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A modular on a universally continuous semi-ordered linear space
R is, as defined in 1], a functmnal m(x) (x € R) satisfying the following

conditions :
(i) O<m(x)<+<>o, m(0)=0; ,
(ii) m(%x)'is a convex function of ¢ which is ﬁmte in a nelgh-

bourhood of 0 and not -identically zZero, if 2203

(i) Jz|<|y| implies m(x)<m(y) -

iv) zly implies m(@+y)=m@)+m@);

(v) 0=z,lics* implies m(w)**supm(xl)

Since the set of elements {x: m(vr)<1} is convex, we can define
a norm ||| such that |[z||<1 is equivalent to m(@)=1. This norm.is
said to be the modular norm. On the other hands, putting

5 ’

Hxll—m

we obtain another norm which is conjugate to the modu‘lar‘norm of
the conjugate modular in case that the space R is semi-regular. We
have a relation between these two norms, that is,

ol < llwll < 2] .
In the space L,(p=1), putting
m@ = [2@)2dt ,

we obtain a modular and we have in this case
(1) , m@) =|o|*

and

lzl| = aflx[| ,

(2)

where, a is the number such that
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(3) a :pi?q% . —715—+%:: 1 (if p=1, we put a=1).

The constancy of the ratio of the norms is a consequence of the
property (1) of the modular, also in abstract case. The converse to
this was conjectured by H. Nakavo, and for the case a=1, S. YaAMAMURO
answered the problem in (2], proving that if the norms coincide each
other, then the modular is either linear” or smgular » or in other words,
the space is L,-type or M-type.

Such a precision as thls can not be attained in general case, and
in this paper we shall prove the following

Theorem. I f the norms of an infinite-dimensional modulared semi-
ordered linear space R satisfy the equality (2) for some a>1, then there exists
a normal manifold® N such that N'* is at most two dimensional and the
norm?® is either L,-type® or L,-type in N, where p and q are as given in
(3), and we have (in case of L,-type) the equalily (l) for every x€N such that
FESY |

The proof will be accomplished through the paper with an additional
result about the relation between the norm and modular. In the sequel,
if not mentioned the contrary, let R be an infinite-dimensional modu-
lared semi-ordered linear space where the norms satlsfy the equality
(2) for some a>1 and p, ¢ be as in (3). '

) is equlvalent to
inf. 1+1?(¢x)

£ >0

a,

if ||x]|=1, or in other words, the curve 7=m(x) is, in (¢, 7)-plane, in
the upper side of the line 7=a%—1 which is either a tangent to the
curve or parallel at inﬁriity“’ to it. ‘

Now we shall prove that

ol =1 implies m(x) =

1) A modular is said to be linear if we have m(éx)=&m (x).

2) A modular is said to be singular if it takes no value other than 0 or +o.

3) A manifold of R s said to be normal if R is decomposed into a direct sum:
R=N+M, where N€x, M€y imply xly, and then M is denoted by N+*. A :

4) This means one of the two norms; since they are different only by some constant
multiplier. This expression will be used often in the sequel.

5) A norm x| is said to be Ly -type if for every mutually orthovonal elements z, y
we have |[z+yl? =|z[? +|y[?.

6) This means—“parallel to the asymptote of”.
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If there exists x such that |[x||=1 and m(x)<1l, then x is an critical
element, that is, by definition, m(éx)= + c for every ¢>1. Then for
every orthogonal decomposition of x: x=y-+2, at least one of them, say
y, is also critical and hence we have also [|y[|=1 and m(y)>1. Thus
we can suppose that for x above, there exists an orthogonal sequence
of elements y,30(»v=1,2, ---) where every y, is orthogonal tox. More-
over we can take such y, as to satisfy the inequalities: '

m(x+yu)§1 and m@y,)=¢ for every v=1,2,,

where e is some positive number, because if y, is critical and m(y,)<1,
then we have [|y,[|=1 and m({y,)+1=lly,||=a, or m(y,)=a—1.
Since m(éx) goes to+  for &£>1, the curve yp=m(éx) must have as
a tangent the line 77 at—1. Let & be the least number satisfying
the equality : ' '

(4) - m(Ex) = a1,

then we have m ((,)=0 for every »=1,2,- because the same llne
y=at—1 must be also a tangent to the curve p=mE@+y,). Put
Y=4+¥:+:-+y, where n is an integer such that ne>1, then we have

1=mEy+1=&|y] =azly], '
and since a8, =1 by (4), ‘
| 1=y,
contradicting the fact that m(y)=ne >1.

