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Abstract. In 1927 Littlewood constructed a bounded holomorphic function on the

unit disc, having no tangential boundary limits almost everywhere. This theorem was

the complement of a positive theorem of Fatou (1906), establishing almost everywhere

non-tangential convergence of bounded holomorphic functions. There are several gen-

eralizations of Littlewood’s theorem whose proofs are based on the specific properties

of holomorphic functions. Applying real variable methods, we extend these theorems

to general convolution operators.

Key words: Fatou theorem, Littlewood theorem, Poisson kernel.

1. Introduction

The following remarkable theorems of Fatou [8] play a significant role in
the study of boundary value problems of analytic and harmonic functions.

Let T = R/2π and D = {z ∈ C : |z| < 1}.
Theorem A (Fatou, 1906) Any bounded analytic function on the unit
disc D has non-tangential limits at almost all boundary points.

Theorem B (Fatou, 1906) If a function of bounded variation µ(t) is
differentiable at x0 ∈ T, then the Poisson integral

1
2π

∫

T
Pr(x− t)dµ(t)

converges non-tangentially to µ′(x0) as r → 1.

Littlewood [15] made an important complement to these results, proving
essentiality of non-tangential approach in Fatou’s theorems. The following
statement of Littlewood’s theorem is equivalent to the original one. It is
fitted to the further statement of the present paper.

Theorem C (Littlewood, 1927) If a continuous function λ(r) : [0, 1) →
(0,∞) satisfies the conditions
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lim
r→1

λ(r) = 0 and lim
r→1

λ(r)/(1− r) = ∞, (1.1)

then there exists a bounded analytic function f(z), z ∈ D, such that the
boundary limit

lim
r→1

f
(
rei(x+λ(r))

)
,

does not exist at almost every x ∈ T.

There are various generalizations of these theorems in different aspects.
A simple proof of Theorem C was given by Zygmund [27]. In [16] Lohwa-
ter and Piranian proved, that in Littlewood’s theorem almost everywhere
divergence can be replaced to everywhere and the example function can be
a Blaschke product. That is

Theorem D (Lohwater and Piranian) If a continuous function λ(r) sat-
isfies (1.1), then there exists a Blaschke product B(z) such that the limit

lim
r→1

B
(
rei(x+λ(r))

)
,

does not exist for any x ∈ T.

In [1] Aikawa obtained a similar everywhere divergence theorem for
bounded harmonic functions on the unit disc, giving a positive answer to a
problem raised by Barth [6, p. 551].

Theorem E (Aikawa) If λ(r) is continuous and satisfies the condition
(1.1), then there exists a bounded harmonic function u(z) on the unit disc,
such that the limit

lim
r→1

u
(
rei(x+λ(r))

)
,

does not exist for any x ∈ T.

As it is noticed in [1] this theorem implies theorem A. Indeed, if u(z) is
a harmonic function obtained in Theorem E and v(z) is its harmonic con-
jugate, then the holomorphic function exp(u + iv) has the same divergence
property as u(z) does.

Related questions were considered also in higher dimensions. Korani
[14] extended Fatou’s theorem for the Poisson-Szegö integral. Littlewood
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type theorems for the higher dimensional Poisson integral was established
by Aikawa [1], [2] and for the Poisson-Szegö integral by Hakim-Sibony [9],
Hirata [10]. In [6] Nagel and Stein proved that the Poisson integral on the
upper half space of Rn+1 has the boundary limit at almost every point within
a certain approach region, which is not contained in any non-tangential
approach regions. Sueiro [8] extended Nagel-Stein’s result for the Poisson-
Szegö integral. Almost everywhere convergence over tangential tress (family
of curves) were investigated by Di Biase [4], Di Biase-Stokolos-Svensson-
Weiss [5].

