On the Kuramochi boundary of a subsurface
of a Riemann surface

By Yukio Nacasaka

Introduction

Z. Kuramochi [4] considered a compactification of a subsurface G of a
Riemann surface R, which is similar to the Kuramochi compactification of
R. In [4], he introduced the function-theoretic mass for F,SH functions
on G and showed that it is important to investigate the properties of the
compactification of G. Then, on the subsurface G, there are two topologies :
one of them is the topology on the compactification of G and the other is
the induced topology on G by the Kuramochi compactification of R. Z.
Kuramochi investigated the relations of these two topologies (Theorem
A and B).

In this paper, we shall give some properties of the function-theoretic
mass (Proposition 2 and [Theorem 1) and that the F;H function with finite
function- theoretic mass is represented by the canonical measure
2). In §5, we shall study the relation of the above two topologies (Theoreml
4, 5 and 6).

§1. Notation and terminology

Let R be a hyperbolic Riemann surface. We call a closed or open subset
A of R regular if the relative boundary A of A consists of at most a
countable number of analytic arcs clustering nowhere in R. We fix a closed

disk K, in R and a regular subdomain G of R such that K,NG=¢. Let
Ry=R—K,. An exhaustion of R will mean an increasing sequence {R,} of

relatively compact domains on R such that DR,,=R and each 0R, consists
n=1
of finite number of closed analytic Jordan curves. We denote by {G,} an
exhaustion of G.
§2. G—F,SH function

We follow for the definition and properties of Dirichlet functions.
Let f be a continuous Dirichlet function on R with f=0 on R—G and F
be a regular closed snbset of G. Then there is a uniquely determined Diri-
chlet function /7 on R which minimizes the Dirichlet norm ||g|| among Diri-
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chlet functions ¢ such that g=f on FU(R—G) and which is equal to f on
FU(R—G) and is harmonic in G—F (Dirichlet principle). If there is a
Dirichlet function f on R such that =0 on R—G and =1 on F, then f*
exists and does not depend on the choice of such £ Thus we denote it
by w=w(0F, z, G—F).

There exists a uniquely determined function N(z, p) (2, p€G) which has
the following conditions (cf. [4]):

a) Nz, p)—Glz, p) is harmonic in z€G for each peG, where G(z, p) is
the Green function of G.

c) }i_géN(z,p)—-:O.

d) If K be a regular compact set in G which contains p in its in-
terior, then N(-,p)*(2)=N(z,p). (We set N(z, p)=0 on R—G).

e) |lmin (N(g, p), M)||*=2zM for any M>O.

We call N(z,p) the N-function of G. We denote by L(z,p) the N-
function of Ry=R—K,. As a usual manner in [4], we have the Kuramochi
compactification G* of G and (2, p)—>N(z, p) is extended continuously over
GxG*. In 49=G*—G, there is only one point p, such that N(z, p,)=0.
We note that G* is metrizable. The properties of the Kuramochi com-
pactification R* of R are found in [1], and [5] For any non-negative
measure ¢ on G* (resp. Ry = R*—K,), we define N-potential (resp. L-potential)
by N,(z)=] Nz p)dp(p) (resp. L,(z)=1 Liz p)dp(p).

Let V(2) be a non-negative continuous function in R with V>0 on G
and V=0 on R—G such that V,(2)=min(V(z2), M) is a Dirichlet function
for any M >0. For any regular compact set K in G, we define Vg(z)=VZ(2)
by increasing limit of (V,)*(2) as M—co. If Vi(2)<V(2) for any regular
compact set K, then V(z) is called a G—FSH function. Any G—F,SH
function is superharmonic in G. If, in addition, G—F,SH function is har-
monic in G, it is called a G—FH function. Let N, be a continuous N-po-
tential which min (N,(z), M) is Dirichlet function for any M>0. Then N, is
a G—F,SH function (cf. [5]). '

Let V be a G—F H function. = For any regular closed subset F of G,

we define V by an increasing limit of Vx,» where K,=FN(R,UdR,). Let

FcF'. Then Vy<Vpm and (Vyp=Vwm. For any closed subset A of 49 we
set A(m)={zeGId(z, A< L
m

, where d is a metric on G*. Then there

exist a decreasing sequence of closed neighbourhoods of A in G* such that
each of their intersection {A“} with G is a regular closed set in G and
A(m)cA™cCA(m—1) for each m. We define V, by decreasing limit of
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V m- Let V(2) be a Dirichlet finite G—F,H function. If F 3p, (F is the
closure of F on G*) and A 3p,, then | Vi, — Vill—=0 as n—o00, Vi(2)=V"(2)
and ||V i — V4|0 and n—>oco respectively. (cf. [5]) |

