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A modular on a universally continuous semi-ordered linear space
$R$ is, .as defined in [1], a functional $m(x)(x\in R)$ satisfying the following
conditions:

(i) $ 0\leqq m(x)\leqq+\infty$ , $m(O)=0$ ;
(ii) $m(\backslash \wedge x)$ is a convex function of $\xi$ which is finite in a neigh-

bourhood of $0$ and not identically zero, if $x\neq 0$ ;
(iii) $|x|\leqq|y|$ implies $m(x)\leqq m(y)$ ;
(iv) $x\perp y$ implies $m(x+y)=m(x)+m(y)$ ; $\rightarrow c$

(v) $0\leqq x_{\lambda}\uparrow\lambda C\rightarrow\Lambda^{\prime r}$ implies $m(x)=\sup_{\wedge lC_{i}1}m(x_{\lambda})$ .
Since the set of elements $\{x:m(\iota)\leqq 1\}$ is convex, we can define

a norm $\Vert|x\Vert|$ such that $\Vert|x\Vert|\leqq 1$ is equivalent to $m(x)\leqq 1$ . This norm is
said to be the modular norm. On the other hands, putting

$||x||=\inf_{\xi>0}\frac{1+m}{\xi}--(\xi x)$

we obtain another norm which is conjugate to the modular norm of
the conjugate modular in case that the space $R$ is semi-regular. We
have a relation between these two norms, that is,

$|11x\Vert|\leqq||x||\leqq_{\backslash }2$ fl $x\Vert|$ .
In the space $L_{p}(p\geqq 1)$ , putting

$m(x)=\int_{0}^{1}|x(t),|^{p}dt$ ,

we obtain a modular and we have in this case
(1) $m(x)=\Vert|x\Vert|^{p}$

and
(2) $||x||=a\Vert|x\Vert|$ ,

where, $a$ is the number such that
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(3) $a=p^{\frac{l}{p}}q^{\frac{l}{q}}$ , $\frac{1}{p}+\frac{1}{q}=1$ (if $p=1$ , we put $a=1$).

The constancy of the ratio of the norms is a consequence of the
property (1) of the modular, also in abstract case. The converse to
this was conjectured by H. NAKANO, and for the case $\alpha=1$ , S. YAMAMURO
answered the problem in [2], proving that if the norms coincide each
other, then the modular is either linear1) or singular, ) or in other words,
the space is $L_{1}$-type or M-type.

Such a precision as this can not be attained in general case, and
in this paPer we shall prove the following

Theorem. If the norms of an infinite-dimensional moclulared semi-
ordered linear space $R$ safisfy the equality (2) for some $\alpha>1$ , then there exists
a normal manifold3) $N$ such that $N^{\perp 4)}$ is at most two dimenszonaZ and the
$norm^{4)}$ ’is either $L_{p}$-type5) or $L_{q}$-type in $N$, where $p$ and $q$ are as $g\dot{w}$en in
(3), and we have (in case of $L_{p}$-type) the equahty (1) for every $x\in N$ such that
$|||x\Vert|\leqq 1$ .

The proof will be accomplished through the paper with an additional
result about the relation between the norm and modular. In the sequel,
if not mentioned the contrary, let $R$ be an infinite-dimensional modu-
$1\dot{a}red$ semi-ordered linear space where the norms satisfy the equality
(2) for some $\alpha>1$ and $p,$ $q$ be as in (3).

1. (2) is equivalent to

$\inf_{\xi>0}\frac{1+m(\xi^{\wedge}\prime x)}{\xi}=a$ ,

if $\Vert|x\Vert|=1$ , or in other words, the curve $\eta=m(\xi x)$ is, in $(\xi, \gamma/)$-plane, in
the upper side of the line $\eta=\alpha_{s}=-1$ which is either a tangent to the
curve or parallel at infinity6) to it.

Now we shall prove that
$||x\Vert|=1$ implies $m(x)=1$ .