Sjögren ([23], [24], [25]), Rönning ([19], [20], [21]), Katkovskaya-Krotov
([12]), Krotov ([13]), Brundin [7], Mizuta-Shimomura [17], Aikawa [3] stud-
ied fractional Poisson integrals with respect to the fractional power of the
Poisson kernel. In [12] and [3] higher dimensional cases of such integrals are
studied.

The present paper is the continuation of the authors investigations in
[11]. In [11] we introduce λ(r)-convergence, where λ(r) is a function

λ(r) : (0, 1) → (0,∞) with lim
r→1

λ(r) = 0. (1.2)

For a given x ∈ T we denote by λ(r, x) the interval [x − λ(r), x + λ(r)]. If
λ(r) ≥ π we assume that λ(r, x) = T. Let Fr(x) be a family of functions
from L1(T), where r varies in (0, 1). We say Fr(x) is λ(r)-convergent at a
point x ∈ T to a value a ∈ R, if

lim
r→1

sup
θ∈λ(r,x)

|Fr(θ)− a| = 0. (1.3)

We shall denote this relation by

lim
r→1: θ∈λ(r,x)

Fr(θ) = a.

We shall say Fr(x) is λ(r)-divergent at x ∈ T, if there is no a ∈ R satisfying
(1.3).

This definition generalizes the non-tangential convergence. For example,
in Fatou’s Theorems A and B we have a. e. λ(r)-convergence, if λ(r) satisfies
the condition (1.7).

We say the family of kernels ϕ = {ϕr(x) ≥ 0 : 0 < r < 1} ⊂ L∞(T),
forms an approximative identity (AI), if they satisfy the conditions
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(a): ϕr(x) is even and decreasing on [0, π],
(b): ‖ϕr‖1 → 1 as r → 1,

(c): ϕr(x) → 0 as r → 1, 0 < |x| < π.

We denote by BV(T) the family of functions of bounded variation on T. In
[11] we have investigated a. e. λ(r)-convergence properties of the integrals

Φr(x, dµ) =
∫

T
ϕr(x− t)dµ(t), µ ∈ BV(T), (1.4)

Φr(x, f) =
∫

T
ϕr(x− t)f(t)dt, f ∈ Lp(T), 1 ≤ p ≤ ∞. (1.5)

The quantity

α = α(λ, ϕ) = lim sup
r→1

λ(r)‖ϕr‖∞ (1.6)

plays a significant role in the investigations of (1.4) and (1.5) with p = 1. It
is proved

Theorem F ([11]) Let {ϕr} be an AI.
1) If α(λ, ϕ) < ∞ and µ(t) ∈ BV(T) is differentiable at x0, then

lim
r→1: t∈λ(r,x0)

Φr(t, dµ) = µ′(x0).

2) If α(λ, ϕ) = ∞, then there exists a positive function f ∈ L1(T) such
that

lim sup
r→1: t∈λ(r,x)

Φr(t, f) = ∞

for all x ∈ T.

Theorem F implies that an admissible approach region for Φr is deter-
mined in terms of the finiteness of the quantity (1.6). It is interesting, that
this rate depends only on the values ‖ϕr‖∞. If ϕr is the Poisson kernel

Pr(t) =
1− r2

1− 2r cos t + r2
,

then one can easily check that ‖ϕr‖∞ ∼ 1/(1−r) and the condition α(λ, ϕ) <
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∞ coincides with the well-known condition

lim sup
r→1

λ(r)/(1− r) < ∞, (1.7)

guaranteeing non-tangential convergence in the unit disc. So the first part
of Theorem F generalizes Fatou’s theorem.

In the same paper [11] the authors presented a necessary and sufficient
condition for a. e. λ(r)-convergence of the integrals (1.5) with p = ∞. This
condition is described by another quantity

β = β(λ, ϕ) = lim sup
δ→0

lim sup
r→1

∫ δλ(r)

−δλ(r)

ϕr(t)dt,

which contains more information about {ϕr} than α(λ, ϕ) does. That is

Theorem G ([11]) Let {ϕr(x)} be an arbitrary AI.
1) If β(λ, ϕ) = 0, then for any f ∈ L∞(T) we have

lim
r→1: θ∈λ(r,x)

Φr(θ, f) = f(x)

at any Lebesgue point x ∈ T.
2) If β(λ, ϕ) > 0, then there exists a set E ⊂ T, such that Φr(x, IE) is

λ(r)-divergent at any x ∈ T.

