 3 [4, - 77 X[].
I x

We also use the terminology ‘“orthogonal expansion”, “associated
pf”, ete. for this case. :

REMARK. Roughly speaking, this theorem shows that one can
build up any tf from the five basic operations: sum, product, negation,
gs and gp. The last two can be replaced by existensive quantifier
and universal quantifier.

COROLLARY. I=P[X].
Proof. This is a combination of this theorem and the theorem ‘2.

THEOREM 4. Every pp or tf with many variables, say a tf 91
dofined on PE x <+ x PS5, can be expard:d orthogonally :

N~ eee D[4y s TXF o oue s [TYE],
feBE  g€BS xER yes

= JT oo« [T [Af...g V. Z Xz—fz V. eee .V, Z Y?'/—gy],

SEBE  gE€BS e R yes
where Af_._,,.E. 91f+“,g+ . Hence A — 9| is an iscmorphism ard 9| .=.
IT eeo IT A, .
sesr gens I

§ 4. The characteristic lattice and the character.

We introduce the ordering relation —1 < 1 in B. Then, not only
B but also Bf becomes Boolean algebra.

LEMMA 11. 1) f;.=.(f")s (where f” is the lattice complement of f)
2) fivegr .=.(~9i,
8) fi - 9r.=. (9.
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Now we shall establish the relation between &, S8 [X] and S.

First, we define a subset A of ¢ corresponding to a pp 9l (X) or a
tf 9 by the

DEFINITION 8. f€ A .=. A, where the A of A, is the associated
pf with 9 (X) or 9.

Then, from theorem 2 or 3
(II) The correspor.dence 9 (X)— A or 9l — A is one-to-one.

For this reason we call @ the characteristic lattice of B [X] or S,
and A the character of 91 (X) or 9l

Into 2%, we introduce the Boolean operations join, meet and cotaple-
ment by set union, intersection and set complement, and denote them
by +, « and ! respectively.

THEOREM 5. The correspordence 9 (X) - A or 9 > A is on
wsomorphism of B [X] to 2% or of T to 22. Hence P[X] or S is a
Booleam algebra whose cardinal is 22".

Proof. Let A and B be characters of 9l (X) and % (X), then by
the corollary of theorem 2

AX) > BX) = AX))'vBX) = [fI(A;‘ .v. B)
Zg(feA.:.feB)zAgB.

The assertion of this theorem is an easy consequence of this fact
and (II).

CHAPTER II. APPLICATION TO LOGIC.

In this chapter, we discuss the structure of the system of
“Pradikatenkalkiil” of Hr.serr and ACKERMANND.

§ 1. Quantifiers.

First, we shall consider the notion of deducibility. Take a
formula 9[, which has no free variable other than z. It is natural to
consider that the deducibility of this formula is independent of the

(1) Cf. Huperr and AckerMaNN, loc. cit., pp. 55-57.
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variable z. Hence let the formula (@)%, denote that Jl, is deducible,
then we can consider that the former contains no free variables. We
consider the symbol (d) as a kind of quantifier. Thus we have three
quantifiers (V), () and (d). Moreover, these quantifiers have the
property (I) of lemma I 1. Thus, we introduce the notion of formally
defined quantifiers:

DEFINITION 1. The formally d2fined quantifiers (V), (H) ard (d)
are tf on 5, d>fined by the

POSTULATE " 1. ay[ (Vo F, . =>. F, 1,
2. (qylF, .>. #A)F,],
3 dx)F, - dv)[F, = G,.] .>. {2)G,,
4. dx)[P > F,] .. P > (Vo)F,,
5 dx)[F, > P] .>. (Ax)F, > P,

where F, G € ¥ ard P is a proposition.

§2. Relations between characters of quantifiers.

Let A, E and D be the characters of (V), () and (). Then we get
LEMMA 1. ) (@n[(Vx) F, > F,] :=: ASD-(A=0¢ v. 1€ D),
i) (qw) [F, = @Ax) F,] :=: (DY <« E.(E=¢ .v.1€D),
iiiy (dx)F, - (dx) [F, > G,] .D>. dx)G,:=: D' —D"' < D7,

iv) do)[P>F,] =. P> V) F,: =D& A4,
v) (dx)[F,>P] .=.(Hx)F, > P:= K< (D7),

Il

where 1 is the greatest element of @, ¢ is the null set, A’ = {f"; f € A},
and A—~B = {f—g; f€ A. g€ B}.