LEMMA 1. ([2], ¢f- Fuglede's lemma). Let f be a non-negative Dirichlet
Junction on R such that f=0 on R—G, and f, be the harmonic function
in GNR,—F, which is equal to zero 3GN (R, UdR,) and to f on dFN(R,UdR,)
and whose normal derivative vanishes everywhere on the rest of the bound-
ary. If Tﬁf' f(2)>0, then there is a subsequence {f,. )} of {f.} such that

d 0
li ds=\ —f"d
Jm jaFMank o ——fn, ds = SaFM o f¥ds

for almost all M, where Fy={2€G|f"(z)>M)} (0<M<inf f(2)).
2€R

CoroLLARY 1. ([2], [6]). Let F be a regular closed set of G. If wg

exist, then S —;——coﬂls=||co1p||2 for almost all a, where F,={2€G|ws(z)>a}
aF, OV

0<a<]). '

CoroLLARY 2. ([4]). Let V be a G—F,SH function and Fy,={2€G|V(2)
M} If My>M,, then Moy, [P< Moy, . If V=Vs, , then Moy,
=Mllwz | for any M: 0<M<M

Proor. Let M;>M,. Set F'={ze¢ G|Vg, (z)>Mz} Then Ory =

Mz wp on G—F' and O <W0p, - By COoROLLARY 1, thereis a ,: 0<4< %2
1 2 1

such that

Miar, | =M [ 20r, ds = M, [ s

oy v

{CUFMl = o} {wFMI = ty}

- MzS—a"’;wﬁ.ds = Mjop|*> M| o, |I

If V=V, then o =, Hence we have M, ||lox, |'=M,|ws, |’ for
any M,: O<M <M,.
§ 3. Function-theoretic mass

Let V(2) be G—F,SH function. Set Fy={2€G|V(2)>M} for any M>0.
By CorOLLARY 2 of LEMMA 1, M|lwg,|® increases as M—0. We define
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SIR(V)*EUIG(V) hm ZM @z, ||, and call it the function-theoretic mass of V(2)

| [@]). If a G- FOSH function V satifies M (V)< oo, then we say that V is
of potential type.

- ProprosiTioN 1. (i) Let V, (i=1,2) be G F.SH functzons If Vi<V,
on G, then T(V,)<IN(V,).
(i1) Let V be a G—F,H function and F be a regular closed set in G

such that F 3 p,. Then inf V(2)>0 and M(Vy)= "Z—H‘”FM“G—FM < oo for any
2€F T )
0< M<inf V(2).

2€F
Proor. (i) Obvious from the definition. |
(i) If p, & F, then there is a ¢g¢ G and §>0 such that FC {ze G| N(z, ¢)>4}.
Then o exists. Let K be a regular compact set in G which contains ¢ in

2€0K

its interior, and set min Vx(2)=a>0, max N(z, q)=8< + co. By—% Nz, q)
2€K

<Vs(z) on 0K, we have —%—N(z, q)=—z—N(-,q),((z)$(VF)K(z)_<_ Ve(z) on G

—K. Hence Valz)> —g—min (6,a)>0 on F. Set inf V(2)=M,>0. Then

2eF

Vi(®)=(Vy)s, (2). By COROLLARY of LEMMA 1, we have M ||wz, [*=Miflo_, |?
for any M: 0<M<M,. Hence we obtain (V) =lim an,,M||2=§4_nwFMnZ
, m -

for any M (0<M<M,).
CoROLLARY. Let K be a regular compact set in G. Then M(Vy)=
2L Jwmyl<oo for any M: 0<M<minViz)

2€0K

LEMMA 2. Let V be a G—FH function and K be a regular compact

set in G. Then M(V,) = LS 9 v ds.

T Jag OV

ProoF. We may assume KCGNR,. Let V, be the harmonic function
in GNR,—K, which is equal to zero on dGN(R,UdR,), to V on dK and

whose normal derivative vanishes everywhere of the rest of the boundary.
Fix M;: O<M1<m1n V(z). By the CoroLLARY of ProposiTiON 1, COROL-

LARY 1 of LEMMA 1 and LEmMMA 1, there is a subsequence {V, .} of {V,}
and some M,;: 0<M,<M, such that

M1

0 Veds = lim—l— 9 —— V., ds.

2z SBFMO oy koo 21 S Wy R, £y

m(VK) =

oz, I =
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By Green’s formula, S 9 V,.ds= S 9 V., ds.
Fy OR,, v ax OV
o 1 9 1 9
Then we have MM(Vy)=lim —\ -V, ds=_—\ ——Vyids.
koo 27 Jox OV 27 Jox Ov

