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Introduction. Let \Omega be the set of symbols 1, \cdots, n. Let G be a per-
mutation group on \Omega . Wagner [6] proved the following theorem:

If G is triply transitive and if n is odd and greater tnan 3, then every
normal subgroup (\neq 1) of G is also triply transitive.

In this note we prove the following theorem:
THEOREM. If G is quadruply transitive and if n is prime to 3 and

greater than 5, then every normal subgroup (\neq 1) of G is also quadruply
transitive.

The outline of the proof is as follows. First of all, by the above the-
orem of Wagner we may assume that n is odd. Let H(\neq 1) be a normal
subgroup of G which is not quadruply transitive. Then without the restric-
tion that n is prime to 3 we obtain some permutation-character theoretical
results on H which are slightly more than needed in the proof. At the
final point, with the restriction that n is prime to 3 we utilize results ob-
tained above to get a contradiction.

Definitions and Notation. Let x\in G. Then \alpha(x), \beta(x), \gamma(x) and \delta(x)

denote the numbers of 1-, 2-, 3- and 4-cycles in the permutation structure
of x respectively. Let X\subseteq G. Then \alpha(X) denotes the set of symbols of \Omega

each of which is fixed by X. Let X be a subgroup of G. Let \varphi and \psi be
class functions on X. Then ( \varphi, \psi)_{X}=\frac{1}{|X|}\sum_{x\epsilon x}\varphi(x)\overline{\psi(x)} and N_{X}(\varphi)=(\varphi, \varphi)_{X} .

X_{(\Delta)} and X_{\Delta} denote the global and pointwise stabilizers of \Delta in X respec-
tively. X_{(\Delta)}^{\Delta} denotes the restriction of X_{(\Delta)} to \Delta . If \Delta=\{1\} , {1, 2} or {1, 2,
3}, we also write X_{1} , X_{1,2} or X_{1,2,3} instead of X_{\Delta} . Let Y be a subgroup of
X. Then Ns_{X}Y denotes the normalizer of Y in X. LF(2, q) denotes the
linear fractional group over the field of q elements.

PROOF. (a) The following permutation-character theoretical formulae
for quadruply (and triply) transitive permutation groups are well-known ([4],
p. 597; [7], (9.9)).
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(1) \sum_{G}\alpha=|G| ; \sum_{H}\alpha=|H|

(2) \sum_{G}\alpha^{2}=2|G|\backslash \sum_{G}\beta=\frac{1}{2}|G| ; \sum_{H}\alpha^{2}=2|H| , \sum_{H}\beta=\frac{1}{2}|H| .

(3) \sum_{G}\alpha^{3}=5|G| , \sum_{G}\alpha\beta=\frac{1}{2}|G| , \sum_{G}\gamma=\frac{1}{3}|G| ; \sum_{H}\alpha^{3}=5|H| ,

\sum_{H}\alpha\beta=\frac{1}{2}|H| , \sum_{H}r=\frac{1}{3}|H| .

(4) \sum_{G}\alpha^{4}=15|G| , \sum_{G}\alpha^{2}\beta=|G| . \sum_{G}\alpha\gamma=\frac{1}{3}|G| , \sum_{G}\beta^{2}=\frac{3}{4}|G| ,

\sum_{G}\delta=\frac{1}{4}|G| .

Put X_{0}=\alpha-1 , X_{0,0},= \frac{1}{2}(\alpha-1)(\alpha-2)-\beta , and X_{00}= \frac{1}{2}\alpha(\alpha-3)+\beta ,

These are all irreducible characters of G. X_{0} remains irreducible in H.
Furthermore,

(b) LEMMA. For all \Delta\subseteq\Omega with |\Delta|=4 the group H_{(\Delta)}^{\Delta} is the symmetric
group of degree 4.

(5) (X_{0}X_{0,0},)_{H}=(X_{0}, X_{00})_{H}=01

PROOF. It suffices to show that H_{(\Delta)}^{\Delta} contains an odd permutation, since
H_{(\Delta)}^{\Delta} is normal in G_{(\Delta)}^{\Delta} which is the symmetric group of degree 4. Then it
suffices to show that H_{1,2} has even order, because G is quadruply transitive.
Now assume that H_{1,2} has odd order. Then by a theorem of Bender [1]
H_{1} contains a normal subgroup isomorphic to LF(2, q) with q odd. But
then H_{1} has no transitive extension ([5], (5.2)). This is a contradiction.

