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E-polynomials associated to Z4-codes
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Abstract. Coding theory is connected with number theory via the invariant theory

of some specified finite groups and theta functions. Under this correspondence we

are interested in constructing, from a combinatorial point of view, an analogous the-

ory of Eisenstein series. For this, we previously gave a formulation of E-polynomials

based on the theory of binary codes. In the present paper we follow this direction and

supply a new class of E-polynomials. To be precise, we introduce the E-polynomials

associated to the Z4-codes and determine both the ring and the field structures gen-

erated by them. In addition, we discuss the zeros of the modular forms obtained from

E-polynomials under the theta map.
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1. Introduction

After the pioneering work of Gleason [7] and of Broué-Enguehard [4], the
relations among coding theory, the invariant theory of some finite groups,
and Siegel modular forms were clarified by Duke [6], Runge [14], [16]. Such
studies give the correspondence between number theory and combinatorics.
Our study follows this idea. In our previous papers [12], [13], we gave
a formulation of E-polynomials based on the theory of binary codes and
saw its fundamental properties. In the present paper we take up Z4-codes.
This is the first interesting case we have to do after the binary case. More
precisely, we define an E-polynomial in connection with the symmetrized
weight enumerator of Z4-codes and determine the rings generated by them.
It turns out that the ring generated by the E-polynomials almost coincides
with the invariant ring for the finite group H which is defined below and is
graded by w. The exceptions appear in lower w’s. Moreover, we see the field
of quotient of homogeneous invariants of the same weight can be generated
by E-polynomials. These properties of E-polynomials can be seen in the
theory of Eisenstein series (cf. [17]). In the last section, we consider the
image of E-polynomials under the theta map and discuss the zeros of the
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resulting modular forms.

Notation We denote by C the field of complex numbers. Let Aw be a
finite dimensional vector space over A0 = C and

A =
∞⊕

w=0

Aw

be the graded integral domain. The formal series

∞∑
w=0

(dimAw)tw

is called the dimension formula of A. We shall denote by F0(A) the field
of quotients of A which can be written as the quotient a/b of homogeneous
elements of the same weight in A.

2. Preliminaries

In this section we recall some results in [9], [5], [2]. In the course of this,
we introduce the notion of E-polynomials.

By η8 we denote a primitive 8-th root of unity. Let H be a finite group
generated by

η8

2




1 2 1
1 0 −1
1 −2 1




and diag[1, η8,−1]. This is of order 384. The group G generated by H and
diag[η8, η8, η8] is of order 768. Under a usual action of such matrices on the
polynomial ring of three variables we denote by W, W̃ the invariant rings
of H, G, respectively:

W = C[x0, x1, x2]H = W0 ⊕W1 ⊕W2 ⊕ · · · ,

W̃ = C[x0, x1, x2]G = W̃0 ⊕ W̃1 ⊕ W̃2 ⊕ · · · .

The dimension formulae of these are given as
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∑
w

(dimWw)tw =
1 + t16

(1− t8)2(1− t12)
,

∑
w

(dim W̃w)tw =
1 + t16

(1− t8)2(1− t24)
.

Coding theory helps us to give sets of generators of these invariant rings as
we shall see next.

Let Z4 = {0, 1, 2, 3} be the ring of integers modulo 4. In the following the
elements of Z4 are sometimes regarded as those of Z. By a Z4-code of length
n, we shall mean an additive subgroup of Zn

4 . We define an inner product
on Zn

4 by (a, b) = a1b1 + · · ·+ anbn (mod 4) where a = (a1, a2, . . . , an), b =
(b1, b2, . . . , bn). We impose two conditions on Z4-codes treated in this paper.
The first is self-duality which says that our code C coincides with its dual
code C⊥:

C = C⊥ := {y ∈ Zn
4 | (x, y) ≡ 0 (mod 4), ∀x ∈ C}.

The second is analogous to the doubly-evenness for binary case. In our Z4

case,

(x, x) ≡ 0 (mod 8), ∀x ∈ C.

A Z4-code enjoying two conditions above is called Type II. The symmetrized
weight enumerator of a Z4-code C is defined by

SWC(x0, x1, x2) =
∑

a∈C

x
n0(a)
0 x

n1(a)+n3(a)
1 x

n2(a)
2

where ni(a) = ]{j : aj = i}. If C is a Type II Z4-code, SWC(x0, x1, x2)
is G-invariant. We denote by p8, q8, p16, p24 the symmetrized weight enu-
merators of the octacode, the codes Km for m = 8, 16, and the lifted Golay
code, respectively, where Km has the following generator matrix (cf. [9])




1 1 1 · · · 1 1
2 0 · · · 0 2

2 · · · 0 2
. . .

