On the Kuramochi boundary of a subsurface of a Riemann surface

By Yukio NAGASAKA

Introduction

Z. Kuramochi [4] considered a compactification of a subsurface G of a Riemann surface R, which is similar to the Kuramochi compactification of R. In [4], he introduced the function-theoretic mass for F_0SH functions on G and showed that it is important to investigate the properties of the compactification of G. Then, on the subsurface G, there are two topologies: one of them is the topology on the compactification of G and the other is the induced topology on G by the Kuramochi compactification of G. Z. Kuramochi [3] investigated the relations of these two topologies (Theorem A and B).

In this paper, we shall give some properties of the function-theoretic mass (Proposition 2 and Theorem 1) and that the F_0H function with finite function- theoretic mass is represented by the canonical measure (Theorem 2). In §5, we shall study the relation of the above two topologies (Theorem 4, 5 and 6).

§ 1. Notation and terminology

Let R be a hyperbolic Riemann surface. We call a closed or open subset A of R regular if the relative boundary ∂A of A consists of at most a countable number of analytic arcs clustering nowhere in R. We fix a closed disk K_0 in R and a regular subdomain G of R such that $K_0 \cap G = \phi$. Let $R_0 = R - K_0$. An exhaustion of R will mean an increasing sequence $\{R_n\}$ of relatively compact domains on R such that $\bigcup_{n=1}^{\infty} R_n = R$ and each ∂R_n consists of finite number of closed analytic Jordan curves. We denote by $\{G_n\}$ an exhaustion of G.

§ 2. $G-F_0SH$ function

We follow [1] for the definition and properties of Dirichlet functions. Let f be a continuous Dirichlet function on R with f=0 on R-G and F be a regular closed subset of G. Then there is a uniquely determined Dirichlet function f^F on R which minimizes the Dirichlet norm $\|g\|$ among Dirichlet function f^F on f^F o

chlet functions g such that g=f on $F \cup (R-G)$ and which is equal to f on $F \cup (R-G)$ and is harmonic in G-F (Dirichlet principle). If there is a Dirichlet function f on R such that f=0 on R-G and g=1 on g=1

There exists a uniquely determined function N(z, p) $(z, p \in G)$ which has the following conditions (cf. [4]):

- a) N(z, p) G(z, p) is harmonic in $z \in G$ for each $p \in G$, where G(z, p) is the Green function of G.
 - b) N(z, p) = N(p, z).
 - c) $\lim_{z\to\partial G} N(z, p) = 0.$
- d) If K be a regular compact set in G which contains p in its interior, then $N(\cdot, p)^K(z) = N(z, p)$. (We set N(z, p) = 0 on R G).
 - e) $\|\min(N(z, p), M)\|^2 = 2\pi M$ for any M > 0.

We call N(z, p) the *N-function* of G. We denote by L(z, p) the *N*-function of $R_0 = R - K_0$. As a usual manner in [4], we have the Kuramochi compactification G^* of G and $(z, p) \rightarrow N(z, p)$ is extended continuously over $G \times G^*$. In $\Delta^G = G^* - G$, there is only one point p_0 such that $N(z, p_0) \equiv 0$. We note that G^* is metrizable. The properties of the Kuramochi compactification R^* of R are found in [1], [2] and [5]. For any non-negative measure μ on G^* (resp. $R_0^* = R^* - K_0$), we define *N-potential* (resp. *L-potential*) by $N_{\mu}(z) = \int N(z, p) d\mu(p)$ (resp. $L_{\mu}(z) = \int L(z, p) d\mu(p)$).

Let V(z) be a non-negative continuous function in R with V>0 on G and V=0 on R-G such that $V_M(z)=\min (V(z),M)$ is a Dirichlet function for any M>0. For any regular compact set K in G, we define $V_K(z)=V_K^G(z)$ by increasing limit of $(V_M)^K(z)$ as $M\to\infty$. If $V_K(z)\leq V(z)$ for any regular compact set K, then V(z) is called a $G-F_0SH$ function. Any $G-F_0SH$ function is superharmonic in G. If, in addition, $G-F_0SH$ function is harmonic in G, it is called a $G-F_0H$ function. Let N_μ be a continuous N-potential which min $(N_\mu(z), M)$ is Dirichlet function for any M>0. Then N_μ is a $G-F_0SH$ function (cf. [5]).

Let V be a $G-F_0H$ function. For any regular closed subset F of G, we define V_F by an increasing limit of V_{K_n} , where $K_n = F \cap (R_n \cup \partial R_n)$. Let $F \subset F'$. Then $V_F \leq V_{F'}$ and $(V_F)_F = V_{F'}$. For any closed subset A of Δ^G , we set $A(m) = \left\{z \in G | d(z, A) \leq \frac{1}{m}\right\}$, where d is a metric on G^* . Then there exist a decreasing sequence of closed neighbourhoods of A in G^* such that each of their intersection $\{A^{(m)}\}$ with G is a regular closed set in G and $A(m) \subset A^{(m)} \subset A(m-1)$ for each m. We define V_A by decreasing limit of

 $V_{A^{(m)}}$. Let V(z) be a Dirichlet finite $G-F_0H$ function. If $\overline{F} \not\ni p_0$ (\overline{F} is the closure of F on G^*) and $A \not\ni p_0$, then $||V_{K_n} - V_F|| \to 0$ as $n \to \infty$, $V_F(z) = V^F(z)$ and $||V_{A^{(m)}} - V_A|| \to 0$ and $n \to \infty$ respectively. (cf. [5])