Observe that α(λ, ϕ) < ∞ implies β(λ, ϕ) = 0, which may be deduced
directly or by using the results of Theorems F and G. One can easily check,
that in the case of Poisson kernels for a given function (1.2) the value of
β(λ, ϕ) is either 1 or 0. Besides the condition β(λ, ϕ) = 0 is equivalent to
(1.7) and β(λ, ϕ) = 1 coincides with

lim sup
r→1

λ(r)/(1− r) = ∞. (1.8)

We note, that the second part of Theorem G does not imply Theorems C
and E, because they provide the everywhere divergence of Φr(x + λ(r), IE),
as r → 1, along tangential curves, not within tangential regions.

The purpose of the present paper is to prove Littlewood type theorems
for the operators (1.5). We shall obtain such theorems for more general
kernels, than the approximative identity. Consider a family of kernels ϕ =
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{ϕr(x) ≥ 0 : 0 < r < 1}, satisfying the properties (b) and

(d): m(v) = sup0<r<v ‖ϕr‖∞ < ∞ for any 0 < v < 1.

We introduce another quantity

β∗ = β∗(λ, ϕ) = lim sup
δ→0

lim inf
r→1

∫ δλ(r)

−δλ(r)

ϕr(t)dt ≤ β(λ, ϕ).

We prove the following theorems.

Theorem 1.1 Let {ϕr} be a family of nonnegative functions with proper-
ties (b) and (d). If a function (1.2) is continuous and satisfies the condition
β∗(λ, ϕ) > 1/2, then there exists a measurable set E ⊂ T such that

lim sup
r→1

Φr(x + λ(r), IE)− lim inf
r→1

Φr(x + λ(r), IE) ≥ 2β∗ − 1

at every point x ∈ T.

In the case of the Poisson kernel under the condition (1.8) we have
β∗(λ, ϕ) = 1 > 1/2. Therefore Theorem 1.1 implies the following gener-
alization of Theorems C and E, giving additional information about the
divergence character.

Corollary 1.2 If a continuous function (1.2) satisfies (1.1), then there
exists a harmonic function u(z) on the unit disc with 0 ≤ u(z) ≤ 1, such
that

lim sup
r→1

u
(
rei(x+λ(r))

)
= 1, lim inf

r→1
u
(
rei(x+λ(r))

)
= 0

at any point x ∈ T.

The higher dimensional case of this corollary and Theorems C and E
was considered by Hirata [10]. We construct also a Blaschke product with
Littlewood type divergence condition as in Theorem 1.1, which generalizes
Theorem D. In this case a stronger condition β∗(λ, ϕ) = 1 is required. So
we prove.

Theorem 1.3 If a family of nonnegative functions {ϕr} satisfies (b),
(d), the function (1.2) is continuous and β∗(λ, ϕ) = 1, then there exists a
function B ∈ L∞(T), which is the boundary function of a Blaschke product,
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such that the limit

lim
r→1

Φr(x + λ(r), B)

does not exist for any x ∈ T.

In the definition of λ(r)-convergence the range of the parameter r is (0, 1)
with the “limit point” 1, that is we consider the convergence or divergence
properties when r → 1. We take the limit point equal to 1 to compare our
results with the boundary properties of analytic and harmonic functions in
the unit disc. Certainly it is not essential in the theorems. In general there is
no need to imagine the meaning of λ(r)-convergence geometrically. Instead
of (0, 1) we could take any interval (finite or infinite) (a, b) with a limit point
r0 ∈ [a, b]. In this settings λ(r) satisfies

λ(r) : (a, b) → (0,∞) with lim
r→r0

λ(r) = 0.

instead of (1.2) and the properties (b) and (d) of the family of kernels ϕr,
used in the formulations of new results, will take the forms

(b’): ‖ϕr‖1 → 1 as r → r0,

(d’): m(δ) = supr∈(a,b)\(r0−δ,r0+δ) ‖ϕr‖∞ < ∞ for any δ > 0.

