ON FINITE MODULARS
: .

Sadayuki YAMAMURO

The modulared semi-ordered linear space® R is a universally continuous
semi-ordered linear space associated with a functional m(a) (@€ R)
satisfying the following conditions :

1) 0=m(a)<+ o for every a€R;

2) if m(éa)=0 for every positive number £>0, then we have
a=0; , , '

'8) for any a€R we can find a positive number & such that
mEa)< +oo; |

4) m(¢a) is a convex function of &£>0, that is, a,3>0 implies
m<#a) = 1 {m(aa)+m(ﬁa)} for every a € R;

5) |a]=|b] implies m@<m®); ,

6) a~b=0 implies m(@+bdb)=m(@+m®);

7 0=Za;1ie,0 implies m(a):ﬁlclpm(aa) .

. "A

This functional m(a)(@€R) is called a modular on this modulared semi-
ordered linear space R.

If m(éa)< +  for every £>0, then a is called a finite element. When
every element is finite, then the modular is called a finite modular. If
there exists a number 7>-0 such that .

m(28a) < Tm(éa) for every £>0,

then @ is called an upper bounded element. When the 7 is uniquely deter-
mined for every a€ R, then the modular is called an wupper bounded
modular. ' . _

It is easily seen that the upper boundedness implies finiteness, but
the converse is not always true. For example, the following one is
interesting : A collection of sequences x=(¢,) such that

m(azx) = }_3:‘, (e*'¢v'—1)< + o  for some a>0
V=1

1) H. NAKANO, Modulared semi-ordei’ed linear spaces, Tokyo Mathematical Book
Series, Vol. 1 (1950).
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is a modulared semi-ordered linear space. Let -
| f‘l(e‘év'-—l) <‘+co.
Y= .
Then we have |
f, v 1) = 2 (e“V‘+1)(e‘eV‘~1)<TL @ —1)< 400,

T ~-smp(e‘“/‘—}-l)

vzi

hence thls modular is finite. But, it is obvious that this is not 'upper
bounded.

The object of this paper is to investigate the relatlon between
finiteness and upper boundedness. : :

§1. A hzstomcal note.

Let M(¢) be a continuous, convex functlon of $>0 such that the
followmg conditions are satisfied: \

1) M(@E=0 if and only if £=0;
2) lim M(E) =0, lim —M(S) = +4oco ,
£-0 &—’+:c

A szt (LY) of measurable functmns x(2) (0<t<1) such that
j M(a| %) |)dt < + o for some a> 0

was firstly defined and investigated by W. Orricz.® Similarly, he
defined the space (I%) of sequences (¢,) such that :

S M(a|2,) <+ oo - for some a>0.
V=1

Concerning this function M(%), W. Orricz and Z. B. BirnauM® have
obtained the following proposition: ' v
(L*)-case: In order that

j M(|2(®)]) dt < + o0 zmplzes J M(2[x(t)[)dt < 4o,

zt &S necessary and sy fficient that we com Jind a,7>0 such that

2) W. OrrICZ, Ueber eine gewisse Klasse von Riumen vom Typus (B), Bulletine de
I’ Akademie Polonaise des Science et des Lettres. (1932) pp. 207220, Ueber Raume (LM),
“ibid. (1936) pp. 93-107.

3) Z. B. BIRNBAUM and W. ORLICZ, Ueber die Verallgememerunv des Begriffes der
zuecinander konjugierten Potenzen, Studia Math. III (1931) pp. 1-67.
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o MEe<rME - for £ra.
({*)-case: In order that '

i1M([E"’D<+’°° tmplies ‘:glM(ZlEyl)<+_w .

it is mecessary and sufficient that we can: find «,7>0 such that
| M@8) < TM®) for 0<é<a,
This proposition provides a clue for our problem. |

§2. A genem’ property of finite modulars. _
In this section we will show that the notion of ﬁmteness contams

that of upper boundedness in a certain extended sense.
Let |[a]R be finite and Ea(S/O) be s1mp1e Since we have

m(dva) = SE Jw(4, va, ) m(dpra)
for the modular spectra -
o4, va, b)-— lim m(4v[pla)

[p1>p W-(v—‘[p]a) _
w(4,:a,p) is almost finite in U,. Hence, there exists a sequence of

projectors [p.,,] such that

’