Proof. By the corollary of theorem I 2

ay (Vo) F. > F,] & 11 {(gv) (Vo) fif;]1} &= 1 {(ay) [4,=>F71}
< ]f] {(G?J) [< AF); .V. f;]} (where P is the greatest or the least element of

" (1) Postulates 1 and 2 are from “ Axiom fiir ‘alle’ und ‘es gibt’”’, postulate 3 is from
“Schlussschema”, and postulates 4 and 5 are from “Schema fiir ‘alle’ und ‘er gibt’”. Cf.
the book loc. cit, pp. 55 57.
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0 according as P .=. 1 or 0) == iff D(A;T>vf = 1;1 K4 > —fe D] IfT
{(4;, .v.I—f € D)+ (47" .v.0—f € D)} (notice that (4 .v.1—f € D) - (4}
.v.0—f € D) is the orthogonal expansion of <47 >—f € D) = 51 {(fed V.
IeD):-(f¢eA.v.feD)} & 1;[ {feA .>. feD} - {If[(feA).v.
1eD} = ASD -+ (A=0 .v. 1€ D).

Thus i) is proved. The proof of ii) is the same.
By the theorem I 4

(dx) F,+ (dx) [F,>G,] .=.(dz) G, 1{1 {(@x) fi - (=) [ fi>97]
' g

Do (dr) 9z 22 n {D;« () (fr—9)i .= D} 2 {fq (Ds+ Dpey .=

D)= 1 (feD.ge D" o flege D) 2 DD S DL

Thus we obtam iii).
Regarding the left hand member of iv) as a tf W1th variable P

and F, and using the theorem I 4, we get
(dx)[P>F,] .=>. P(Vo)F, 22 [[ {(dx)[1=f7] .=.12(V2) 5} .
(D) [0 f1] > 02 (Vo) fi }] = U{@)fi= (Vz) £}
= sz(Df:Af) = z;i(fe D .o . f€ A.) = DcA.

We can prove v) similarly.

§ 3. Relations of quantifiers.
LEMMA 2. If postulates 1 and 4 hold, then (V) F, = (dx) F, .
Proof. From i) of lemma 1 A<D, and from iv) DEA. Hence A=D.
LEMMA 3. If postulates 2 and 5 hold, then (dx) F, = {(dx) F;'}"".
Proof. From ii) and v) of lemma 1 (D7) = K, then '
(@x) F,= B, v S F =D v 2 F =1 [D7' v £ (F).7]
= {H [D; v = (F”)"f”] = {@) F7Y.

LEMMA 4. Ie A and A—A' < A if and only if A is a mon-
voird dual ideal. _
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Proof. Necessity. Take f€ A. If there exists some g = f such
that g¢ 4, then g€ A™'. Hence f—g€ A~ A-"< A-', that is fr—ge A~
While I = f'—g = f~f =1, therefore I € A~". Since I € A4, this is a
contradiction. Thus we obtain that A is J-closed.

Take f, g € A, and assume that f—~g ¢ 4. Then f~g€ A-'. Hence
f—g =f—(f~9) € A~A"< A-', that is f'~y € A-'. Whilegec 4
and f"~g = g¢. Since A is J-closed, this is a contradiction. Thus, if
f, g € A, then f~g € A.

Sufficiency. From A # ¢, there exists a f € A. Then, since 4 is
J-closed and I = f, I € A.

Assume that there exist two elements f& A’ and g € A~! such that
f—g ¢ A-'. Then f—g € A. While A is a dual ideal, hence f'—~g =
f~(f—g) € A. Then g € 4, for A is J-closed and ¢ = f'~g. This
is contrary to the assumption g € A~

LEMMA 5. If R is finite, say R = {1,2,+++,n}, axd if postulates
1, 3 and 4 hold, then there are i, 4y <oe , in, m < m, 5, < n, w7t (b #1)
aﬂ?/d (Vx)Fx:‘Fi]’Fig' LA 'Fim.

Proof. From lemma 2 D=A. Then from postulate 3 A —A4-'< 4-",
and from postulate 1 A=¢.v.I€e A = 1€ d.v.lIc A =>1¢c A.
Then by lemma 4, A is a non-void dual ideal. Since A is finite,
there exists an element g of 4 and A=J(g), J-closure of g. Let g,=

g:=¢ee=g,=1and gn,y =+++=g,= — 1 for instance, then
42fedfeJo2fzo2 fi=v=fa=1.
Therefore
Vo) Fa= 2[4 A = R oo S5 [fi= oo = fu=1- T FL]
(where £ = (Ffms1,000,f2)) = ;‘, [Fyeo-o -F,,.-b{‘n{] F] = Fye ooe o F.
Generally, let g, =1 for x =14,,4,, +++, 4, and = — 1 otherwise,

then (VX)F, =Fi « Fiye oo « Fi,.
THEOREM 1. Let R = {1,2,+++,n}, then postulates 1, 2, +++, 5
hold if and only if
) (@)F. =) F.,
ii) @x)F,={(Va)F;'}™",
i) (Vo)F,= Fiy « Fiy o eo-« Fi,.
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Proof. If postulates 1, -, 5 hold, then i) ii) and iii) are given
by lemmas 2, 3 and 5. ‘ _‘ B
Conversely, if i), ii) and iii) hold, then by direct calculation, it is
easily seen that the quantifiers thus defined fulfil the postulates 1, «««, 5.