A theorem analogous to Theorem 1.1 may be considered also for the
integrals

Φr(x, f) =
∫

R
ϕr(t− x)f(t)dt, f ∈ L1(R), r > 0, (1.9)

where the family of kernels ϕ = {ϕr(x) ≥ 0 : 0 < r < ∞} ⊂ L∞(R)∩L1(R)
satisfy the conditions

(b”): ‖ϕr‖1 → 1 as r → 0,

(d”): m(δ) = supr>δ ‖ϕr‖∞ < ∞ for any δ > 0.

For a function

λ(r) : (0,∞) → (0,∞) with lim
r→0

λ(r) = 0 (1.10)

we define
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β∗ = β∗(λ, ϕ) = lim sup
δ→0

lim inf
r→0

∫ δλ(r)

−δλ(r)

ϕr(t)dt.

Theorem 1.4 Let {ϕr(x) : 0 < r < ∞} be a family of nonnegative
functions on R with properties (b”) and (d”). If (1.10) is continuous and
β∗(λ, ϕ) > 1/2, then there exists a measurable set E ⊂ R such that

lim sup
r→0

Φr(x + λ(r), IE)− lim inf
r→0

Φr(x + λ(r), IE) ≥ 2β∗ − 1, x ∈ R.

(1.11)

We note that for any positive function Φ(x) ∈ L∞(R) ∩ L1(R) with
‖Φ‖1 = 1 the kernels

ϕr(x) =
1
r
Φ

(
x

r

)
(1.12)

satisfy the conditions (b”) and (d”). The condition

lim
r→0

λ(r)/r = ∞ (1.13)

geometrically means tangential approach. One can easily check, that for
the Poisson kernel and for (1.12) the relation (1.13) is equivalent to the
conditions

lim
r→0

λ(r)/r = ∞⇔ β∗(λ, ϕ) = 1 ⇔ β∗(λ, ϕ) > 0.

Therefore, if the kernels in (1.9) coincide with (1.12) and λ(r) satisfies (1.13),
then Theorem 1.4 implies the everywhere “strong” λ(r)-divergence of inte-
grals (1.9), which covers the one-dimensional case of a theorem obtained by
Aikawa in [3].

P. Sjögren ([23], [24], [25]), J.-O. Rönning ([19], [20], [21]), I. N.
Katkovskaya and V. G. Krotov ([12]) considered the square root Poisson
integrals

P0
r (x, f) =

1
c(r)

∫

T
[Pr(x− t)]1/2f(t)dt, (1.14)

where
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c(r) =
∫

T
[Pr(t)]1/2dt

is the normalizing coefficient. They proved that

lim
r→1: θ∈λ(r,x)

P0
r (θ, f) = f(x) a.e. (1.15)

whenever f ∈ Lp(T), 1 ≤ p ≤ ∞, and

λ(r) ≤





c(1− r)
(

log
1

1− r

)p

if 1 ≤ p < ∞,

c(µ)(1− r)µ for any 0 < µ < 1 if p = ∞,

(1.16)

where c(µ) > 0 is a constant, depended only on µ. The case of p = 1 was
proved in [23], 1 < p ≤ ∞ were considered in [19], [20]. The cases p = 1
and p = ∞ are consequences of Theorem F with an additional information
about the points where the convergence occurs. Indeed, it is easy to observe
that the kernels

ϕr(x) =
[Pr(x)]1/2

c(r)

of the operators (1.14) satisfy all conditions (a)–(d). Besides, as it is men-
tioned in [19, p. 223],

ϕr(x) ∼ ψr(x) =





1
2(1− r) log(1/(1− r))

if |x| < 1− r,

1
2|x| log(1/(1− r))

if 1− r ≤ |x| ≤ π.