Lemma 1. ([2], cf. Fuglede's lemma). Let f be a non-negative Dirichlet function on R such that f=0 on R-G, and f_n be the harmonic function in $G \cap R_n - F$, which is equal to zero $\partial G \cap (R_n \cup \partial R_n)$ and to f on $\partial F \cap (R_n \cup \partial R_n)$ and whose normal derivative vanishes everywhere on the rest of the boundary. If $\inf_{z \in F} f(z) > 0$, then there is a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ such that

$$\lim_{k \to \infty} \int_{\partial F_M \cap R_{n_k}} \frac{\partial}{\partial \nu} f_{n_k} ds = \int_{\partial F_M} \frac{\partial}{\partial \nu} f^F ds$$

for almost all M, where $F_M = \{z \in G | f^F(z) \ge M\}$ $(0 < M < \inf_{z \in F} f(z))$.

COROLLARY 1. ([2], [6]). Let F be a regular closed set of G. If ω_F exist, then $\int_{\partial F_{\alpha}} \frac{\partial}{\partial \nu} \omega_F ds = \|\omega_F\|^2$ for almost all α , where $F_{\alpha} = \{z \in G | \omega_F(z) \geq \alpha\}$ (0 < α < 1).

COROLLARY 2. ([4]). Let V be a $G-F_0SH$ function and $F_M = \{z \in G | V(z) \geq M\}$. If $M_1 > M_2$, then $M_1 \|\omega_{F_{M_1}}\|^2 \leq M_2 \|\omega_{F_{M_2}}\|^2$. If $V = V_{F_{M_1}}$, then $M_1 \|\omega_{F_{M_1}}\|^2 = M \|\omega_{F_{M_1}}\|^2$ for any $M: 0 < M < M_1$.

PROOF. Let $M_1 > M_2$. Set $F' = \{z \in G \mid V_{F_{M_1}}(z) \geq M_2\}$. Then $\omega_{F_{M_1}} = \frac{M_2}{M_1} \omega_{F'}$ on G - F' and $\omega_{F'} \leq \omega_{F_{M_2}}$. By Corollary 1, there is a $t_0 \colon 0 < t_0 < \frac{M_2}{M_1}$ such that

$$egin{align*} M_1 \| oldsymbol{\omega}_{F_{M_1}} \|^2 &= M_1 \int rac{\partial}{\partial
u} oldsymbol{\omega}_{F_{M_1}} ds = M_2 \int rac{\partial}{\partial
u} oldsymbol{\omega}_{F'} ds \ &\{ oldsymbol{\omega}_{F_{M_1}} = t_0 \} \ &= M_2 \int rac{\partial}{\partial
u} oldsymbol{\omega}_{F'} oldsymbol{\omega}_{F'} ds = M_2 \| oldsymbol{\omega}_{F'} \|^2 \geq M_2 \| oldsymbol{\omega}_{F_{M_2}} \|^2 \ &\Big\{ oldsymbol{\omega}_{F'} = rac{M_1}{M_2} t_0 \Big\} \end{split}$$

If $V = V_{F_{M_1}}$ then $\omega_{F'} = \omega_{F_{M_2}}$. Hence we have $M_1 \|\omega_{F_{M_1}}\|^2 = M_2 \|\omega_{F_{M_2}}\|^2$ for any $M_2 \colon 0 < M_2 < M_1$.

§ 3. Function-theoretic mass

Let V(z) be $G-F_0SH$ function. Set $F_M = \{z \in G \mid V(z) \geq M\}$ for any M > 0. By Corollary 2 of Lemma 1, $M \|\omega_{F_M}\|^2$ increases as $M \to 0$. We define $\mathfrak{M}(V) = \mathfrak{M}^{\sigma}(V) = \lim_{M \to 0} \frac{M}{2\pi} \|\omega_{F_M}\|^2$, and call it the function-theoretic mass of V(z) ([4]). If a $G - F_0 SH$ function V satisfies $\mathfrak{M}(V) < \infty$, then we say that V is of potential type.

PROPOSITION 1. (i) Let V_i (i=1,2) be $G-F_0SH$ functions. If $V_1 \leq V_2$ on G, then $\mathfrak{M}(V_1) \leq \mathfrak{M}(V_2)$.

(ii) Let V be a $G-F_0H$ function and F be a regular closed set in G such that $\overline{F} \not\ni p_0$. Then $\inf_{z \in F} V(z) > 0$ and $\mathfrak{M}(V_F) = \frac{M}{2\pi} \|\omega_{F_M}\|_{G-F_M}^2 < \infty$ for any $0 < M < \inf_{z \in F} V(z)$.

PROOF. (i) Obvious from the definition.