1) A modular is said to be linear if we have $m(\xi x)=\xi m(x)$ .
2) A modular is said to be singular if it takes no value other than $0$ or $+\infty$ .
3) A manifold of $R$ is said to be normal if $R$ is decomposed into a direct sum:

$R=N+M$, where $N\in x,$ $M\in y$ Imply $x1y$, and then $M$ is denoted by $ N\perp$ .
4) This means one of the two norms; since they are different only by some constant

multiplier. This expression will be used often in the sequel.
5) A norm $\Vert x\Vert$ is said to be $L_{p}- typ\tilde{e}$ if for every mutually

$0_{?}$
rthogonal elements $x,$ $y$

we have $\Vert x+y\Vert^{p}=\Vert x|P+\Vert y||P$ .
6) This $means-$ parallel to the asymptote of”.
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If there exists $x$ such that $\Vert|x||=1$ and $m(x)<1$ , then $x$ is an $c\gamma\prime ihcal$

element, that is, by definition, $ m(\xi x)=+\infty$ for every $\xi>1$ . Then for
every orthogonal decomposition of $x:x=y+z$ , at least one of them, say
$y$ , is also critical and hence we have also Iil $y|^{1}|=1$ and $m(y)>1$ . Thus
we can suppose that for $x$ above, there exists an orthogonal sequence
of elements $y_{\nu}\neq 0(\nu=1,2, \cdots)$ where every $y_{1}$, is orthogonal to $x$. More-
over we can take such $y_{\nu}$ as to satisfy the inequalitie8:

$m(x+y_{\nu})\leqq 1$ and $ m(y_{\nu})\geqq\epsilon$ for every $\nu=1,2,$ $\cdots$ ,

where $\epsilon$ is some positive number, because if $y_{\nu}$ is critical and $m(y_{\nu})\leqq 1$ ,
then we have 11 $y_{\nu}\Vert|=1$ and $m(y_{\nu})+1\geqq||y_{\nu}||=a$ , or $m(y_{v})\geqq a-1$ .

Since $m(\xi x)$ goes $to+\infty$ for $\xi>1$ , the curve $\eta=m(\xi x)$ must have as
a tangent the line $\eta=\alpha\xi-1$ . Let $\xi_{0}$ be the least number satisfying
the equality:

(4) $m(\tilde{\sigma}_{0}- x)=a\xi_{()}--1$ ,

then we have $m$ ($\xi_{0}y_{f}$ノ)=0 for every $\nu=1,2,$ $\cdots$ , because the same line
$\eta=\alpha\xi-1$ must be also a tangent to the curve $\eta=m(\xi(x+\cdot y_{\nu}))$ . Put
$y=y1+y_{2}+\cdots+y_{n}$ where $n$ is an integer such that $n\epsilon>1$ , then we have

$1=m(\xi_{0}y)+1\geqq\xi_{0}\Vert y||=a\xi_{0}\Vert|y\Vert|$ ,

and since $\alpha\xi_{0}\geqq 1$ by (4) ,

$1\geqq|1iy\Vert|$ ,

contradicting the fact that $m(y)\geqq n\epsilon>1$ .
2. We put

$D=\{x$ : $m(x)=\frac{1}{2}\}$ ,

and for $x$ in $D$ ,

$\varphi_{x}(\xi)=m(\xi x)_{2}^{1}---(a\xi-1)$ .

Here we shall prove that
There exists an infinite-dimensional normal-manifold $N$ of $R$ such that

for every $x$ in $N_{\cap}D,$ $\varphi_{x}$ is not upper bounded as a functim of $\xi$ .
If $x$ is in $D$ and $m(\gamma x)=1$ , then we have

$\rightarrow$

$a\xi(1-\frac{\gamma}{2})-\frac{1}{2}=\varphi_{x}(i\xi)-’(m(T\xi x)-((\alpha\xi-1)\}\leqq\varphi_{x}(\gamma\xi)$ .
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Therefore if $\varphi_{x}$ is upper bounded, then $\frac{\gamma}{2}\geqq 1$ and since $\frac{\gamma}{2}=\gamma m(x)\leqq$

$m(rx)=1$ , we have $r=2$ , that is, $m(2x)=1$ .
If we can not find any normal manifold $N$ mentioned above, then

there exists an orthogonal sequence of elements $x_{\nu}$ in $D(\nu=1,2, \cdots)$ such
that $\varphi_{x}\nu$ are all upper bounded. Now putting

$x=\frac{2}{n}(x_{1}+x_{3}+\cdots+x_{?l})$ ,

we have $m(x)=1$ and $m(nx)=n$ ,
and hence

$\alpha\leqq\underline{1}\frac{+m}{n}(\underline{nx})_{-}=1+\frac{1}{n}$ .
Since $n$ is arbitrary, we have $a=1$ , a contradiction.