(c) By Lemma in (b) and Lemma 2 of [5] we have several transitive
permutation representations of G each of which is divided into the equal
number, say s, of H transitive constituents :

(i) The permutation representation of G on the set of all ordered
quartets with distinct members on \Omega . Since \alpha(\alpha-1)(\alpha-2)(\alpha-3) is the char-
acter of this permutation representation, by (a) we obtain that

(6) \sum_{H}\alpha^{4}=(s+14)|H|

(ii) The permutation representation of G on the set of all 2-element
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subsets of the set of all ordered pairs with distinct members on \Omega . Since
\frac{1}{2}\alpha(\alpha-1)(\alpha-2)(\alpha-3)+2\beta(\beta-1) is the character of this permutation repre-

sentation, by (a) and (6) we obtain that

(7)
\sum_{H}\beta^{2}=\frac{1}{4}(s+2)|H|

(iii) The permutation representation of G on the set of all ordered
pairs with distinct members on the set of all 2-element subsets of \Omega . Since
\frac{1}{4}\alpha(\alpha-1)(\alpha-2)(\alpha-3)+\alpha(\alpha-1)\beta+\beta(\beta-1) is the character of this permuta-

tion representation, by (a), (6) and (7) we obtain that

(8)
\sum_{H}\alpha^{2}\beta=\frac{1}{2}(s+1)|H|

(iv) The permutation representation of G on the set of all 2-element
subsets of \Omega . Since \frac{1}{8}\alpha(\alpha-1)(\alpha-2)(\alpha-3)+\frac{1}{2}\alpha(\alpha-1)\beta+\frac{1}{2}\beta(\beta-1)+\delta is

the character of this permutation representation, by (a), (6)-(8) we obtain
that

(9)
\sum_{H}\delta=\frac{1}{4}s|H|

(v) The permutation representation of G on the set of all 4-element sub-
sets of \Omega . Since \frac{1}{24}\alpha(\alpha-1)(\alpha-2)(\alpha-3)+\frac{1}{2}\alpha(\alpha-1)\beta+\frac{1}{2}\beta(\beta-1)+\alpha\gamma+\delta

is the character of this permutation representation, by (a), (6)-(9) we obtain
that

(10)
\sum_{H}\alpha\gamma=\frac{1}{3}s|H|

Now by (a) and (6)-(10) we obtain that

(11) N_{H}(X_{0,0},)=1

and

(12) N_{H}(X_{00})=s .
(11) shows that X_{0,0}, remains irreducible on H.

(d) Clearly s equals the number of Ns_{H}(H_{1,2})-0rbits on the set \Phi of all
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2-element subsets of 12–{1, 2}. Since H is triply transitive on f2 ([7], (9.9)),
every Ns_{H}(H_{1,2})-0rbit contains a 2-element subset containing 3. Since
Ns_{G}(H_{1,2}) is transitive on \Phi, the lengths of all Ns_{H}(H_{1,2})-0rbits on \Phi are equal

to \frac{(n-2)(n-3)}{2s} . Further 2s divides n –3.

Now put

X_{00}=a \sum_{i=1}^{t}\chi_{i\prime}.

where \chi_{1} , \cdots , \chi_{t} are G-associated irreducible characters of H ([4], p. 565).

Then by (12) s=a^{2}t . Now by a theorem of Frame ([7], (30.5)) the following
rational number F is an integer:

F= \frac{\{\frac{1}{2}n(n-1)\}^{2}2(n-2)\{\frac{(n-2)(n-3)}{2s}\}^{s}}{(n-1)\{\frac{n(n-3)}{2at}\}a^{2}t}=\frac{(n-1)^{s-1}(n-2)^{s+1}}{2^{s-1}\cdot a^{s}}

Since n is odd and s divides n –3, a must be a power of 2. Since a^{2} divides
n –3 and n –1, a=1. Hence we obtain that