2. We put

N

D= {a: : m@)= L
and for « in D, o
| %(E) = m(Sx) ——(aé—l) .

Here we shall preve that

- There exists an mﬁmte-dzmenswnal normal - mamf old N of R such that
for every x in N.D, ¢, is not upper bounded as a function of £,

If z is in D and m(rx)=1, then we have -

ag(1—L) = 2= 09— (m(50)— (@ D)} <¢.(9).
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Therefore if ¢, is upper bounded, then ; >1 and since ; :TM(x)é

m(rw)=1, we have r=2, that is, m(2x)=1.

If we can not find any normal manifold N mentioned above, then
there exists an orthogonal sequence of elements x, in D(»=1,2,.--) such
that ¢., are all upper bounded. Now putting

r :%(x!+x2++xn) ’

we have m(x)=1 and m@nr)=n,
and hence

a

IA

l+m@pa) 4 1
n : n

Since n is arbitrary, we have a=1, a contradiction.

3. We put for every =z in D,

S) ={¢: ¢.(¢) <0}
and
Ix)={¢: ¢.(§)<0},
then the first is a closed interval and the second an open one.
In the sequel we suppose that ¢, is not upper bounded for every
x in D, and here we shall show that
If R is decomposed into mutually orthogonal normal manifolds N, and
N, (denoting R= N,5N,), then for at least one of them, say N,, we have
S(@)x=0 for every x in N, D
In fact, if for mutually orthogonal elements z, ¥ in D, both S(x) and
S(y) are void, then we have : :

mE@+y)— (a—1)= ¢.E)+¢,¢) >0

for every &, and hence the line 7=af—1 must be parallel' at infinity
to the curve p=m(é(x+y)), contradicting the fact that ¢, is not upper
bounded. ’

4. We suppose, moreover, in the sequel, that S(x)>=0 for every x
in D, ‘ )
For every mutually orthogonal elements z,y of D, we have

| I@)~ Sy =0,
because
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¢x(¢)+%(¢) =mE@+yY)—(2E—-1)=0.

Let x,(¢=1,2,8) be mutually orthogonal elements of D, and suppose
that I(z)), I(x,) and I(z) are all non-void and in this order on the real
line, then for every 2, ¢« such that

' ' Ax,+ ,uxgéD
we have

S(?x1+ pxg),\I (@) =0
We can vary the pair (4, ) continuously from (1,0) to (0,1),- while S(Mc,
+ ;) varies also continuously from S(z;) to S(x.) being always disjoint
with I(x,).  But this is a contradiction and we conclude that at least
one of I(x;) above must be void.
Thus we have proved that

If R is decomposed as: R=N,DN,HN;, then for at least one N@, we
have I(x)=0 for every x in N,~D.

5. We suppose that for every x in D, S@)xd, I(x)=¢7 and ¢, is
not upper bounded. ‘ |
Then for every mutually orthogonal elements w, y of D, we have.
\ S@~S®=0, |
because S@)~S@) = ¢ implies
mE@+y)— (1 —1)= ¢.() + ¢, (§) >0

for every &, a contradiction as shown in Article,S‘

Now we shall prove that

If R is decomposed as: R= NIQBN,, then for at least one N (z_l or 2)
we have

(5) N S@x0.

© 2@ N D

| If the intersection above is void for N,, then there ex1sts a palr
of- elements x,y in N, p for which we have

S@) Sy =0.”
T_hen‘for every zin N,-D, since we have
S@~S@ =0,

7) Because S(w) is an interval; we can say more generally that if a collection of
closed intervals in a complete lattice has v01d 1ntersect10n then there exists a dlSJOlnt
pair among them.
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and .

S@~S) =0,
S(z) contains every ¢ which is between the two disjoint intervals S(z)
and S(y), and hence (6) is true for =2, “

6. We put
7. ()= inf 2 [m(1+9)5)-m@)] ,
and | |

7-@= sup-L- Im@)—m(1—e)))

for every z€R such that m(x)< +c. We have always =_(z)<=,(z) and
both 7, (¢x) and =_(¢x) are mnon-decreasing functions of &, and =.(x) is
orthogonally additive, that is, =, (x+y)=m.(x)+7.(x) if x| y.

If 7. (®)=n_(x), then we write it z(x), and such an element x is
said to be a regular element. Since m(fx) is a convex function, &z is
regular (providing m (£r)< + o) except for a countable number of &.