3. We put for every $x$ in $D$ ,

$|S(x)=\{\xi;\varphi_{x}(\frac{\wedge}{\backslash })\leqq 0\}$

and
$I(x)=\{\xi;\varphi_{x}(\hat{\sigma})<0\}$ ,

then the first is a closed interval and the second an open one.
In the sequel we suppose that $\varphi_{x}$ is not upper bounded for every

$x$ in $D$ , and here we shall show that
If $R$ is decomposed into mutually orthogonal normal manifolds $N_{1}$ and

$N_{2}$ (denoting $R=N_{1}\oplus N_{9}$), then for at least one of them, say $N_{1},$

.
we have

$ S(x)\neq\emptyset$ for every $x$ in $N_{1\cap}D$ .
In fact, if for mutually orthogonal elements $x,$ $y$ in $D$ , both $S(x)$ and

$S(y)$ are void, then we have
$m(\xi(x+y))-(a\xi-1)=\varphi_{x}(\xi)+\varphi_{y}(\xi)>0$

for every $\xi$ , and hence the line $\eta=a\xi-1$ must be parallel at infinity
to the curve $\eta=m(\hat{\sigma}(x+y))$ , contradicting the fact that $\varphi_{x}$ is not uPper

bounded.

4. We suppose, moreover, in the sequel, that $ S(x)\neq\emptyset$ for every $x$

in $D$.
For every mutually orthogonal elements $x,$ $y$ of $D$ , we have

$ I(x)_{\cap}S(y)=\emptyset$ ,

because
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$\varphi_{x}(\hat{\epsilon})+\varphi_{y}(\xi)=m(\xi(x+y))-(\alpha\xi-1)\geqq 0$ .
Let $x_{i}(i=1,2,3)$ be mutually orthogonal elements of $D$ , and suppose

that $I(x_{1}),$ $I(x_{-},)$ and $I(x_{3})$ are all non-void and in this order on the real
line, then for every $\lambda,$

$\mu$ such that
$\lambda x_{1}+\mu x_{3}\in D$ ,

we have
$ S(\lambda x_{1}+\rho x_{3})_{\cap}I(x_{2})=\emptyset$ .

We can vary the pair $(\lambda, f^{1})$ continuously from $(1,0)$ to $(0,1)$ , while $S(\lambda x_{1}$

$+\mu x_{3})$ varies also continuously from $S(x,)$ to $S(x_{\wedge}\supset)$ being always disjoint

with $I(x_{2})$ . But this is a contradiction and we conclude that at least
one of $I(x_{i})$ above must be void.

Thus we have proved that
If $R$ is decomposed as: $R=N_{1}\oplus N_{\underline{o}}\oplus N_{3}$ , then for at least one $N_{i}$ , we

have $ I(x)=\emptyset$ for every $x$ in $N_{i\cap}D$ .
5. We suppose that for every $x$ in $D,$ $S(x)\neq\emptyset,$ $ I(x)=\emptyset$ and $\varphi_{x}$ is

not upper bounded.
Then for every mutually orthogonal elements $x,$ $y$ of $D$ , we have

$ S(x)_{\cap}S(y)\frac{\rightarrow-}{\iota}\emptyset$ ,

because $ S(x)_{\cap}S(y)=\emptyset$ implies

$m(\xi(x+y))-(\alpha\xi-1)=\varphi_{x}(\overline{\sigma})+\varphi_{y}(\xi)>0$

for every $\xi$ , a contradiction as shown in Article 3.
Now we shall prove that
If $R$ is decomposed as: $R=N_{1}\oplus N\underline,$ , then for at least one $N_{i}$ ($i=1$ or 2)

we have
$\cap S(x)-\neq\emptyset$ .(5) $xeN_{i=}D$

If the intersection above is void for $N_{1}$ , then there exists a pair
of elements $x,$ $y$ in $N_{1\cap}D$ for which we have