...
...

2 2




.
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The explicit forms are

p8 = x8 + 14x4z4 + 112x3y4z + 112xy4z3 + 16y8 + z8,

q8 = x8 + 28x6z2 + 70x4z4 + 28x2z6 + 128y8 + z8,

p16 = x16 + 120x14z2 + 1820x12z4 + 8008x10z6 + 12870x8z8 + 8008x6z10

+ 1820x4z12 + 120x2z14 + 32768y16 + z16,

p24 = x24 + 759x16z8 + 12144x14y8z2 + 170016x12y8z4 + 2576x12z12

+ 61824x11y12z + 765072x10y8z6 + 1133440x9y12z3 + 24288x8y16

+ 1214400x8y8z8 + 759x8z16 + 4080384x7y12z5 + 680064x6y16z2

+ 765072x6y8z10 + 4080384x5y12z7 + 1700160x4y16z4

+ 170016x4y8z12 + 1133440x3y12z9 + 680064x2y16z6 + 12144x2y8z14

+ 61824xy12z11 + 4096y24 + 24288y16z8 + z24.

The subscript denotes the weight of each polynomial. For the readers fa-
miliar with these topics it will become clear in the last section why we take
up the symmetrized weight enumerators rather than the complete weight
enumerators.

It is known that a Type II Z4-code of length n exists if and only if n is a
multiple of 8. So the symmetrized weight enumerators of Type II Z4-codes
are not enough to generate the invariant ring W. Now we give the definition
of E-polynomials. An E-polynomial of weight k for H is, by definition,

ϕH
k = ϕH

k (x0, x1, x2) =
1
|H|

∑

σ∈H

(σx0)k =
|K|
|H|

∑

K\H3σ

(σx0)k

where

K =








1 0 0
0 ∗ ∗
0 ∗ ∗


 ∈ H





is a subgroup of H of order 8. If we apply the same definition of E-
polynomials ϕG

k for G, the resulting polynomials are the same. Therefore we



E-polynomials associated to Z4-codes 343

simply denote by ϕk without specifying a group and call it an E-polynomial
of weight k. The smallest nontrivial elements in both the symmetrized
weight enumerators and E-polynomials are of weight 8. We have there the
relation

ϕ8 =
5
48

p8 − 1
128

q8. (♣)

All these being said, the module structures over the weighted polynomial
rings of our invariant rings are described as follows.

W = C[p8, q8, ϕ12]⊕C[p8, q8, ϕ12]p16,

W̃ = C[p8, q8, p24]⊕C[p8, q8, p24]p16.

The unique minimal relation of the ring W is

355274 · 112p2
16 + 2 · 325273 · 112(26p2

8 + 24p8q8 − 269q2
8)p16

= 3252 · 112(−2123p4
8 − 21111p3

8q8 + 2732 · 41p2
8q

2
8

+ 251039p8q
3
8 − 110491q4

8) + 23073(p8 − q8)ϕ2
12, (♠)

the right-hand side of which contains no p16. The structure of W̃ is deduced
from that of W and from the identity

22673

325 · 112
ϕ2

12 = 263p3
8 − 2313 · 173p2

8q8 − 59113p8q
2
8 + 37 · 373q3

8

+ 263 · 73p24 + 72(11 · 59p8 − 5 · 29q8)p16.

The unique relation of W̃ is

325 · 74p2
16 + 2 · 3 · 72(−2341p2

8 + 283p8q8 − 5247q2
8)p16

= − 21019p4
8 − 271051p3

8q8 − 243 · 29 · 101p2
8q

2
8 + 273 · 13 · 89p8q

3
8

− 3 · 151 · 569q4
8 + 21073(p8 − q8)p24.

Here we notice that the invariant ring W̃ is generated by the symmetrized
weight enumerators of Type II Z4-codes. This remarkable fact, began with
Gleason [7], is highly generalized in [10].
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3. Results

In this section we determine the generators of both the rings and the
fields of E-polynomials. We denote by E (resp. Ẽ) the ring over C generated
by the ϕ`’s with ` ≡ 0 (mod 4) (resp. with ` ≡ 0 (mod 8)).