(ii) If $p_0 \notin F$, then there is a $q \in G$ and $\delta > 0$ such that $F \subset \{z \in G | N(z, q) > \delta\}$. Then ω_F exists. Let K be a regular compact set in G which contains q in its interior, and set $\min_{z \in \partial K} V_F(z) = \alpha > 0$, $\max_{z \in \partial K} N(z, q) = \beta < +\infty$. By $\frac{\alpha}{\beta} N(z, q) \le V_F(z)$ on ∂K , we have $\frac{\alpha}{\beta} N(z, q) = \frac{\alpha}{\beta} N(\cdot, q)_K(z) \le (V_F)_K(z) \le V_F(z)$ on $G \subset K$. Hence $V_F(z) \ge \frac{\alpha}{\beta} \min(\delta, \alpha) > 0$ on F. Set $\inf_{z \in F} V(z) = M_0 > 0$. Then $V_F(z) = (V_F)_{F_{M_0}}(z)$. By Corollary of Lemma 1, we have $M \|\omega_{F_M}\|^2 = M_0 \|\omega_{F_M}\|^2$ for any $M : 0 < M \le M_0$. Hence we obtain $\mathfrak{M}(V_F) = \lim_{M \to 0} M \|\omega_{F_M}\|^2 = \frac{M}{2\pi} \|\omega_{F_M}\|^2$ for any $M : 0 < M \le M_0$.

COROLLARY. Let K be a regular compact set in G. Then $\mathfrak{M}(V_K) = \frac{M}{2\pi} \|\omega_{F_M}\|^2 < \infty$ for any $M: 0 < M \leq \min_{z \in \partial K} V(z)$.

LEMMA 2. Let V be a $G-F_0H$ function and K be a regular compact set in G. Then $\mathfrak{M}(V_K) = \frac{1}{2\pi} \int_{\partial K} \frac{\partial}{\partial \nu} V_K ds$.

PROOF. We may assume $K \subset G \cap R_1$. Let V_n be the harmonic function in $G \cap R_n - K$, which is equal to zero on $\partial G \cap (R_n \cup \partial R_n)$, to V on ∂K and whose normal derivative vanishes everywhere of the rest of the boundary. Fix M_1 : $0 < M_1 < \min_{z \in \partial K} V(z)$. By the Corollary of Proposition 1, Corollary 1 of Lemma 1 and Lemma 1, there is a subsequence $\{V_{n_k}\}$ of $\{V_n\}$ and some M_0 : $0 < M_0 < M_1$ such that

$$\mathfrak{M}(V_{K}) = \frac{M_{1}}{2\pi} \|\boldsymbol{\omega}_{F_{M_{1}}}\|^{2} = \frac{1}{2\pi} \int_{\partial F_{M_{1}}} \frac{\partial}{\partial \nu} V_{K} ds = \lim_{k \to \infty} \frac{1}{2\pi} \int_{\partial F_{M_{1}} \cap R_{n_{k}}} \frac{\partial}{\partial \nu} V_{n_{k}} ds.$$

By Green's formula,
$$\int_{\partial F_{\pmb{M_0}} \cap R_{n_k}} \frac{\partial}{\partial \nu} \, V_{n_k} ds = \int_{\partial K} \frac{\partial}{\partial \nu} \, V_{n_k} ds.$$

Then we have
$$\mathfrak{M}(V_{\mathit{K}}) = \lim_{k \to \infty} \frac{1}{2\pi} \int_{\partial \mathit{K}} \frac{\partial}{\partial \nu} V_{n_k} ds = \frac{1}{2\pi} \int_{\partial \mathit{K}} \frac{\partial}{\partial \nu} V_{\mathit{K}} ds$$
.

LEMMA 3. Let V be a $G-F_0H$ function. Then $\lim_{n\to\infty} \mathfrak{M}(V_{\vec{a}_n}) = \mathfrak{M}(V)$.

PROOF. Since $V_{\vec{G}_n} \leq V$, we have $\lim_{n \to \infty} \mathfrak{M}(V_{\vec{G}_n}) \leq \mathfrak{M}(V)$ by (i) of Proposition 1. Then we have to prove inverse inequality. For any given T: $0 < T < \mathfrak{M}(V)$, there exists M > 0 such that $T < \frac{1}{2\pi M} \|V_{F_M}\|_{G-F_M}^2$, where $F_M = \{z \in G \mid V(z) \geq M\}$. Set $K_n = F_M \cap \overline{G}_n$ and $F_M^{(n)} = \{z \in G \mid V_{K_n}(z) \geq M\}$. Then $\inf_{z \in K_n} V(z) \geq M$ and $K_n \subset F_M^{(n)} \subset F_M$. By Corollary of Proposition 1, we have $\mathfrak{M}(V_{K_n}) = \frac{1}{2\pi M} \|V_{K_n}\|_{G-F_M}^2 \geq \frac{1}{2\pi M} \|V_{K_n}\|_{G-F_M}^2$. Since V_{K_n} converges to V_{F_M} locally uniformly on $G-F_M$, we have $\lim_{n \to \infty} \|V_{K_n}\|_{G-F_M}^2 \geq \|V_{F_M}\|_{G-F_M}^2 > 2\pi MT$. Then $\lim_{n \to \infty} \mathfrak{M}(V_{\vec{G}_n}) \geq \lim_{n \to \infty} \mathfrak{M}(V_{K_n}) > T$. Hence $\lim_{n \to \infty} \mathfrak{M}(V_{\vec{G}_n}) \geq \mathfrak{M}(V)$.

Proposition 2. Let V_n $(n=1,2,\cdots)$ and V be $G-F_0H$ functions.