_ (w11 w2 [a]
and
w (4’ 1a, p) = : (p € Utp,uv,yil)~

As [a¢]R is totally continuous, we can find a sequence of projectors
[p,]1(=1,2, ) such that [p,]1,2[a] and

[ppjé[pl&y.p.uj (V)P:]u,z’ ) .«
TherefOre, we have | \ ,
©(4,va,9) = ;0 ‘ (he [jlip,;:l)
and hence B ‘ |
m@v[ple) S p,,om@[p]e) (p1=[p,).
Hence it appears that | &
m2s[pla) <p,, pm(ﬁ[p]a) for [p]=[po] and 1=é&=v.

Applying the same argument to —l—a, we can find a sequence of
- v ‘ : . .
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projectors {p,.](0’=1,2, ---) such that
[pr)"] 1072y [a] ’

=<¢=<1 we have

and for [p]=[p,] and L
: v

m2&[ple) < p, 0o mEPla) .
Hence we have - S
o [0,][Ds] 1 [a]
1

and for [p|=<[p,][p,.] and — <¢=<» we have
. Y

| 77?/(25[27]“) é max. ([‘u,m [lu,o‘)'m(f[p]a) .
That is: ‘ : ‘

- Theorem. Whenever [a]R s finite and simple, we can find a sequence
of projectors [p,] and mwmbers 7,12, such that

[py] 1,24 [a] ’
1

and for [p]=[p,] and = <&=<yv we have
N /

m@elpla) <7, mEpla) .

'N.B.1. Let a be itself atomic, namely 0x=[p]<[a] implies [p]=[a].
In this case, we have - o

w4, v, D) = m@ra)mita)=a, < + co el ,
and hence, » |
m (4va)/m(a) < Max. (@, a,) (v #1, 2, -, v).

Similarly we have
-m 4ia>/m<ia> = Max. (3, - ,B) r=12,- - u)
.Y v = | . 1 1Py y &y ’

1

Y

for ﬂy:w<4, a,p) . Therefore we have

m (2¢a) <7, m(%a) ,

where 7,1 ,2,+c and %gsgp.’

N.B. 2. Let a be finite dimensional, that is, -
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e]=[p]+[p]+ -+ [p:], [0]p:]=0 (xp,

and every [p,] is atomic. Then there exist sequences of numbers
Tw,v 1,21 such that '

IA

m2:[pla) 7., mE[pJa)  for _%_gg ).

Hence, summing up the both sides, we have ‘
M(2Ea) < (7)o +7y 2+ 4T, ) mEd) =7, mEa)-,

where

IIA
IA

EZS vy,

[ : ) . 1
7, =2 7., 1,2 and —
Boe=1 Y

N.B. 3. Even if a one dimensional modular f (¢) is finite and simple,
we can not always find such numbers a,7>0 that :

1) fF@O=T1-5© 0<é<a),
2) o F@O=Z7-£() (>a).
For instance, ' ' :
(@& =e"—1
satisfies 1) for some «,7>0 but not 2), and
! 193 ..
P 1/v! (6= =0=23))
- linear  (elsewhere)

satisfies 2) but not 1).

§ 3. Modulared sequence spaces.

, In this section, we will settle the problem in the case when R is
a modulared sequence space l(f,).” It may be regarded as the most
general sequence space which satisfies the modular conditions.

When all f, are equal, that is, f=f,(»=1,2,---) for some f, then
I(f) is an Ogrricz space. In this case, if I(f) is finite then Il(a,f) is
also finite for any integer «,=1. In fact, if :

a,f(é,))<+eoo,

s

=1

X

then, putting

4) S. YAMAMURO, Modulared sequence spaées, this journal.
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..........................................

we obtain a sequence (y,) such that

g‘.;f@y) = ilauf(5u>< + oo .