(1.17)

This implies

‖ϕr‖∞ ∼ 1
2(1− r) log(1/(1− r))

,

and therefore, according to Theorem F, we conclude that the condition in
(1.16), corresponding to the case p = 1, is necessary and sufficient to have
the relation (1.15) for any function f ∈ L1(T). This reproves the result of
[23] and establishes the optimality of such estimate for λ(r).
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Now suppose λ(r) satisfies the condition (1.16) with p = ∞. A simple
calculation shows that for such λ(r) and for the kernels (1.17) we have
β(λ, ϕ) = β∗(λ, ϕ) = 0. Hence, according to the first part of Theorem G,
we get the result of the paper [19] for p = ∞. Taking λ(r) = (1− r)µ with
a fixed 0 < µ < 1 we shall get β(λ, ϕ) = β∗(λ, ϕ) = 1− µ > 0 and, applying
the second part of Theorem G, we conclude the optimality of the bound
(1.16) in the case p = ∞ too. If 0 < µ < 1/2, then we have β∗ > 1/2. In
this case, applying Theorem 1.4, we get Littlewood type strong divergence
of the integrals (1.14) for some indicator function f = IE .

2. Proof of Theorem 1.1

We shall consider the sets

U(n, δ) =
n−1⋃

j=0

(
π(2j − δ)

n
,
π(2j + δ)

n

)
⊂ T (2.1)

in the proofs of this as well as the next theorems. Observe that, using
the definition of β∗ > 1/2 and the property (d), we may choose positive
numbers δk, uk, vk (k ∈ N), satisfying

δk < 2−k−5, 1 > vk > uk → 1, 0 < 3λ(vk) ≤ λ(uk) < π, (2.2)
∫ δkλ(uk)

−δkλ(uk)

ϕr(t)dt > β∗(1− 2−k), uk < r < 1, k = 1, 2, . . . , (2.3)

∑

j≥k+1

δj <
1

10π · 2km(vk)
, (2.4)

where m(v) is defined in (d). Denote

Uk = U(nk, 5δk), nk =
[

5π

λ(uk)

]
, k ∈ N, (2.5)

and define the sequence of measurable sets Ek ⊂ T by

E1 = U1, (2.6)
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Ek =

{
Ek−1 \ Uk if k is even,

Ek−1 ∪ Uk if k is odd.
(2.7)

It is easy to observe that if k < m, then

Em ⊂ Ek

⋃ ( m⋃

j=k+1

Ui

)
,

Em \
m⋃

j=k+1

Uj = Ek \
m⋃

j=k+1

Uj .

These relations imply

Ek 4 Em ⊂
m⋃

j=k+1

Uj

and therefore we get

‖IEk
− IEm‖1 = |Ek 4 Em| ≤

∑

j≥k+1

|Uj | ≤ 10π
∑

j≥k+1

δj . (2.8)

This and (2.4) impliy that IEn(t) converges to a function f(t) in L1-norm.
Using Egorov’s theorem, we conclude that f(t) = IE(t) for some measurable
set E ⊂ T. Tending m to infinity, from (2.8) we get

|E 4 Ek| ≤ 10π
∑

j≥k+1

δj . (2.9)

Take an arbitrary x ∈ T. There exists an integer 1 ≤ j0 ≤ nk such that

2πj0
nk

− x ∈
[
2π

nk
,
4π

nk

]
⊂

[
λ(uk)

3
, λ(uk)

]
⊂ [λ(vk), λ(uk)]

and therefore, since λ(r) is continuous, we may find a number r, uk ≤ r ≤ vk,
such that

λ(r) =
2πj0
nk

− x. (2.10)
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If k ∈ N is odd, then according to the definition of Ek we get

Ek ⊃ Uk ⊃ I =
(

π(2j0 − 5δk)
nk

,
π(2j0 + 5δk)

nk

)
.