- (i) $\mathfrak{M}(aV_1+V_2)=a\mathfrak{M}(V_1)+\mathfrak{M}(V_2)$ for any positive constant a>0.
- (ii) If V_n converges to V locally uniformly, then $\underline{\lim} \mathfrak{M}(V_n) \geq \mathfrak{M}(V)$.
- (iii) If $\{V_n\}$ be increasing sequence and $\lim_{n\to\infty} V_n(z) = V(z)$, then $\lim_{n\to\infty} \mathfrak{M}(V_n) = \mathfrak{M}(V)$.
 - (iv) If $p \in G$, then $\mathfrak{M}(N(\cdot, p)) = 1$. If $q \in \Delta^G$, then $\mathfrak{M}(N(\cdot, q)) \leq 1$.
 - (v) $\mathfrak{M}(N(\cdot,q))$ is lower semi-continuous on G^* .

PROOF. (i) By Lemma 2, $\mathfrak{M}((aV_1+V_2)_{\vec{a}_n})=a\mathfrak{M}((V_1)_{\vec{a}_n})+\mathfrak{M}(V_1)$. By Lemma 3, as $n\to\infty$, we have $\mathfrak{M}(aV_1+V_2)=a\mathfrak{M}(V_1)+\mathfrak{M}(V_2)$.

- (ii) Since V_n converges to V uniformly on ∂G_k , we have $\lim_{n\to\infty} \mathfrak{M}((V_n)_{\tilde{a}_k}) = \mathfrak{M}(V_{\tilde{a}_k})$ by Lemma 2. Then $\lim_{n\to\infty} \mathfrak{M}(V_n) \geq \mathfrak{M}(V_{\tilde{a}_k})$ for any k. As $k\to\infty$, $\lim_{n\to\infty} \mathfrak{M}(V_n) \geq \mathfrak{M}(V)$ by Lemma 3.
- (iii) Since V_n are harmonic in G, V_n converges to V locally uniformly. Then, by above (ii) and (i) of Proposition 1, $\lim \mathfrak{M}(V_n) = \mathfrak{M}(V)$.
 - (iv) Use properties (e) and (d) of N-function and above (ii).
 - (v) Obvious from (iv).

REMARK 1. (i) Let V be a $G-F_0H$ function and K be a regular compact set in G. Then there is a unique measure μ supported by K such that $V_K=N_\mu$ ([1], [2] and [5]). By LEMMA 2 we have $\mathfrak{M}(V_K)=\mu(K)$.

(ii) Let $G=R_0$. Then any R_0-F_0H function V(z) has an L-potential representation (i. e. there is a measure μ on $\Delta(=\Delta^{R_0})$ such that $V=L_\mu$) and furthermore V satisfies $\mathfrak{M}^{R_0}(V)=\frac{1}{2\pi}\int_{\partial K}\frac{\partial}{\partial \nu}Vds=\mu(\Delta)<\infty$.

Proposition 3 ([4]). If V is of potential type, then V is N-potential.

PROOF. Let μ_n be the associated measure on ∂G_n with $V_{\vec{G}_n} = N_{\mu_n}$. By Remark 1, $\mu_n(\partial G_n) = \mathfrak{M}(V_{\vec{G}_n}) \leq \mathfrak{M}(V) < \infty$ for any n. Then there is a subsequence $\{\mu_{n_k}\}$ of $\{\mu_n\}$ and some measure μ on Δ such that $\mu_{n_k} \to \mu$ (vague) as $k \to \infty$. Then $V(z) = N_{\mu}(z)$ and $\mu(\Delta^G) = \lim_{k \to \infty} \mu_{n_k}(\partial G_{n_k}) = \lim_{n \to \infty} \mathfrak{M}(V_{\vec{G}_n}) = \mathfrak{M}(V)$ by Lemma 3.

COROLLARY 1. Let V be a $G-F_0H$ function and F be a regular closed subset of G. If $\inf_{z\in F}V(z)>0$, then there is a measure μ on \overline{F} such that $V_F=N_\mu$ and $\mathfrak{M}(V_F)=\mu(\overline{F})$.

PROOF. By Proposition 1, $\mathfrak{M}(V_F) < \infty$. Then use Theorem 14 in [5] and (iii) of Proposition 2.

COROLLARY 2. Let V be a $G-F_0H$ function and A be a closed set in Δ^G with $p_0 \notin A$. Then there is a measure μ on A such that $V_A = N_\mu$ and $\mu(A) = \lim_{n \to \infty} \mathfrak{M}(V_{A^{(n)}})$.

PROOF. By $A \not\supseteq p_0$, we may assume $A^{(1)} \not\supseteq p_0$. Then $\mathfrak{M}(V_{A^{(1)}}) < \infty$ by Proposition 1. Since $V_A \leq V_{A^{(1)}}$, we obtain $\mathfrak{M}(V_A) < \infty$. Then, by same method of the proof of Proposition 3, we see $\mu(A) = \lim_{n \to \infty} \mathfrak{M}(V_{\bar{a}_n})$.