$S(x)_{\cap}S(y)=\emptyset^{7)}$

Then for every $z$ in $N_{0_{\cap}}D$ , sinc\’e we have
$ S(z)_{\cap}S(x)\neq\emptyset$ ,

7) Because $S(x)$ is an interval; we can say more generally that if a collection of
closed intervals in a complete lattice has void intersection, then there exists a disjoint
pair among them.
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and
$ S(z)_{\cap}S(y)\neq\emptyset$ ,

$S(z)$ contains every $\xi$ which is between the two disjoint intervals $S(x)$

and $S(y)$ , and hence (5) is true for $i=2$ .
6. We put

$\pi_{+}(x)=\inf_{6>0}\frac{1}{\epsilon}\{m((1+\epsilon)x)-m(x)\}$ ,

and

$\pi_{-}(x)=\sup_{8>0}\frac{1}{\epsilon}\{m(x)-m((1-\epsilon)x)_{/}^{1}$

for every $x\in R$ such that $ m(x)<+\infty$ . We have always $\pi_{-}(x)\leqq\tau_{+}(x)$ and
both $\pi_{+}(\xi x)$ and $\pi_{-}(\xi x)$ are non-decreasing functions of $\xi$ , and $\pi_{\underline{\perp}}(x)$ is
orthogcynally additive, that is, $\pi_{+}(x+y)=\pi_{\pm}(x)+\pi_{\pm}(\backslash x)$ if $x\perp y$ .

If $\pi_{+}(x)=\pi_{-}(x)$ , then we write it $\pi(x)$ , and such an element $x$ is
said ’to be a regular element. Since $m(\xi x)$ is a convex function, $\xi x$ is
regular (providing $ m(\backslash \wedge\wedge l)<+\infty$ ) except for a countable number of $\xi$ .

Now we suppose that the line $\eta=\frac{1}{2}(\alpha\xi-1)$ is a tangent at a definite

point $(\xi_{0}, \eta_{0})$ to the curve $\eta=m(\hat{\sigma}x)$ for every $x$ in $D$.
Then we have for every $x$ in $D$ ,

$\pi_{-}(\xi_{()}z)\leqq\frac{1}{2}a\xi_{0}\leqq\pi_{*}(\dot{\sigma}_{0}x)$ ,

and since $x\in D$ is equivalent to $m(\xi_{(}x)=\eta_{0}$ ,

(6) $\pi_{-}(x)\leqq\gamma m(x)\leqq\pi_{+}(x)$

for every $x$ such that $m(x)=\eta_{0}$ , where $\gamma=\frac{a_{\dot{\zeta}_{0}}}{2\eta_{0}}$ .
Then we shall prove that for every $x$ and $\xi$ such that $m(\xi x)\leqq\eta_{0}$ ,

we have

(7) $m(\hat{\sigma}x)=\xi^{7}m(x)$ .
We put

$\rho(x)=\pi(x)-\gamma m(x)$

for every reguar element $x$ , and decompose $R$ as: $R=N\oplus M$, where
$N$ is at least two dimensional.

For two regular elements $x,$ $y$ in $N$ such that
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$m(x)=m(y)\leqq\eta_{0}$ ,

if there exists a regular element $z$ in $M$ such that

$m(z)=\eta_{0}-m(x)$ ,

then we have by (6)

$\rho(x+z)=\rho(y+z)=0$ ,

ahd hence by the orthogonal additivity of $\rho$ ,

$\rho(x)=\rho(y)$ .
We shall here make use of the term ”almost $a$ ] $1$ ’ to mean ”except

a countable number of”. Then there exists a function $\omega(\xi)$ which is
defined for almost au $\xi$ in the interval $[0, \eta_{0}]$ and for which we have

$\rho(x)=\omega\{m(x)\}$

for every regular element $x$ in $N$ such that $m(x)\leqq\eta_{0}$ and $\omega\{m(x)\}$ is
defined. Since $N$ contains mutually orthogonal elements both diffe\v{r}ent
from $0$ , we have for almost all $\xi l’\xi_{2}$ ,

$\omega(\xi_{1}+\xi_{\underline{9}})=\omega(\xi l)+cv(\xi_{2})$ .
Since $co(\xi)$ is obviously bounded at a neighbourhood of $0$ , and

$co(\eta_{0})=0$ by (6), we can see easily that for almost all $\xi$ ,

$\omega(\xi)=0$ . .