However we have
V‘ f(277u) - 2—» auf(2§u> < 4o,

because (E,,)el(f) and {(f) is finite by the assumptlon Therefore
l(a, f) is finite. Co
When the functions f, are power functions, that is, when f,(§)=¢"~
for p, =1, its modular is of unigque spectra. In this case, we can find
the same property. Namely, if I(§?v) is finite, then I(«,£?¥) also is
finite for any real numbers «,>0. Because, if [(¢?v) is finite, then
the sequence p, (v=1,2, ---) is bounded, that is, I(¢?¥) is upper bounded,
and, even, in the general modulared sequence space I(f,), if l(f ) is
upper bounded, then I(a,f,) is upper bounded for every sequence
a,>0. :
But, in general cases, there exists a modulared sequence space
I(f,) which is finite, but not I(«, f,) for a,=v(»=1,2,---). For example,
the following will satisfy our curiosity. o ’

2‘ .

/ 0 Zf $=m ’
fU(E): 2_1 2_ 2 “ .
22 =&+ Z7Y otherweise .

2 v

Since f,(¢) are linear for large £>0, f,(¢) are finite, but not upper

bounded. As it is clear that (v‘“’—_2)/2(v 1)<%, we have

m($)=E5(F)=E %
m@W=3% f0)=3% = .

Putting «,=v, in the space {»f,), we have
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() ??mfv%)ﬁ%“”’

=]

@)= v rm=% L

1

I

lI

+ w .
y ;

which shows that I(»f,) is not finite.

Now, we will state our theorem: _

Theorem. If IcI(f,)and l(a,f,) is finite for every sequence of real
numbers a,=1, then there exist numbers a, T>0 such that

(™) | fu(25)<7 @ 0=¢=<a)

for almost all v .
Proof. 1f we can not ﬁnd such numbers a,7>0, then there exists
a sequence (5;3.) such that

fup.(zf}b)>f‘ fv,u,(Cu) (/1~=1,2,~".~),

and then we have

. - - 2
qéaﬂ’fyp, 5}1 Q—o
I ®

for a“suitably determined sequence «,. Therefore we have

8 :

Z ap.'fup )éZ
=1 M= 1

On the other hand, we have

S—‘ “u f,, (3"u)>2 Ap - e fuLL(Eu)g

L

Ay

) Here we may de_termlne a, as a, =1, because_l ci(f,) implies the
existence of such numbers a>0 that supf,(a) <+ and hence we
can select &, as v

fu”(fp)é—il—‘z ‘ =12
at the first step. Therefore, we can suppose that a,=>1, so that

§ ady '.fyp,(zgp,)i"l"m .

Putting |

§e (=4p)
0 (xp,

v :Jl



20 : ' S. Yamamuro

and
g = | du ©=pn
/ Lo (=xn,
we obtain A
Z “ufy(Vu)<+°°
and

ilau 'fu(277u): + oo,

Hence I(x,f,) is not finite, which contradicts the assumption. There-
fore, there exist numbers a,7>0 such that

| FL@=T1,0) 0<¢<a)
for almost all v.

The converse of this theorem is almost evident.

Theorem. If I(f,)cm and satisfies (*), then l(a, f,) is finite for every
sequence a,>0. o '

§ 4, General case.

Let R be a modulared semi-ordered linear space and m be its
modular. The modulared semi-ordered linear space can be represented
by a function space on its proper space. If all projectors are atomic,
then the space may be regarded as the modulared sequence space and
the case was considered in the previous section. In this sectlon we
con31der the case where no atomic projector exists. e

Theorem. Let [a]R be finite. If [a]R has no atomic projector a,nd is
monotone complete, then for any partztwn [p,] such that

[@=3% ), WIpl=0 e,
we can find at least one v such that. |

m @) <7 -mEplad) € >a)

for some real numbers a,7>0 and a projector [p]<[».].
Proof. If we can not find such «, 7 and v, then there exist se-
quences £&,1,2+oc and [p,J(»=1,2, --) such that

[@=3 [p] and m@,[pl)>y mE,[plo) (B<[p.).
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Here we can select &, as m(¢,[p,Ja)=1. Therefore, there exist [g,]
(»=1,2,---) such that -

[e.]1<[p.] (=12 and m¢, g, Jo= 5 .
Since [a]R is monotone complete, |
a =3 &(¢]a
converges and ,
m (@) =3 m(,[g,]a) < +oo .
On the chel; hand, we have

m@a)=3 m@)e])> 3 v mE[@])=3F - =+,

v=1 Y

which means that a, is not finite.