Theorem 1. Let N_{μ} a $G-F_0H$ function. Then

$$\mathfrak{M}(N_{\mu}) = \int_{A^{\mathcal{F}}} (N(\cdot, p)) d\mu(p).$$

PROOF. Let $\mu_{p,n}$ be the associated measure on ∂G_n with $N(\cdot,p)_{\vec{G}_n}(z)=N_{\mu_p,n}(z)$ for any $p\in \Delta^G$ and G_n . Then there is a measure ν_n on ∂G_n such that $\nu_n=\int \mu_{p,n}d\mu(p)$ (i. e. $\int f d\nu_n=\int \int f d\mu_{p,n}d\mu(p)$ for any $f\in C(\Delta)$) (see p 297 in [5]). Then $(N_{\mu})_{\vec{G}_n}(z)=N_{\nu_n}(z)$. By Remark 1, we have $\mathfrak{M}((N_{\mu})_{\vec{G}_n})=\nu_n(\partial G_n)=\int \int 1 d\mu_{p,n}d\mu(p)=\int \mathfrak{M}(N(\cdot,p)_{\vec{G}_n})d\mu(p)$. As $n\to\infty$, we obtain $\mathfrak{M}(N_{\mu})=\int \mathfrak{M}(N(\cdot,p)_{\vec{G}_n})d\mu(p)$ by Lemma 3.

Corollary 1. For any regular closed subset F of G,

$$\mathfrak{M}\left((N_{\mu})_{F}\right) = \int \mathfrak{M}\left(N(\,\cdot\,,\,p)_{F}\right) d\mu(p)$$

PROOF. By Theorem 15, in [5], $(N_{\mu})_F(z) = \int N(\cdot, p)_F(z) d\mu(p)$. Set $F_n = F \cap \overline{G}_n$. Let $\nu_{p,n}$ be the associated measure with $N(\cdot, p)_{F_n} = N_{\nu_p,n}$. By a way

similar to the proof of Theorem 1, we have $\mathfrak{M}((N_{\mu})_{F_n}) = \int \int 1 d\nu_{p,n} d\mu(p) = \int \mathfrak{M}(N(\cdot,p)_{F_n}) d\mu(p)$. Then, as $n \to \infty$, $\mathfrak{M}((N_{\mu})_F) = \int \mathfrak{M}(N(\cdot,p)_F) d\mu(p)$ by Lemma 3.

Corollary 2. $\mathfrak{M}(N_{\mu}) \leq \mu(\Delta)$.

Proof. By (iv) of Proposition 2, $\mathfrak{M}(N_{\mu}) = \int_{A} \mathfrak{M}(N(\cdot, p)) d\mu(p) \leq \mu(\Delta)$.

LEMMA 4. Let V be a $G-F_0H$ function and A be a closed set in Δ^G with $A \not\ni p_0$. If $(V_A)_A = V_A$, then $\lim_{n \to \infty} \mathfrak{M}(V_{A^{(n)}}) = \mathfrak{M}(V_A)$.

PROOF. By $(V_A)_A = V_A$, we see $(V_A)_{{}_{\!\!A}(n)} = V_A$ for any n. We may assume $A_1 \not\ni p$. Then $\inf_{z \in A^{(1)}} V_A(z) > 0$ by Proposition 1. Fix $M \colon 0 < M < \inf_{z \in A^{(1)}} V_A(z)$ and set $F_M = \{z \in G \mid V_A(z) \geq M\}$, $F_M^{(n)} = \{z \in G \mid V_{A^{(n)}}(z) \geq M\}$ and $V_n(z) = \min(V_{-(n)}(z), M)$. Then, by Proposition 1, $\mathfrak{M}(V_{-(n)}) = \frac{1}{2\pi M} \|V_{-(n)}\|_{G-F_M^{(n)}}^2$ and $\mathfrak{M}(V_A) = \mathfrak{M}((V_A)_{A^{(1)}}) = \frac{1}{2\pi M} \|V_A\|_{G-F_M}^2$. Let n > m. Since $V_m - V_{A^{(n)}} = 0$ on $\partial F_M^{(n)}$, $(V_{-(n)}, V_m - V_{-(n)}) = 0$ by Dirichlet principle. (For Dirichlet function f, g, we denote by (f, g) the mixed Dirichlet integral). Then

$$\begin{split} \| \, V_n - V_m \|_{G - F_M}^2 &= \| \, V_{_{A^{(n)}}} - V_m \|_{G - F_M^{(n)}}^2 \\ &= \| \, V_{_{A^{(m)}}} \|_{G - F_M^{(m)}}^2 - \| \, V_{_{A^{(n)}}} \|_{G - F_M^{(n)}}^2 \,. \end{split}$$

Since $\{\|V_{A^{(n)}}\|_{G-F_M^{(n)}}^2\}_{n=1}^{\infty}$ are decreasing, we have

$$\lim_{n\to\infty} \|V_n - V_A\|_{G-F_M^{(n)}}^2 = 0.$$

Hence

$$\lim_{n\to\infty} \|V_{A^{(n)}}\|_{G-F_{M}^{(n)}}^{2} = \|V_{A}\|_{G-F_{M}}^{2},$$

and

$$\lim_{n\to\infty}\mathfrak{M}(V_{{}_{\mathcal{A}}(n)})=\mathfrak{M}(V_{{}_{\mathcal{A}}}).$$

COROLLARY. For the above V and A, there is a measure μ on A such that $V_A(z) = N_{\mu}(z)$ and $\mathfrak{M}(V_A) = \mu(A)$.