Then for every $x$ in $N$ such that $m(x)<\eta_{0}$ , we can find $\xi l\xi_{\rightarrow},$ ,
arbitrarily near to 1, such that $\xi_{1}<1<\xi_{2}$ and $\xi_{i}x$ is regular and $\rho(\xi_{i}x)=$

$\omega(m(\sigma_{i}\prime x))=0$ for $i=1,2$ . Then we have

$\gamma m(\xi_{1}x)=\pi(\xi_{1}x)\leqq\pi_{-}(x)\leqq\pi_{+}(x)\leqq\pi(\xi_{2}x)=\gamma m(\dot{\sigma}_{\wedge} x)$ ,

and hence we can conclude that $x$ is regular and

(8) $\pi(x)=Tm(x)$ .
Similarly we can prove that every element $x$ of $R$ such that $m(x)\leqq\eta_{0}$

is regular and satisfies (8).
For an element $x$ of $R$ , put

$f(\xi)=m(\xi x)$

for every $\xi$ such that $m(\xi x)\leqq\eta_{0}$ , then $f(\xi)$ is differentiable and we
have by (8)



A Characterization of the Modulars of $L_{p}$ Type 29

$f^{\prime}(\xi)=\frac{1}{\xi}\pi(\xi x)=\frac{\gamma}{\xi}f(\xi)$ ,

and hence
$f(\xi)=f(1)\xi^{7}$ .

Thus (7) was proved.

Here $\gamma$ must be either $p$ or $q$ , because, if not, the line $\eta=\frac{1}{2}(\alpha\xi-1)$

would not be a tangent to the curve $\eta=\frac{1}{2}\xi^{\gamma}$ .
If we have (7) for $\gamma=p$ , then we can see easily that

$\Vert|x\Vert_{I^{p}}=m(x)$

for every $x$ such that $m(x)\leqq\eta_{0}$ , and hence that the norm is $L_{p}$-type.

7. The case: $\alpha=2$ , is especially simple (then $p=q=2$), because

$\inf_{\xi>0}\frac{1+m(\xi x)}{\xi}=2\Vert|x\Vert|$

implies that the line $\eta=2\xi-1$ is always a tangent at the point $(1,1)$

to the curve $\eta=m(b\succ\wedge x)$ for every $x$ such that $m(x)=1$ (it is here equiva-
lent to $\Vert|x\Vert|=l$).

Since all the arguments in the last article is valid if $R$ is at least
three dimensional, we can say, more precisely than in the theorem for
general case, that

If $R$ is at least three dimensional and we have
$||x||=2\Vert|x\Vert|$

for every $x\prime inR$ , then the norm is $L_{-}$,-type and

$m(x)=\Vert|x\Vert|^{2}$

for every $x$ such that II $x\Vert|\leqq 1$ .
8. We can see, as the consequence of the facts shown in the

foregoing articles, that there exists an infinite-dimensional normal
manifold $N$ of $R$ such that the norm is $L_{p}$-type in $N$. If the norm is
$L_{p}$-type in every normal manifold $N_{\lambda}(\lambda\in\Lambda)$ , then it is also so in the
normal manifold which is the join of all $N_{\lambda}$ , because the norm is semi-
continuous, that is, $ 0\leqq x_{\lambda}.\uparrow$ a $C\sim\Lambda X$ implies Il $x\Vert|=\sup_{RC-\Lambda}|||x_{\lambda}\Vert|$ . Since the ex-
istence of two normal manifolds in which the norm is $L_{p}$-type and
$L_{q}$-type respectively; contradicts (2), if $\alpha\neq 2$ , there exists the maximum
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normal manifold $N$ having the property above. Moreover we can assume
that there exists a normal manifold $N_{0}\subset N$, also infinite-dimensional,

and for which we have $S(x)\neq\emptyset,$ $ I(x)=\emptyset$ and $\varphi_{x}$ is not upper bounde $d$