Now we suppose that the line P= —;-(C{E“— 1) is a tangent at a definite

point (§,,7,) to the curve »=m(ix) for every x in D.
Then we have for every « in D,

r_(6R) < —%— g <r,(5)

and since x€D is eqﬁ;ivale'nt to m(Ex) =17,

(6) - @ =Tm@) ==, ()
for every x such that m(x)=7,, where T:%;:

Then we shall prove that for every and & such that m(sx)<770,
we have

(7) : - m(&w) = E"m(@) .
We put :
P (x) = n(x)—Trm(x)

for every reguar element z, and decompose R as: R=N<DM, where
N is at least two dimensional. S

For two regular elements z,y in N such that
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m@) = my =7 ,
if there ex1sts a regular element 2 in M such that
mE) = 7—m@)
then we have by (6) '
p@+2)=py+2) =0,
and hence by the orthogonal additivity of p,

| p@ = p®) .
We shall here make use of the term “almost all” to mean “except
a countable number of”’. Then there exists a function (§) which is

defined for almost all & in the interval [0, 7,] and for which we have

@) = o im@)

for every regular element x in N such that m(x)<7, and o {m(@)} is
defined. Since N contains mutually orthogonal elements both dlﬁ‘erent
from 0, we have for almost all &, &,

0@ +E) = @)+ o) .

Since w(§) is obviously bounded at a neighbourhood of 0, and
w(n)=0 by (6), we can see easily that for almost all &, '

w@E) =0.

Then for every z in N such that m(@)<», we can find &, &,
arbitrarily near to 1, such that & -<1<¢, and éx is regular and p(¢x)=
w@m(&x)=0 for 2=1,2. Then we have

m(§,x) = n(E,x)én-(x)§n+(m)§n(§2x) = Tm‘(ng);,
and hence we can conclude that x is regular and
(8) | @) = Tm(z) .

. Similarly we can prove that every element x of R such that m(x)<7,
is regular and satisfies (8).
For an element z of R, put

f (5) ?n(cx)

for every & such that m(Ex) <7, then f(E) is dlfferentlable and we
have by (8)
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&)= L (e =
S (&) : (¢x) z JS©é,

and hence

fe=r (1) 7 .
Thus (7) was proved.

, Here 7 must be either p or ¢, because, if not, the line »= %(aé—— 1)

Would not be a tangent to the curve 77—%5"
If we have (7) for r =p, then we can see easily that
o |P = m(=) .
for every x such that m(x)=<7,, and hence that the nerm is L, type.

7. The case: a=2, is especially simple (then p= Q= 2) because

inf 1+mED _ g
e>o 5 .

implies that the line »=2£—1 is always a tangent at the point (1,1)
to the curve y=m(¢éx) for every z such that m(x)=1 (it is here equiva-
lent to x| = 1).

Since all the arguments in the last article is valid if R is at least
three dimensional, we can say, more precisely than in the theorem for
general case, that :

If R is at least three dimensional and we have

=l = 2||=]|

Sor every x in R, then the norm s L.-type and

m (x) =
Jor every x such that |jz|<1.

8. We can sce, as the consequence of the facts shown in the
foregoing articles, that there exists an infinite-dimensional normal
manifold N of R such that the norm is L, -type in N. If the norm is
L,-type in every normal manifold N,(1€4), then it is also so in the
normal manifold which is the join of all N,, because the norm is semi-
continuous, that is, 0 <x,1,¢,v implies {}|xill:§ggbuxl}i[.  Since the ex-

istence of two normal manifolds in which the norm is L, type. and
L,type respectively; contradicts (2), if a>=2, there exists the maximum
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normal manifold N having the property above. Moreover we can assume
that there exists a normal manifold N,C N, also infinite-dimensional,
and for which we have S(x)>(, I(x)-*ﬂ and ¢, is not upper bounded
for every z in D_N,. ,

Now we shall show that

Nt 48 at most two dimensional.

Decompose N as: N=N,ON,BN,; where IV, has non—vo1d inter-
section with N, for every ¢=1,2,3. If we have a decomposition :
N =M, M,3 M, then since S(x)x=0 for every x in D (N,HM,) (=1, 2, 3)
as shown in 3, for at least one of N,oM,, say N,©M;, we have I(x)=0
for every « in pD~(NV:55M;). Then we can see easily that the condition
in Article 6 is satisfied for N,2M,, and hence the norm is L, type in
it, a contradiction if M,;=0.

9. The most part of our theorem has been already proved and
the rest to prove is that :

€N and ||z <1 imply m(x)= |jzj*.