LemMA 3. Let V be a G—F,H function. Then lim M(V5 )=T(V).

n—00

Proor. Since V5 <V, we have lim M(V5 )<IM(V) by (i) of PrROPOSI-

n—00

TION 1. Then we have to prove inverse inequality. For any given T':

0<T<M(V), there exists M >0 such that T<—2—%4—HVFM||§;_FM, where F,,
T

={2eG|V(z)>M}. Set K,=F,NG, and FP={2€G |V, (2)=M}. Then

inf V(2)>M and K,cF{CF,. By CoroLLARY of PROPOSITION 1, we .

26K,
1 1

have M(Vg,) = oxM ”VKnH%?—FJ(‘;’) = oM

to Vg, locally uniformly on G—F,, we have lim ||V ||§-5, > || Vr,lo-r,>
2zMT. Then lim (Vg )>lim M(V, )>T. Hence lim M(Vg )=M(V).

n—oco 272—00 n-—-co

| Vi llo-7,- Since Vi converges

ProrosiTioN 2. Let V, (n=1,2,---) and V be G—F,H functions.
(i) M(aVi+ Vy)=a(V)+ (V) for amy positive constant a>0.
(ii) If V, converges to V locally uniformly, then lim S(V,)=>MM(V).
(

n—rco

i) If {V.,} be increasing sequence and lim V,(z)=V(z), then lim M (V)

iv) If p€G, then MUN(-, p)=1. If qed®, then M(N(-, )<L.

(
(v) WN(-, q)) is lower semi-continuous on G*.

Proor. (i) By LemMmA 2, M(@V,+ V,)a)=a((Vi)s,)+IM(V.). By
LEMMMA 3, as n—o0, we have M(aV,+ V,)=aR(V,)+WM(V)).
(ii) Since V, converges to V uniformly on 0G,, we have lim I((V,)s,)

n—oo

=M(Vs,) by LEmMa 2. Then lim M(V,)>M(Vg,) for any & As k—oo,
lim M(V,)>M(V) by LEmMmA 3.

n—roo

(iii) Since V,, are harmonic in G, V, converges to V locally uniformly.

Then, by above (ii) and (i) of ProrosiTION 1, lim IN(V,)=TM(V).

(iv) Use properties (e) and (d) of N-functionr: and above (ii).

(v) Obvious from (iv).

REMARK 1. (i) Let V be a G—F,H function and K be a regular
compact set in G. Then there is a unique measure p supported by K such
that Vy=N, ([1], [2] and [5]. By LEmMA 2 we have M (Vy)=pu(K).
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(1) Let G=R,. Then any R,—F,H function V(z) has an L-potential
representation (i.e. there is a measure u on A(=4%) such that V=L, and
Surthermore V satisfies M* (V)= 71—3‘ ins=y(d)< oo,
0K,

T v

ProrosiTiON 3 ([4]). If V is of potential type, then V is N-potential.

Proor. Let g, be the associated measure on 9G, with V@n=N,,n. By
REMARK 1, ££,(0G,)=M (V5 )<M(V)< oo for any n. Then there is a sub-
sequence {g, ) of {¢.} and some measure ¢ on 4 such that g, —p (vague)
as k—>oc. Then V(2)=N,(z) and y(AG)=£i_'r2 p,,,((a(;,,,c)ﬂg EIR(V@n)=§m(V)
by LEMMA 3.

CoROLLARY 1. Let V be a G—F\H function and F be a régular closed
- subset of G. If 1znl£ V(2)>0, then there is a measure p on F such that
Vz=N, and %(Vp)e=y(7).

Proor. By [Proposition 1, M(Vz<oo. Then use Theorem 14 in
and (iii) of PROPOSITION 2. :

COROLLARY 2. Let V be a G—FH function and A be a closed set in
4% with py& A. Then there is a measure p on A such that V,=N, and
p#(A)=lim M(V )

A

Proor. By A®p,, we may assume AV 3Bp,. Then M(V, ,)<oo by
ProrosiTiON 1. Since V,<V, ), we obtain IM(V,)<oco. Then, by same

method of the proof of ProPosITION 3, we see p(A)=Ilim M (Vg ).