PROOF. By the above LEMMA and COROLLARY 2 of PROPOSITION 3, we have

$$u(A) = \lim_{n \to \infty} \mathfrak{M}(V_{A(n)}) = \mathfrak{M}(V_A).$$

REMARK 2. By Theorem 19 and 20 in [5], we see that $(N(\cdot, p)_{\{p\}})_{\{p\}} = N(\cdot, p)_{\{p\}}$ for any $p \in \Delta^{G} - \{p_{0}\}$.

§ 4. Classification of the boundary

We set $\alpha(p) = \mathfrak{M}(N(\cdot, p)_{\{p\}})$ for any $p \in \Delta^G - \{p_0\}$. Then we have $\alpha(p) = 1$ or 0 (See Theorem 21 in [5] and Theorem 4 in [4]). We set $\Delta_0^G = \{p \in \Delta^G - \{p_0\} | \alpha(p) = 0\}$ and $\Delta_1^G = \Delta^G - \{p_0\} - \Delta_0^G$. We call point in Δ_1^G a minimal point. Let μ be a measure on Δ^G . If $\mu(\Delta_0^G \cup \{p_0\}) = 0$, then we call μ a canonical measure. We note $\mathfrak{M}(N(\cdot, p)) = 1$ for any $p \in \Delta_1^G$. Because $1 \geq \mathfrak{M}(N(\cdot, p)) \geq \mathfrak{M}(N(\cdot, p)_{\{p\}}) = 1$.

PROPOSITION 4. (i) $\Delta_0^G \cup \{p_0\}$ is an F_σ -set.

(ii) Let V be a $G-F_0H$ function, and E be a closed set of Δ_0^G . Then $V_E=0$.

The proof of Proposition 4 is similar to the proofs of Theorem 22 and Theorem 23 in [5], where we replace $\frac{1}{2\pi}\int_{\partial K_0}\frac{\partial}{\partial \nu}Vds$ with $\mathfrak{M}(V)$ and use Proposition 2, Corollary of Theorem 1 and Corollary of Lemma 4. By Proposition 4, we have

PROPOSITION 5. (cf. Theorem 24 and 25 in [5]).

- (i) The measure μ which is defined in Corollary 2 of Proposition 3 is canonical.
- (ii) For any closed set A in $\Delta^{G} \{p_{0}\}$ and any $G F_{0}H$ function V(z), $(V_{A})_{A}(z) = V_{A}(z)$.

Theorem 2. Let V(z) be a $G-F_0H$ function with $\mathfrak{M}(V)<\infty$. Then there exist a canonical measure μ such that $V=N_{\mu}$.

PROOF. We shall show that the measure μ in Proposition 3 is canonical. Let A be a closed subset of Δ_0^G . Fix m and an open set O of G^* such that $A \subset O \subset A^{(m)}$. Let ν_k be the restriction of μ_{n_k} to O. Then $\mathfrak{M}(N_{\nu_k}) = \nu_k(G)$. By $(N_{\nu_k})_{A^{(m)}} = N_{\nu_k}$, $N_{\nu_k} \leq V_{A^{(m)}}$.

Then

$$\begin{split} \mu(A) \leq & \mu(0) \leq \lim_{k \to \infty} \, \mu_{n_m}(0) = \lim_{k \to \infty} \, \nu_k(0) \\ & = \lim_{k \to \infty} \, \mathfrak{M}(N_{\nu_k}) \leq \mathfrak{M}(V_{{}_{\mathcal{A}(m)}}) \,. \end{split}$$

Then by Lemma 4 and Proposition 4, we have $\mu(A) \leq \lim_{m \to \infty} \mathfrak{M}(V_{A^{(m)}}) = \mathfrak{M}(V_A) = 0$. Hence $\mu(A_0^g) = 0$.

COROLLARY. ([4]). If μ is canonical, then $\mathfrak{M}(N_{\mu}) = \mu(\mathcal{A}_{1}^{G})$.

§ 5. Relation between Δ^{G} and Δ^{R_0}

In this section, we denote by Δ the Kuramochi boundary of R_0 and by

 Δ_1 the set of all minimal points of Δ . Let F be a closed set of R. When $L(\cdot,p)_F(z)\not\equiv L(z,p)$, we call that F is thin at p (cf. p 221 in [1]). We set $\Delta_1(G)=\{p\in\Delta_1|R-G \text{ is thin at p}\}$. We shall study the relation between $G\cup\Delta_1^G$ and $G\cup\Delta_1(G)$.

Theorem A (Kuramochi [3]). Let $q \in \Delta_1^G$ and $B(q; R_0) = \{p \in \Delta \mid \text{There is a sequence } \{z_n\} \subset G \text{ such that } z_n \rightarrow p \text{ (L-top.)} \text{ and } z_n \rightarrow q \text{ (N-top.)} \}.$ Then $B(q; R_0)$ consists of only one point and $B(q; R_0) \in \Delta_1(G)$. We define a mapping $jG \cup \Delta_1^G$ into $G \cup \Delta_1(G)$ by j(z) = z for any $z \in G$ and $j(q) = B(q; R_0)$ for any $q \in \Delta_1^G$. Then j is a one to one continuous mapping of $G \cup \Delta_1^G$ onto $G \cup \Delta_1(G)$ and furthermore j satisfies

$$N(z,q) = L\!\left(z,j(q)\right) - L\!\left(\,\cdot\,,j\left(q\right)\right)_{\scriptscriptstyle R-G}\!(z)$$

for any $q \in G \cup \Delta_1^G$.