for every $x$ in $D_{\cap}N_{0}$ .
Now we shall show that
$N^{\perp}is$ at most two dimensional.
Decompose $N$ as: $N=N_{1}\oplus N_{2}\oplus N_{3}$ where $N_{i}$ has non-void inter-

section with $N_{0}$ for every $i=1,2,3$ . If we have a decomposition:
$N^{\perp}=M_{1}\oplus M_{\lrcorner}\supset\oplus M_{3}$ , then since $ S(x)\neq\emptyset$ for every $x$ in $D_{\cap}(N_{i}\oplus M_{i})(i=1,2,3)$

as shown in 3, for at least one of $N_{i}\oplus M_{i}$ , say $N_{1}\oplus M_{1}$ , we have $ I(x)=\emptyset$

for every $x$ in $D_{\cap}(N_{1}\oplus M,)$ . Then we can see easily that the condition
in Article 6 is satisfied for $N_{1}\oplus M_{1}$ , and hence the norm is $L_{p}$-type in
it, a contradiction if $M_{1}\neq 0$ .

9. The most part of our theorem has been already proved and
the rest to prove is that

$x\in N$ and $\Vert|x\Vert|\leqq 1$ imply $m(\iota)=\Vert|x\Vert|^{p}$

This is an immediate consequence of the following more general
fact:

$(^{*})$ If there exist .two modulars $m_{1},$ $m_{\rightarrow},$ $cnR$ which is at lea $st$ three di-
mensional, and the modular norms of then eoincide each other, and if more-
over $\Vert|x\Vert|=1$ imphes $m_{1}(x)=m_{\underline{\alpha}}(x)=1$ , then we have $m,(x)=m_{-},(x)$ for every $x$

such that 11 $x\Vert|\leqq 1$ .
In fact, in our case, $\Vert x|_{||}^{1p}$ is a modular whosg modular norm is $\Vert|x\Vert|$

itself, and for the two modulars $\Vert|x\Vert|^{p}$ and $m(x)$ , we can apply (“).
To prove $(^{*})$ , we decompose $R$ as: $R=^{1}N\oplus M$ where $N$ is at least

two dimensional. Then for every $x,$ $y$ in $N$, if $m_{1}(x)=m_{1}(y)\leqq 1$ , then we
have also $m_{A}$) $(x)=m_{d}0(y)$ , because there exists an element $z$ in $M$, such
that $m_{1}(z)=1-m_{1}(x)$ and we have

$m_{1}(x+z)=m_{1}(y+z)=1$ ,

and hence
$m_{2}(x+z)=m_{2}(y+z)=1$ .

Therefore there exists an function $f(\xi)$ defined for $0\leqq\xi\leqq 1$ and
for which we have

$ m_{2}(x)=f(m_{1}(x))\rightarrow$

for every $x$ such that $m_{1}(x)\leqq 1$ .
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Since $N$ contains mutually orthogonal elements, $f$ is additive, and
moreover it is continuous and $ f(1)=1.\cdot$ From this we can conclude
that

$ f(\frac{\wedge}{\backslash })=\xi$ .
Therefore $(^{*})$ was proved for $N$, and since $N$ is arbitrary and

modulars have the orthogonal additivity, it is valid also for the whole
space $R$ .

10. Here we shall give some remarks and counter examples.

If $R$ has no discrete element, then the exceptional manifold in
the theorem, of course, can not exist. Moreover, in this case, if two
modulars $m_{1},$ $m_{3}$ on $R$ coincide each other for every sufficiently small
values of their own, then, by virtue of the orthogonal additivity of
modulars, we can prove easily that they coincide completely.

Therefore we have, for the last part of the theorem,

$m(x)=\Vert|x\Vert|^{p}$

without restrictions.
In general case, for the exceptional part of the theorem we do

not know $wh\dot{e}ther$ it is superfluous or not. But the last restriction:
$|||x\Vert|\leqq 1$ can not be wholly removed for the validity of (1), since, for
instance, we can dePne a modular on the sequence space $l_{2}$ as:

$m(x)=\left\{\begin{array}{ll}L^{\urcorner}|\xi_{\nu}|^{3}v\overline{-}1\infty & if \sum_{\nu-1}^{\infty}|\xi_{\nu}|^{2}\leqq 1\\+\infty & otherwise\end{array}\right.$

for every $x=\{\xi_{\nu}\}$ , and the two norms of this modular both coincide
with those of the usual modular of $l_{2}$ (that is, $\sum_{\nu-1}^{\infty}|\xi_{\nu}|^{2}$ for $\{\xi_{\nu}\}$ ) re-
spectively. This is also an example for the necessity of the similar
restriction in $(^{*})$ .