(13) X_{00}=\chi_{1}+\cdots+\chi_{s} ,

where \chi_{1} , \cdots , \chi_{s} are G-associated distince irreducible characters of H.
(e) A double coset (Ns_{H}H_{1,2})x(Ns_{H}H_{1,2}) of H with respect to Ns_{H}H_{1,2} is

called real, if it coincides with (Ns_{H}H_{1,2})x^{-1}(Ns_{H}H_{1,2}) . Let f be the number
of real cosets of H with respect to Ns_{H}H_{1,2} . Then by a theorem of Frame
[3] we obtain that

f= \frac{1}{|H|}\sum_{x\in H}\{\frac{1}{2}\alpha(\alpha-1)+\beta\}(x^{2})

= \frac{1}{|H|}\sum\{\frac{1}{2}(\alpha+2\beta)(\alpha+2\beta-1)+2\delta\}

=(s+2)|H|
(by (a), (6)-(9))

= \frac{1}{|H|}\sum_{x\epsilon H}(1_{H}+X_{0}+\chi_{1}+\cdots+\chi_{s})(x^{2})

=2+ \frac{1}{|H|}\sum_{x\in H}\chi_{1}(x^{2})+\cdots+\chi_{s}(x^{2})
.

This implies that \sum_{x\in H}\chi_{1}(x^{2})=\cdots=\sum_{x\in H}\chi_{s}(x^{2})=|H| . Thus the representations cor-
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responding to \chi_{1} , \cdots , \chi_{S} are real ([2], (3. 5)).

REMARK. The argument in (e) can be used to obtain (9), since \chi_{1} , \cdots , \chi_{S}

are G-associated and hence \sum_{x- H},\chi_{1}(x^{2})=-\cdots=\sum_{x\in H}\chi_{s}(x^{2}) .
(f) By (b) and by Lemma 4 and Remark (iii) of [6] H_{1,2,3} has at most

1 orbit of odd length and at most 2 orbits of lengths prime to 3 on \Omega-\{1 ,

2, 3}. Since H_{1,2,3} has exactly s orbits of length \underline{n-3}

, we obtain that
s

(14) s=2 and n\equiv 3 (mod 4)

or

(15) \frac{n-3}{s}\equiv 0 (mod 6).

(g) Now we assume that n is prime to 3. Then in ( f) (14) holds. Hence
the inertia group of \chi_{1} in G has index 2. By induction on G:H we may
assume that G:H=2. Then we obtain that X_{00} is the character of G in-
used by \chi_{1} of H. In particular, X_{00} vanishes outside H. Hence every

element x of G with \alpha(x)\geq 4 belongs to H. In particular, G_{1,2,3,4} is con-
tained in H.

If n\equiv 1 (mod 3), then \frac{n-3}{2}\equiv 2 (mod 3). By the proof of Lemma 4 and

Remark (iii) of [6] this is a contradiction. Hence we obtain that n\equiv 2 (mod 3).
Now let S be a Sylow 3-subgroup of G_{1,2,3,4} . Since n\equiv 2 (mod 3), S

leaves one more point, say 5, invariant. By a theorm of Witt ([7], 9.4))

Ns_{G}S is quadruply transitive on \alpha(S). Since S is a Sylow 3-subgroup of
G_{1,2,3} and H_{1,2,3} , we have that Ns_{G}S\not\leqq H . If S\neq 1 , then, since |\alpha(S)|\equiv

2 (mod 3), by induction on n, we obtain that H\cap NsS is quadruply transitive
on \alpha(S) or |\alpha(S)|=5 . If H\cap NsS is quadruply transitive on \alpha(S), then
H\cap(Ns_{G}S)_{1,2,3,4\neq}\subset(Ns_{G}S)_{1,2,3,4} . This is a contradiction. If |\alpha(S)|=5 and
H\cap Ns_{G}S is not quadruply transitive on \alpha(S) , H\cap Ns_{G}S cannot contain a 4-
cycle. This contradicts (4) and (9). Hence we obtain that S=1 .

By (3) we have that \sum_{G-H}\gamma=\frac{1}{3}|H| . By (3) and (10) \sum_{G-H}\alpha\gamma=0 . Since

S=1, we have that \alpha(x)\leq 2 if \gamma(x)>0 , where x\in G. Now let y be an ele-
ment of G–H such that \gamma(y)>0 . Since n\equiv 2 (mod 3), the cycle structure
of y contains a cycle C whose length is prime to 3. Then clearly we may
assume that the length of C is a power of 2, and hence is equal to 2. But
then X_{00}(y)>0 , which is a contradiction.
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