Theorem B (Kuramochi [3]). Let V(z) be a $G-F_0H$ function with $\mathfrak{M}(V)<\infty$. Then there exists a R_0-F_0H function U(z) such that $V(z)=U(z)-U_{R-G}(z)$.

For continuity of j^{-1} , we have Theorem 3 and 4.

Theorem 3. If G satisfies

Condition (I): $\overline{G} \cap \overline{R-G} \cap \Delta_0 = \phi$,

then j^{-1} is continuous on $(\overline{G} - \overline{\partial G}) \cap \Delta_1$.

 $\{z_n\}\subset G$ such that $z_n\to p$ (L-top.) and $z_n\to q$ (N-top.). By LEMMA 3 of [3], $B(p;G) \cap \mathcal{A}_1^{\mathbf{G}}$ consists of only one point. Let $z_n \to p$ (L-top.), $z_n \to q$ (N-top.) and μ_n be the canonical measure such that $L(\cdot, z_n)_{R-G}(z) = L_{\mu_n}(z)$. Since the support S_{μ_n} of μ_n contains $\overline{G} \cap \overline{R-G}$ (Theorem 1 in [7]) and μ_n ($\overline{G} \cap \overline{R-G}$) ≤ 1 , there is a subsequence $\{\mu_{n_k}\}_{k=1}^{\infty}$ and some measure μ on $\overline{G} \cap \overline{R-G}$ such that $\mu_{n_k} \to \mu$ (vague) as $k \to \infty$. Then $\lim_{n \to \infty} L(\cdot, z_n)_{R-G}(z)$ and $L_{\mu}(z)$ are superharmonic in G. Since $R \cap \overline{G} \cap \overline{R-G} = \partial G$ and ∂G is locally Lebesgue measure 0, we have $\lim_{x \to 0} L(\cdot, z_n)_{R-G}(z) = L_{\mu}(z)$ except for of locally Lebesgue measure Hence we have $\lim_{n\to\infty}L(\cdot\,,z_n)_{\mathcal{R}-\mathcal{G}}(z)=L_{\mu}(z)$. By Lemma 1 of [3], there is a constant c $(0 \le c \le 1)$ such that $L_{\mu}(z) = cL(z, p) + (1-c)$ $L(\cdot, p)_{R-G}(z)$. assumption, $S_{\mu} \subset \overline{G} \cap \overline{R-G} \subset R_0 \cup A_1$ and μ is canonical. Then, by the uniqueness of the canonical measure and $\{p\} \cap \overline{R-G} = \emptyset$, we have $\mu(\{p\}) = c = 0$ and $\lim_{z \to \infty} L(\cdot, z_n)_{R-G}(z) = L(\cdot, p)_{R-G}(z)$. Hence $N(z, q) = L(z, p) - L(\cdot, p)_{R-G}(z)$ for any $q \in B(p; G)$. Then B(p; G) consists of only one point and B(p; G) $\in \mathcal{A}_1^G$. Then we have $j^{-1}(p) = B(p; G)$ for any $p \in (\overline{G} - \overline{\partial G}) \cap \mathcal{A}_1$ and j^{-1} is continuous on $(\overline{G} - \overline{\partial}\overline{G}) \cap \Delta_1$.

Theorem 4. Let $p \in (\overline{G} - \overline{\partial G}) \cap A_1$. If

Condition (II): $\overline{\lim} L(\cdot, z)_{R-G}(z) < \infty$

is satisfied, then j^{-1} is continuous at p.

PROOF. We show that the μ in Theorem 3 is canonical. We denote by $\|\mu_n\|$ the energy of μ_n . $(\|\mu_n\|^2 = \int L_{\mu_n} d\mu_n)$

$$\begin{split} \|\mu_n\|^2 &= \int L_{\mu_n} d\mu_n = \int L(\,\cdot\,,\,z_n)_{R-G}(z) \, d\mu_n(z) \\ &\leq \int L(z,\,z_n) \, d\mu_n(z) = L_{\mu_n}(z_n) = L(\,\cdot\,,\,z_n)_{R-G}(z_n) \,. \end{split}$$

By assumption, $\{\|\mu_n\|\}$ are bounded. Then, by Satz 17. 4 in [1], we have that μ is canonical measure. Hence, on the analogy of the proof of Theorem 3, we complete the proof.

Let V(z) be a $G-F_0H$ function and K be a regular compact set in G. Then V_K is extended continuously on $G \cup \Delta^G$. C. Constantinescu and A. Cornea [1] defined the value of V on Δ^G by $V(p) = \sup_K V(p) = \lim_{K \neq G} V_K(p)$ for any $p \in \Delta^G$. Then, by Satz 17.2 of [1], we have $V(p) = \lim_{G \ni z \to p} V(z)$ for any $p \in \Delta^G_1$.

THEOREM 5. Let V be a $G-F_0H$ function with $\mathfrak{M}(V)<\infty$ and $p\in (\overline{G}-\overline{\partial G})\cap \Delta_1$. If j^{-1} is continuous at p, then for U(z) which satisfies the condition in Theorem B and $U_{R-G}(p)<\infty$, we have $V(j^{-1}(p))=U(p)-U_{R-G}(p)$.