Thus, using (2.3), (2.10) as well as the definition of nk from (2.5), we con-
clude

Φr(x + λ(r), IEk
) ≥

∫

I

ϕr(x + λ(r)− t)dt

=
∫

I

ϕr

(
2πj0
nk

− t

)
dt

=
∫ 5πδk/nk

−5πδk/nk

ϕr(t)dt

≥
∫ δkλ(uk)

−δkλ(uk)

ϕr(t)dt > β∗(1− 2−k). (2.11)

From (2.4) and (2.9) it follows that

∣∣Φr(t, IE)− Φr(t, IEk
)
∣∣ ≤ |E 4 Ek| ·m(vk)

< 10πm(vk)
∑

j≥k+1

δj < 2−k, t ∈ T, 0 < r < vk,

and hence from (2.11) we obtain

lim sup
r→1

Φr(x + λ(r), IE) ≥ β∗. (2.12)

If k ∈ N is even, then we have Ek ∩Uk = ∅ and therefore Ek ∩ I = ∅. Thus
we get

Φr(x + λ(r), IEk
) ≤

∫

T
ϕr(x + λ(r)− t)dt−

∫

I

ϕr(x + λ(r)− t)dt

≤ ‖ϕr‖1 −
∫ δkλ(uk)

−δkλ(uk)

ϕr(t)dt ≤ ‖ϕr‖1 − β∗(1− 2−k)
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and similarly we get

lim inf
r→1

Φr(x + λ(r), IE) ≤ 1− β∗. (2.13)

Relations (2.12) and (2.13) complete the proof of theorem.

3. Proof of Theorem 1.3

The following finite Blaschke products

b(n, δ, z) =
zn − ρn

ρnzn − 1
=

n−1∏

k=0

z − ρe2πik/n

ρe2πik/nz − 1
, ρ = e−

√
δ/n. (3.1)

plays a significant role in the proof of Theorem 1.3. Similar products were
used in the proof of Theorem D too. If z = eix, then (3.1) defines a contin-
uous function in H∞(T). We shall use the set U(n, δ) defined in (2.1). The
following lemma shows that on U(n, δ) the function (3.1) is approximative
−1, and outside of U(n, 4

√
δ) is approximative 1.

Lemma 3.1 There exists an absolute constant C > 0 such that
∣∣b(n, δ, eix) + 1

∣∣ ≤ C
√

δ, x ∈ U(n, δ), (3.2)
∣∣b(n, δ, eix)− 1

∣∣ ≤ C
4
√

δ, x ∈ T \ U(n,
4
√

δ). (3.3)

for any 0 < δ < 1.

Proof. Deduction of these inequalities based on the inequalities

1
3
≤ |eix − 1| ≤ 2.

If x ∈ U(n, δ), then we have

∣∣b(n, δ, eix) + 1
∣∣ =

∣∣∣∣
(einx − 1)(ρn + 1)

ρneinx − 1

∣∣∣∣ ≤
4πδ

1− e−
√

δ
,

≤ 4eπδ

e
√

δ − 1
≤ 8eπδ√

δ
≤ C

√
δ. (3.4)

If x ∈ T \ U(n, 4
√

δ), then einx = eiα with π 4
√

δ < |α| < π. Thus we obtain
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∣∣b(n, δ, eix)− 1
∣∣ =

∣∣∣∣
(einx + 1)(1− ρn)

ρneinx − 1

∣∣∣∣ ≤
2(e

√
δ − 1)

|einx − e
√

δ|

≤ 4
√

δ

|einx − 1| − |e
√

δ − 1| ≤
4
√

δ

π 4
√

δ/2− 2
√

δ
≤ C

4
√

δ. (3.5)
¤

Proof of Theorem 1.3. As in the proof of Theorem 1.1 we may choose num-
bers δk, uk, vk (k ∈ N), satisfying (2.2), (2.3) and the condition

∑

j≥k+1

4
√

δj <
1

10π · 2km(vk)
(3.6)

instead of (2.4). Then we denote

bk(x) = b(nk, δk, eix), nk =
[

6π

λ(uk)

]
, k ∈ N, (3.7)

and

Bk(x) =
k∏

j=1

bj(x), B(x) =
∞∏

j=1

bj(x).