Theorem 1 (1) E is minimally generated by the E-polynomials of weights

8, 12, 16, 20, 24, 28, 32, 40, 48.

(2) Ẽ is minimally generated by the E-polynomials of weights

8, 16, 24, 32, 40, 48, 56, 64, 72, 80.

Proof. (1) We denote by Esub the ring generated by the ϕ`’s of weights

` = 8, 12, 16, 20, 24, 28, 32, 40, 48.

We have Esub ⊂ E ⊂ W. We compute the dimensions of each vector space
Esub

w and get the following table.

w 8 12 16 20 24 28 32 36 40 44 48 52

dimWw 2 1 4 2 7 4 10 7 14 10 19 14

dimEsub
w 1 1 2 2 4 4 7 7 11 10 18 14

Also we can verify by direct calculations

Esub
w = Ww 52 ≤ w ≤ 96.

We shall show that the equality above holds for any w ≥ 100. First we
observe

W =
∑

0≤m≤6,0≤n≤1

Esubpm
8 pn

16.

Indeed this follows from the above calculations, (♣) and (♠). It is then
enough to prove that any

ϕ = ϕa
8ϕb

12ϕ
c
16ϕ

d
20ϕ

e
24ϕ

f
28ϕ

g
32ϕ

h
40ϕ

i
48p

m
8 pn

16 (0 ≤ m ≤ 6, 0 ≤ n ≤ 1)
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of weight greater than 96 lies in Esub. Suppose that ϕ has the smallest
weight greater than 96 such that ϕ /∈ Esub. We have ϕ = ϕ`F for some
` ∈ {8, 12, 16, 20, 24, 28, 32, 40, 48}. We get

deg ϕ > deg F = deg ϕ− ` ≥ 100− 48 = 52

and by the choice of ϕ we conclude F ∈ Esub. This completes the proof of
(1).

(2) This can be proved by the same way as (1). We denote by Ẽsub the
ringe generated by E-polynomials of weights

8, 16, 24, 32, 40, 48, 56, 64, 72, 80.

The dimensions we have to compare are the table below

w 8 16 24 32 40 48 56 64 72 80 88

dim W̃ 2 4 7 10 14 19 24 30 37 44 52

dim Ẽsub 1 2 3 5 7 11 15 22 30 42 52

and it is enough to check Ẽsub
w = W̃w for w = 88, 92, . . . , 160. We omit the

details. ¤

Before proceeding to the next theorem, we give the raison d’être of it.
We know the j-function∗ has many important aspects. Among other things,
the field C(j(τ)) is the field of elliptic modular functions. The points we like
to emphasize are that an elliptic modular function is written as a quotient of
two modular forms of the same weight and that Eisenstein series are enough
to write elliptic modular functions (cf. [17]). All these taken into account,
the following are the very expected property for E-polynomials.

Theorem 2 (1) F0(W) can be generated over C by

q8

p8
,

p16

p2
8

and coincides with F0(E).
(2) F0(W̃) can be generated over C by

∗See Section 4 for the discussion on modular forms.
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q8

p8
,

p24

p3
8

and coincides with F0(Ẽ).

Proof. Since the proof of (2) is similar to that of (1), we give the proof of
(1) only. We shall show the first part of (1). Consider an element

(Aabcp
a
8qb

8ϕ
c
12 + · · · ) + (Bαβγpα

8 qβ
8 ϕγ

12 + · · · )p16

(Cabcpa′
8 qb′

8 ϕc′
12 + · · · ) + (Dα′β′γ′pα′

8 qβ′
8 ϕγ′

12 + · · · )p16

(♥)

of F0(W). If we look at the weights of the numerator, we have

8a + 8b + 12c = 8α + 8β + 12γ + 16

or

2(a + b) + 3c = 2(α + β) + 3γ + 4.

This gives the parities of c and γ are the same. If we look at the weights of
the numerator and the denominator, the equation

8a + 8b + 12c = 8a′ + 8b′ + 12c′

gives the parities of c and c′ are the same. Consequently we know the parities
of c, γ, c′, γ′ coincide. So we find that in the expression (♥), we only need
to consider the even power of ϕ12. As a consequence we have only to show
that ϕ2

12/p3
8 is in F0(W). This is obtained from (♠).