PROOF. By [3], $V_{\bar{a}_n}(z) + U_{R-G}(z) = U_{G_n \cup (R-G)}(z)$. Let $p \in (\overline{G} - \overline{\partial G}) \cap A_1$. j and j^{-1} are continuous at p and $j^{-1}(p)$ respectively. Then for any $\frac{1}{n}$ neighbourhood $D\left(j(p), \frac{1}{n}\right)$ of $j(p)\left(\text{resp.} \frac{1}{n} - \text{neighbourhood} D\left(p, \frac{1}{n}\right) \text{ of } p\right)$, there is a $\frac{1}{m}$ -neighbourhood $D\left(p, \frac{1}{m}\right)$ of p $\left(\text{resp.} \frac{1}{m} - \text{neighbourhood} D\left(p, \frac{1}{m}\right) \cap G\left(p, \frac{1}{m}\right) \cap G\left(p,$

$$\lim_{\overline{G\ni z\to J}^{-1}(p)}\,\left(V_{\vec{G}n}^{\textit{G}}(z)+U_{R-\textit{G}}(z)\right)=\lim_{\overline{G\ni z\to D}}U_{\bar{G}_n\cup(R-\textit{G})}(z)\,.$$

$$\varliminf_{\overrightarrow{G\ni z\to j^{-1}(p)}}V_{\vec{G}n}^{g}(z)=\varliminf_{\overrightarrow{G\ni z\to j^{-1}(p)}}V_{\vec{G}n}^{g}(z)=V_{\vec{G}n}^{g}\!\left(j^{-1}(p)\right)$$

and

we have

$$V^{a}_{\bar{a}_n}ig(j^{\scriptscriptstyle{-1}}(p)ig) + U_{\scriptscriptstyle{R-G}}(p) = U_{\bar{a}_n\cup(\scriptscriptstyle{R-G})}(p)$$
 .

as $n \to \infty$, we obtain $V(j^{-1}(p)) = U(p) - U_{R-G}(p)$.

COROLLARY. Let $p \in (\overline{G} - \overline{\partial G}) \cap \Delta_1$. If Condition (I) or (II) is satisfied, we have $V(j^{-1}(p)) = U(p) - U_{R-G}(p)$.

The function V in Theorem B is not necessary uniquely determined. But V is uniquely determined in the sense of the following theorem.

Theorem 6. Let V(z) be a $G-F_0H$ function and μ_i (i=1,2) be canonical measures. If $V(z)=L_{\mu_i}(z)-(L_{\mu_i})_{R-G}(z)$ (i=1,2), then $\mu_1|\Delta_1(G)=\mu_2|\Delta_1(G)$. $(\mu_i|\Delta_1(G)$ means the restriction of μ to $\Delta_1(G)$ of μ). And furthermore $V(z)=L_{\nu}(z)=(L_{\nu})_{R-G}(z)$ on G where $\nu=\mu_i|G$.

PROOF. Let $\mu_{i,R-G}$ be a canonical measure of $(L_{\mu_i})_{R-G}(z)$. By Folgesatz 16. 4 of [1], $\mu_{i,R-G}$ is a measure on $\{p \in R_0 \cup \mathcal{L}_1 | L(\cdot,p)_{R-G}(z) \equiv L(z,p)\}$. Hence $\mu_{i,R-G}(G \cup \mathcal{L}_1(G)) = 0$. Since $L_{\mu_1}(z) + L_{\mu_2,R-G}(z) = L_{\mu_2}(z) + L_{\mu_1,R-G}(z)$, we have $\mu_1 + \mu_{2,R-G} = \mu_2 + \mu_{1,R-G}$ by the uniqueness of a canonical measure. Then we see $\mu_1 |\mathcal{L}_1(G) = \mu_2|\mathcal{L}_1(G)$. Let $\mu_1 |\mathcal{L}_1(G) = \nu$ and $\mu_1 - \nu = \nu'$. Then $L_{\mu_1}(z) - (L_{\mu_1})_{R-G}(z) = (L_{\nu} + L_{\nu'})(z) - (L_{\nu} + L_{\nu'})_{R-G}(z) = L_{\nu}(z) - (L_{\nu})_{R-G}(z)$.

Department of Mathematics Hokkaido University

References

- [1] C. CONSTANTINESCU and A. CORNEA: Ideale Ränder Riemannscher Flächen, Springer-Verlag, 1963.
- [2] Z. KURAMOCHI: Potentials on Riemann surfaces, J. Fac. Sci. Hokkaido Univ. Ser I, 16 (1962), 5-79.
- [3] Z. KURAMOCHI: Relations between two Martin topologies on Riemann surface, Ibid. 19 (1966), 146-153.
- [4] Z. KURAMOCHI: Superharmonic functions in a domain of a Riemann surface, Nagoya Math. J. 31 (1968), 41-55.
- [5] M. OHTSUKA: An elementary introduction of Kuramochi boundary, J. Sci. Hiroshima Univ, Ser A-I, 28 (1964), 271-299.

- [6] M. OHTSUKA: On Kuramochi's paper "Potentials on Riemann surfaces", Lecture Note in Mathematics, 58, Springer-Verlag, (1968).
- [7] H. TANAKA: Some properties of Kuramochi boundaries of hyperbolic Riemann surface, J. Fac. Sci. Hokkaido Univ. Ser I, 21 (1970), 129-132.

(Received August 31, 1972)