The convergence of the infinite product follows from the bound (3.10), which
will be obtained below. Observe that in the process of selection of the
numbers (2.2) we were free to define δk > 0 as small as needed. Besides,
taking uk to be close to 1 we may get nk as big as needed. Using these
notations and Lemma 3.1, aside of the conditions (2.2), (2.3) and (3.6) we
can additionally claim the bounds

ω(2π/nk, Bk−1) = sup
|x−x′|<2π/nk

|Bk−1(x)−Bk−1(x′)| < 2−k, (3.8)

|bk(x) + 1| < 2−k, x ∈ U(nk, 6δk), (3.9)

|bk(x)− 1| < 2−k, x ∈ T \ U(nk, 4
√

δk). (3.10)

From (3.10) we get
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|B(x)−Bk(x)| =
∣∣∣∣

∏

j≥k+1

bj(x)− 1
∣∣∣∣

≤
∏

j≥k+1

(1 + 2−j)− 1 < 2−k+1,

x ∈ T \
⋃

j≥k+1

U
(
nj ,

4
√

δj

)
. (3.11)

Take an arbitrary x ∈ T. There exists an integer 1 ≤ j0 ≤ nk such that

2πj0
nk

− x ∈
[
2π

nk
,
4π

nk

]
⊂

[
2π

nk
,
5π

nk

]
⊂

[
λ(uk)

3
, λ(uk)

]
⊂ [λ(vk), λ(uk)],

where the inclusions follow from the definition of nk (see (3.7)) and from
the inequality 3λ(vk) ≤ λ(uk) < π coming from (2.2). Thus since λ(r) is
continuous, we may find numbers uk ≤ r′k ≤ r′′k ≤ vk, such that

λ(r′k) =
2πj0
nk

− x, λ(r′′k) =
2πj0
nk

+
π

nk
− x. (3.12)

For the set

e =
⋃

j≥k+1

U
(
nj ,

4
√

δj

)
,

we have

|e| = 10π
∑

j≥k+1

4
√

δj .

To simplify the further estimations, without loss of generality we may replace
the relation ‖φr‖1 → 1 by ‖φr‖1 = 1. So taking r ∈ [uk, vk], from (3.6) and
(3.11) we conclude

∣∣Φr(x,B)− Φr(x,Bk)
∣∣

≤
∫

e

ϕr(x− t)|B(t)−Bk(t)|dt + 2−k+1

∫

T\e
ϕr(x− t)dt

≤ 20πm(vk)
∑

j≥k+1

4
√

δj + 2−k+1
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≤ 2 · 2−k + 2−k+1 = 4 · 2−k, x ∈ T. (3.13)

If

t ∈ I = (−δkλ(uk), δkλ(uk)) ⊂
(
− 6πδk

nk
,
6πδk

nk

)
,

then we have

2πj0
nk

− t ∈ U(nk, 6δk),

2πj0
nk

+
π

nk
− t ∈ T \ U(nk, 4

√
δk).