The theorem is also valid in case that $R$ is finite-dimensional, if
the number of its dimension is sufficiently large. Although the least
number of dimension for this validity is not yet determimed, it is
sufficient if

$Dim.(R)>{\rm Max}\{12,$ $\frac{1}{a-1}\}$

The following example vhows that this number can not remain
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bounded when $a$ tends to 1.
Put

$f(\overline{\sigma})=[a^{\epsilon}-1+\infty 0$
$ififif$

$\frac{1}{a}\leqq\xi_{-}\leqq 11<\xi 0\leqq\xi\leqq\frac{1}{\alpha}$

In the n-dimensional space where $n<\frac{1}{a-1}$ , if we define a modular

as:
$m(x)=\sum_{\nu-1}^{n}f([\xi_{\nu}|)$ ,

where
$x\equiv\{\xi J’\xi_{2}, \cdots\xi_{n}\}$ ,

then we have

$|_{1}|x\Vert|={\rm Max}|\xi_{\nu}|\nu$ ’

since there is no element $x$ such that $ 1<m(x)<+\infty$ . Then if $\Vert|x||=1$

and $x\equiv\{1, \xi, \cdots\xi_{n}\}$ , then putting $x_{1}\equiv\{1,0, \cdots 0\}$ we have for every $\xi$

such that $\frac{1}{\alpha}\leqq\xi\leqq 1$ ,

$\frac{1+m(\sigma\prime x)}{\xi}\geqq\frac{1+m(\xi x,)}{\xi}=\frac{1+f}{\xi}=a(\underline{\hat{\sigma})}$ .

On the other hand we have also for every $\xi$ such that $0\leqq\xi\leqq\frac{1}{a}$ ,

$\frac{1+m(\hat{\sigma}x)}{\xi}=\frac{1}{\xi}\geqq a$

and here the equality holds for $\xi=\frac{1}{a}$ , and hence $||x||=a$ .
Therefore we have (2) for this space while the norm is M-type.
As for $(^{*})$ , we can, to some extent, remove the assumption that

$\Vert|x|||=1$ implies $m_{1}(x)=m_{2}(x)=1$ and prove by the similar method as
displayed there, that

If $R$ is infinte-dimensional and $m_{1},$ $m_{2}$ are two $?mdula\gamma s$ on it such that
the modular norm of them coineide each other and, nevertheless, they do not
coincide on the set $\{x:\Vert|x\Vert|\leqq 1\}$ , then we can find a normal manifold $N$ of
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$R$ such that $N^{\perp}$ is finite-dimensional and there is no element $x$ in $N$ such
that

$ 1<ml(x)<+\infty$ ,

and hence the modular norm is M-type in $N$ .
On the other hand, even under the assumption mentioned above,

$(^{*})$ is not true for some two dimensional spaces, for instance, if we put

$\varphi(\xi)=\left\{\begin{array}{ll}\sin^{2}(\pi\xi^{3}) & if |\xi|\leqq 1\\0 & if |\xi|>1\end{array}\right.$

and
$m(x)=\xi^{d}\cdot+\eta^{\lrcorner}0+\epsilon\{\varphi(\xi)-\varphi(\eta)\}$ ,

where $x\equiv\{\xi, \eta\}$ , and $\epsilon$ is a positive constant such that $e\leqq\frac{1}{4\pi^{2}+\pi}$ , then

we obtain a modular and for the modular norm of it we have

$\Vert|x\Vert|=(\xi^{2}+^{o}\eta^{\sim})^{Z}1$

because $\xi^{2}+r^{\underline{9}}/=1$ implies $m(x)=1$ . Moreover if $\epsilon$ is sufficiently small,

say $\epsilon=\frac{1}{3000}$ , then we have also

$||x||=2(\xi\cdot+\eta^{\underline{o}})^{\frac{1}{2}}$ .
(August, 1953)
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