This is an 1mmed1ate consequence of the following more general
fact: - :
(*) If there exist 4wo modulow"s m,, m, on R which is at least three: di-
mensional, and the modular norms of then coincide each ather, and if more-
over ||x||=1 implies m,(x)=m.(x)=1, then we have m,x)=m,(x) for every x
such that ||z||<1. ' .

In fact, in our case, |x|? is a modular whose modular norm is [z
itself, and for the two modulars ||z||* and m(x), we can apply (*).

To prove (*), we decompose R as: R="N@M where N is at least
two dimensional. Then for every x, ¥ in N, if m,(x)=m,(®»)=<1, then we
have also m,(v)=m,(y), becauss there exists an element z in M, such
that m,(2)=1—m,(x) and we have

‘ m@+2)=m,(y+2) =1,
and hence |
my(x+2) =my(y+2) = 1.

Therefore there exists an function f(¢) defined for 0=<¢=<1 and
for which we have :

ma(@) = F (ma ()

for e&ery x such that m,(@x)<1.
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Since N contains mutually orthogonal elements, f is additive, and
moreover it is continuous and f(1)=1. From this we can conclude
that

FO=¢.
" Therefore (*) was proved for N, and since N is arbitrary and

modulars have the orthogonal additivity, it is valid also for the whole
space R. ‘

10. Here we shall give some remarks and counter examples.

If R has no discrete element, then the exceptional manifold in
the theorem, of course, can not exist. Moreover, in this case, if two
modulars m,, m, on R coincide each other for every sufficiently small
values of their own, then, by virtue of the orthogonal additivity of
modulars, we can prove easily that they coincide completely.

Therefore we have, for the last part of the theorem,

m (@) = [|zl|»

without restrictions. : . ‘ -

In general case, for the exceptional part of the theorem we do
not know whether it is superfluous or not. But the last restriction:
|z =<1 can not be wholly removed for the validity of (1), since, for
instance, we can define a modular on the sequence space [, as:

2 1e 7 if X &P=1
m(x) — V=t y=1
+ oo otherwise

for every x= {¢,}, and the fwo norins‘of this modular both éoincide
with those of the usual modular of I, (that is, f‘jllsylz for {Ey}) re-

spectively. This is also an example for the necessity of the similar
restriction in (*).

The theorem is also valid in case that R is finite-dimensional, if
the number of its dimension is sufficiently large. Although the least
number of dimension for this validity is not yet determined, it is
sufficient if -

1 ]

Dim. (R)>Max {12, N
oc—lj

The following example shows that this number can not remain
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bounded when a tends to 1.

Put
[ o if 0<¢<
FO=13 a1 it olt <&<1
+ oo if 1<¢.
In the n-dimensional space where n< Zéf , if we define a modular
as:
m (x) = yE:f((Eyl) ,

where

X = {Ely E:’.y En} kS
then we have

since there is no element x such that 1 <m@)< +co. Then if llel|=1

and r={1,¢,-- g,,}, then putting z,={1, 0, -0} we have for every ¢

such that %—- <¢<1,

L+m(z) - 1+m(z) _ 1+ _
e = & <

[

]

1+m (¢

and here the equality holds for Ez—i—, and hence ||z(|=«.

Therefore we have (2) for this space while the norm is M-type.

As for (*), we can, to some extent, remove the assumption that
lz/=1 implies m,(x)=m.(@)=1 and prove by the smnlar method as
displayed there, that

If R is in ﬁfnte-dzmenswnal cmd m,, my are two modulars on it such that
the modular norm of them coincide each other and, nevertheless, they do not
coincide on the set {x: ||x|| <1}, then we can find a normal manifold N of
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R such that N*‘ is finite-dimensional and there is mo element x in N such
that - ~ "
l<m@)<+oo,
and hence the modular norm is M-type in N.

On the other hand, even under the assumption mentioned above,
(*) is not true for some two dimensional spaces, for instance, if we put

© = { sin'(xe?)  if [8]<1
M R A
and ‘ c
| m@) =&+ +e{e@—¢M} ,
where x = {¢, 7}, and ¢ is a positive constant such that e§~;1;1~_;», then
‘ s i

we obtain a modular and for 'the‘ modular norm of it we have

. ) . - R 1
. il = @ +p)?
because &+7°=1 implies m(x)=1. Moreover if e is sufficiently small,
1 '

say , then we have also

&g =
3000

: i
lzll=2@E+7)* .
(August, 1953)
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