Then, using these relations together with (3.9) and (3.8), we get

∣∣∣∣Bk

(
2πj0
nk

− t

)
+ Bk−1

(
2πj0
nk

)∣∣∣∣

≤
∣∣∣∣Bk−1

(
2πj0
nk

− t

)∣∣∣∣
∣∣∣∣bk

(
2πj0
nk

− t

)
+ 1

∣∣∣∣

+
∣∣∣∣Bk−1

(
2πj0
nk

− t

)
−Bk−1

(
2πj0
nk

)∣∣∣∣

< 2−k + 2−k = 2−k+1 (3.14)

and
∣∣∣∣Bk

(
2πj0
nk

+
π

nk
− t

)
−Bk−1

(
2πj0
nk

)∣∣∣∣

≤
∣∣∣∣Bk−1

(
2πj0
nk

+
π

nk
− t

)∣∣∣∣
∣∣∣∣bk

(
2πj0
nk

+
π

nk
− t

)
− 1

∣∣∣∣

+
∣∣∣∣Bk−1

(
2πj0
nk

+
π

nk
− t

)
−Bk−1

(
2πj0
nk

)∣∣∣∣

< 2−k + 2−k = 2−k+1. (3.15)

On the other hand we have
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∣∣∣∣Φr′k(x + λ(r′k), Bk) + Bk−1

(
2πj0
nk

)∣∣∣∣

=
∣∣∣∣
∫

T
ϕr′k(t)Bk(x + λ(r′k)− t)dt + Bk−1

(
2πj0
nk

dt

)∣∣∣∣

=
∣∣∣∣
∫

T
ϕr′k(t)

[
Bk

(
2πj0
nk

− t

)
+ Bk−1

(
2πj0
nk

)]
dt

∣∣∣∣

≤
∣∣∣∣
∫

I

ϕr′k(t)
[
Bk

(
2πj0
nk

− t

)
+ Bk−1

(
2πj0
nk

)]
dt

∣∣∣∣

+
∣∣∣∣
∫

Ic

ϕr′k(t)
[
Bk

(
2πj0
nk

− t

)
+ Bk−1

(
2πj0
nk

)]
dt

∣∣∣∣

= A + B. (3.16)

Then from (3.14) we get

A ≤ 2−k+1

∫

I

ϕr′k(t)dt ≤ 2−k+1. (3.17)

By the hypotheses of Theorem 1.3 we have β∗ = 1. So from (2.3) we get

∫

I

ϕr′k(t) =
∫ δkλ(uk)

−δkλ(uk)

ϕr(t)dt > 1− 2−k

and therefore
∫

Ic

ϕr′k(t) ≤ ‖ϕr′k‖1 − 1 + 2−k = 2−k. (3.18)

From (3.12) and (3.18) we get

B ≤ 2 · 2−k. (3.19)

Thus, using (3.16), (3.17) and (3.19), we obtain

∣∣∣∣Φr′k(x + λ(r′k), Bk) + Bk−1

(
2πj0
nk

)∣∣∣∣ ≤ 4 · 2−k. (3.20)

Similarly, using (3.15), we conclude
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∣∣∣∣Φr′′k (x + λ(r′′k), Bk)−Bk−1

(
2πj0
nk

)∣∣∣∣ ≤ 4 · 2−k. (3.21)

Since |Bk−1(2πj0/nk)| = 1, from (3.13), (3.20) and (3.21) it follows that

∣∣Φr′k(x + λ(r′k), B)− Φr′′k (x + λ(r′′k), B)
∣∣

=
∣∣∣∣− 2Bk−1

(
2πj0
nk

)

+ Φr′k(x + λ(r′k), Bk) + Bk−1

(
2πj0
nk

)

− Φr′′k (x + λ(r′′k), Bk) + Bk−1

(
2πj0
nk

)

+ Φr′k(x + λ(r′k), B)− Φr′k(x + λ(r′k), Bk)

+ Φr′′k (x + λ(r′′k), Bk)− Φr′′k (x + λ(r′′k), B)
∣∣∣∣

≥ 2− 4 · 2−k − 4 · 2−k − 4 · 2−k − 4 · 2−k

= 2− 16 · 2−k,

which implies the divergence of Φr(x + λ(r), B) at a point x. ¤
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