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Introduction. Let 2 be the set of symbols 1,---,72. Let G be a per-
mutation group on £. Wagner proved the following theorem:

If G is triply transitive and if n is odd and greater tnan 3, then every
normal subgroup (#1) of G is also triply transitive.

In this note we prove the following theorem:

THEOREM. If G is quadruply transitive and if n is prime to 3 and

greater than 5, then every normal subgroup (#1) of G is also quadruply
transitive. ‘

The outline of the proof is as follows. First of all, by the above the-
orem of Wagner we may assume that n is odd. Let H (#1) be a normal
subgroup of G which is not quadruply transitive. Then without the restric-
tion that n is prime to 3 we obtain some permutation-character theoretical
results on H which are slightly more than needed in the proof. At the
final point, with the restriction that n is prime to 3 we utilize results ob-
tained above to get a contradiction.

Definitions and Notation. Let x€G. Then a(x), (x), 7(x) and §(x)
denote the numbers of 1-, 2-, 3- and 4-cycles in the permutation structure
of x respectively. Let XCG. Then a(X) denotes the set of symbols of 2
each of which is fixed by X. Let X be a subgroup of G. Let ¢ and ¢ be

class functions on X. Then (¢, ¢)x=]171250($)@ and Ny(p)= (o, ¢)x.
x€eX

X and X, denote the global and pointwise stabilizers of 4 in X respec-
tively. X{@ denotes the restriction of X, to 4. If 4={1}, {1,2} or {1, 2,
3}, we also write X, X,, or X, ,; instead of X,. Let Y be a subgroup of
X. Then NsxY denotes the normalizer of Y in X. LF(2, g) denotes the

linear fractional group over the field of g elements.

* PROOF. (a) The following permutation-character theoretical formulae
for quadruply (and triply) transitive permutation groups are well-known ([4],

p. 597; [7], (9.9)).
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(1) za=lG|; §a=|H|.

(2) §a2=2lGl, Zﬁ=—;—161; Z‘a2=21Hl Zﬁ——tHl

) 2«3=5|GI,Z p=—5-11, }]r =613 Z =5|H|,
Vb= 1Hl, Y= IH.

(4) §a4=15|G|, };aZﬁ=1GI, Ear=%lcl, §ﬁ2=—j—161;
25:%@\.

Put X():a"—l, X():%(a—l)(a"-Z)—ﬁ, and X00=-;—a(0(~—3)+ﬁ,.
0

These are all irreducible characters of G. X, remains irreducible in H.
Furthermore,

(5) (X Xg)3= (Xo, Xw)u=0.

(b) Lemma. For all 4CQ with |4]=4 the group H{), is the stmetric
group of degree 4.

Proor. It suffices to show that H{, contains an odd permutation, since
H{, is normal in G{, which is the symmetric group of degree 4. Then it
suffices to show that H,, has even order, because G is quadruply transitive.
Now assume that H,, has odd order. Then by a theorem of Bender
H, contains a normal subgroup isomorphic to LF(2,q) with ¢ odd. But
then H, has no transitive extension ([5], (5.2)). This is a contradiction.

(c) By in (b) and Lemma 2 of we have several transitive
permutation representations of G each of which is divided into the equal
number, say s, of H-transitive constituents:

(i) The permutation representation of G on the set of all ordered
quartets with distinct members on 2. Since a(a—1)(a—2)(@—3) is the char-
acter of this permutation representation, by (a) we obtain that

(6) Za4 — (s+14)|H] .

H

(i) The permutation representation of G on the set of all 2-element
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subsets of the set of all ordered pairs with distinct members on 2. Since

%a(a— 1)(a—2)(@—3)+28(8—1) is the character of this permutation repre-

sentation, by (a) and (6) we obtain that
(1) Zﬁz —s+2)H] .

(iii) The permutation representation of G on the set of all ordered
pairs with distinct members on the set of all 2-element subsets of 2. Since

%a(a—l)(a—Z)(a—B)—l-a(a—1)ﬁ+,8(18—1) is the character of this permuta-

tion representation, by (a), (6) and (7) we obtain that

(8) | Zazﬁ=—é—(s+1)]H].