We shall show the latter part of (1). We know dimW20 = dim E20 =
2. So p8ϕ12 and q8ϕ12 are respectively linear combinations of ϕ8ϕ12, ϕ20.
Thus q8/p8 = q8ϕ12/p8ϕ12 is an element of F0(E). Similarly, if we consider
p16ϕ12, p2

8ϕ12, we get p16/p2
8 = p16ϕ12/p2

8ϕ12 is in F0(E). This completes
the proof of (1). ¤

4. Concluding Remarks

We conclude this paper giving the observations on the zeros of the
mapped E-polynomials. Let τ be an element of the upper-half plane, that
is, τ ∈ C with the positive imaginary part. We recall the following functions
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θab(τ) =
∑

n∈Z

exp 2π
√−1

{
τ

(
n +

a

4

)2

+
(

n +
a

4

)
b

4

}

where a, b ∈ {0, 1, 2, 3}. Put fa(τ) = θa0(2τ). Here we have f1(τ) = f3(τ)
and this is the reason why we are interested in the symmetrized weight
enumerators rather than the complete weight enumerators (cf. [15], [1]). At
any rate it is known that, for an element F ∈ W of weight n,

Th(F (x0, x1, x2)) = F (f0(τ), f1(τ), f2(τ))

is a modular form of weight n/2 for SL(2,Z). A typical example of a modular
form of weight k is an Eisenstein series defined by

Ek(τ) =
1
2

∑

c,d∈Z
(c,d)=1

1
(cτ + d)k

for even k ≥ 4, where (c, d) = 1 means that c, d are coprime. We put
q = e2π

√−1τ . Then Ek(τ) is normalized, that is, the constant term of the
q-expansion of Ek(τ) is equal to 1. In particular, it is known that

E4(τ) = 1 + 240q + 2160q2 + · · · ,

E6(τ) = 1− 504q − 16632q2 + · · · .

As usual, we put

∆(τ) =
1

1728
(E3

4(τ)− E2
6(τ)),

j(τ) =
E3

4(τ)
∆(τ)

.

Then we have

∆(τ) = q − 24q2 + 252q3 + · · · ,

j(τ) =
1
q

+ 744 + 196884q + · · · .

In addition our modular forms are also normalized as
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e`(τ) = (const)Th(ϕ`) = 1 + · · · .

For any even integer k > 2 we can write k uniquely in the form

k = 12m + 4δ + 6ε with m ∈ Z≥0, δ ∈ {0, 1, 2}, ε ∈ {0, 1}

and then any modular form f(τ) of weight k can be written uniquely as

f(τ) = ∆(τ)mE4(τ)δE6(τ)εf̃(j(τ))

for some polynomial f̃ of degree ≤ m in j(τ). Since zeros or ∆(τ), E4(τ),
E6(τ) are well understood, additional zeros of f(τ) can be read off from
the polynomial f̃(j). For example a zero τ (in the fundamental domain) of
f(τ) = 0 is in

|τ | = 1, −1
2

< Re τ < 0, Im τ > 0

if and only if the root j of f̃(j) = 0 is in the interval (0, 1728). We examined
our modular forms e`(τ) of lower weights.

1. The zeros of the associated polynomials of e`(τ) are in (0, 1728).
2. We shall denote the zeros of the associated polynomial of e`(τ) by

a1, a2, . . . , am and those of e`+24(τ) by b1, b2, . . . , bm+1. Then we get
bj < aj < bj+1 for j = 1, 2, . . . , m (cf. [11]).

3. If k = `/2 = p − 1 where p ≥ 5 is prime, then the coefficients of the
associated polynomial of e`(τ) are p-integral (cf. [8]).

These are not proved generally but to be investigated. We give a graph in
the last page which shows the zeros of e4k+28(τ) for k = 1, 2, . . . , 58.
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[17] Siegel C. L., Einführung in die Theorie der Modulfunktionen n-ten Grades.



350 T. Motomura and M. Oura

Math. Ann. 116 (1939), 617–657.

Togo Motomura

Graduate School of Integrated Arts and Sciences

Kochi University

Kochi 780-8520, Japan

Manabu Oura

Graduate School of Natural Science and Technology

Kanazawa University

Ishikawa 920-1192, Japan

E-mail: oura@se.kanazawa-u.ac.jp

Figure 1. Zeros e4k+28(τ).