(iv) The permutation representation of G on the set of all 2-element

subsets of 2. Since —é—a(a-—l)(a—Z)(a——B)+%a(a—l)ﬁ+é—ﬁ(ﬁ—1>+ d is

the character of this permutation representation, by (a), (6)~(8) we obtain
that

(9) 25 —slHl

(v) The permutation representation of G on the set of all 4-element sub-

sets of Q. Since _Z%a(a—n(a—zxa—g)+_é_a<a—1)ﬂ+_;_ﬁ<5—-1>+ar+5

is the character of this permutation representation, by (a), (6)-(9) we obtain
that

(10) zcﬁ’:%slH].
Now by (a) and (6)~(10) we obtain that

(11) | NH(Xg) =1
and

(12) Nu(Xp)=s.

shows that X, remains irreducible on H.
10 9
(d) Clearly s equals the number of Ns;(H, ,)-orbits on the set @ of all



4 N. Ito

2-element subsets of 2—{1,2}. Since H is triply transitive on 2 ([7], (9.9)),
every Nsy(H,,)-orbit contains a 2-element subset containing 3. Since

Nsg(H,,) is transitive on @, the lengths of all Nsy(H, ,)-orbits on @ are equal

to (n—2)2(n—3) . Further 2s divides n—3.
s
Now put

4
X = az X,
§=1

where X,,---,X, are G-associated irreducible characters of H ([4], p. 5.65)..
Then by s=a%. Now by a theorem of Frame ([7], (30.5)) the following

rational number F is an integer:
(1 2 (n—2)(n—3) }'S
—nn—1)} 2(n—2
Fe { 2 n(n )} n ){ 2s _ (p=1p"(n—2)"""

(n—l){%;i)}azt rha

Since 7 is odd and s divides #—3, a must be a power of 2. Since a* divides
n—3 and n—1, a=1. Hence we obtain that

(13) ' X00=X1+---+X3,

where 2., -+, %, are G-associated distince irreducible characters of H.

(e) A double coset (NszH, ,)x(NsyzH, ,) of H with respect to NspH,, is
called real, if it coincides with (NszH, ,)x '(NsgH,,). Let f be the number
of real cosets of H with respect to NszH,,. Then by a theorem of Frame
we obtain that

-1 {ia<a—1>+.@}<x2>

|H | 2
_ 1 1 _
= W {7 (a+2B)(a+28—1)+ 25}
=(s+2)|H|
. (by (a), (6)-(9))

<1H+X0+xl+"'+xs>(x2)

=_|TI—I—:C€H
—_ 1 : see
—2+—I?{T§le<x2)+ + X ().

This implies that 2} X;(2?)="---= 2 X,(a*)=|H|. Thus the representatiohs cor-
x€H '

xeH
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responding to X, -+, %, are real ([2], (3.5)).
REMARK. The argument in (e) can be used to obtain (9), since X, -+, X,
are G-associated and hence XX (z%)=---= XX, (z?).
x=H x€H

(f) By (b) and by Lemma 4 and Remark (iii) of [6] H,,; has at most
1 orbit of odd length and at most 2 orbits of lengths prime to 3 on 2-{1,

2,3}. Since H,,; has exactly s orbits of length n—3 , we obtain that
s

(14) s=2 and 2=3 (mod 4)

or

(15) 223 0 (mod 6).

L)

(g) Now we assume that 7 is prime to 3. Then in (f) (14) holds. Hence
the inertia group of X; in G has index 2. By induction on G:H we may
assume that G: H=2. Then we obtain that X, is the character of G in-
duced by X, of H. In particular, X, vanishes outside /. Hence every
element x of G with a(x)>4 belongs to AH. In particular, G,,;, is con-
tained in H.

If n=1 (mod 3), then n;B =2 (mod 3). By the proof of Lemma 4 and

Remark (iii) of [6] this is a contradiction. Hence we obtain that #=2 (mod 3).

Now let S be a Sylow 3-subgroup of G,,;,. Since n=2 (mod 3), S
leaves one more point, say 5, invariant. By a theorm of Witt ([7], 9.4)
NsgS is quadruply transitive on a(S). Since S is a Sylow 3-subgroup of
Gi:s and H,,;, we have that NscSEH. If S#1, then, since |a(S)|=
2 (mod 3), by induction on 7, we obtain that HN NsS is quadruply transitive
on a(S) or |a(S)|=5. If HNNsS is quadruply transitive on a(S), then
HN(NsgS) 2,545 (NsgS)234. This is a contradiction. If |a(S)=5 and
HN NsgS is not quadruply transitive on a(S), HN NsgS cannot contain a 4-
cycle. This contradicts (4) and (9). Hence we obtain that S=1.

By (3) we have that Z‘ T:-;)—|H]. By (3) and Z ar =0. Since

G-H

- G-H
S=1, we have that a(x)<2 if 7(x)>0, where z€ G. Now let ¥ be an ele-
ment of G—H such that 7(y)>0. Since n=2 (mod 3), the cycle structure
of y contains a cycle C whose length is prime to 3. Then clearly we may
assume that the length of C is a power of 2, and hence is equal to 2. But
then Xy (y)>0, which is a contradiction.
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