7n—o0

TueoreM 1. Let N, a G—FH function. Then

MW, = |, (N, p))dp(2)

Proor. Let p,, be the associated measure on 9G, with N(-,p)@-n(z)#
N, (2) for any p€4? and G,. Then there is a measure v, on 3G, such

that v,= ¢, .dp(p) (e § fdv, =\ fdp, .dp(p) for any feC(4) (see p 297 in
[5]). Then (N,)s, (2)=N, (2). By REMARK 1, we have M ((N,)z )=v,0G,)=
$1dp, dp(p)= (N, p)a )dix(p). As n—oo, we obtain T(N,)= TN,
p)dp(p) by LEMmaA 3.

CoroOLLARY 1. For any regular closed subset F of G,

W (N,)x) = [ (N, p)r) dp(p)

Proor. By Theorem 15, in [5], (N,)s(2)=N(-, p)s(z)dp(p). Set F,=
FNG,. Letvy,, be the associated measure with N(-, p) =N,

0’
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similar to the proof of THEOREM 1, we have Em(( W)= \‘gldvp Ap(p)=
SI(N(, p)r,)dp(p).  Then, as n—>oco, M(N))=§WN(-,p)r)de(p) by
LemMma 3.

COROLLARY 2. TM(N,)< p(4).
Proor. By (iv) of ProposITION 2, M(N,)=§ M(N(-, p))dp(p)< p(4).

LEmMMA 4. Let V be a G—F,H fzmctzon and A be a closed set in A°
with A3p,. If (V)a=V.,, then lim M(V ) =T(V,).

Proor. By (V,).=V,, we see (V) =V for any n. We may assume
A, 3p. Then mf VA( )>0 by ProrosiTioN 1. Fix M: 0<M< inf V,(2)

zEA zEA(I)

and set FM—{zGGlVA( )2 M}, Fip ={zeG|V, m(z )>M} and V,(2)=

min (V (,)(z), M). Then, by ProprosITION 1, MV )= ——— |V - #p)

o M
and M(V,)=M(V.) <1>)=—2iM~HVAIIé-FM. Let n>m. Since Vy—V =0

on FP, (V sy, Vuo—V y)=0 by Dirichlet principle. (For Dirichlet function

/> 9, we denote by (f; g) the mixed Dirichlet integral). Then
Vo= Vallo-rmy =1V oy — Vo ll&-rip
=V mllo-sg =1V o -5 -
Since {||V, wlla-s»}n-1 are decreasing, we have

lim ||V~ Vall3 s = 0.

7n—roo

Hence
hm ]l (n)HG Py = HVA“%?—FM ’

and

lim SD?(VA(”)) = %(VA) .

n—oo

COROLLARY. For the above V and A, there is a measure it on A such
that V,(2)=N,(z) and M(V ,)=p(A).

Proor. By the above LEMMA and COROLLARY 2 of PROPOSITION 3,
we have

u(A) = lim (V) = M(V.) .

n—oo

REMARK 2. By Theorem 19 and 20 in [5], we see that (N(-, p)m)ip =
N(-, p)w for any ped®—{p,}.



190 Y. Nagasaka

§ 4. Classification of the boundary

We set a(p)=MM(N(-, p)y) for any ped?—{p)}. Then we have a(p)=1
or 0 (See Theorem 21 in [5] and in [4]). We set 4§={ped®—
{po}|a(p)=0} and 4F=49—{p}—4§. We call point in 47 a minimal point.
Let ¢ be a measure on 49. If p(4§U{po})=0, then we call ¢ a canonical
measure. We note MM(N(-, p))=1 for any pedf. Because 1>IM(N(-,p))=>
TN, ) =1.

ProPOSITION 4. (i) 48U {ps} is an F,-set.

(i) Let V be a G—F,H function, and E be a closed set of 45. Then

VE=0.
The proof of ProPOSITION 4 is similar to the proofs of Theorem 22
and Theorem 23 in [5], where we replace —LS 9 Vds with M(V) and
K,

T oy
use ProPOSITION 2, COROLLARY of THEOREM 1 and COROLLARY of LEMMA

4. By ProPOSITION 4, we have
PROPOSITION 5. (cf. Theorem 24 and 25 in [5)).

(i) The measure p which is defined in COROLLARY 2 of PROPOSITION

3 is canonical.

(ii) For any closed set A in 4°—{ps} and any G—FH function V(z),
(Val2)=Val(2)

TuEOREM 2. Let V(2) be a G—F,H function with M(V)<oo. Then

there exist a canonical measure p such that V=N,.

ProOF. We shall show that the measure g in [Proposition 3| is canonical.
Let A be a closed subset of 4¢. Fix m and an open set O of G* such that
ACOCA™. Let v, be the restriction of g, to O. Then IM(N,,)=v:(G).
By (N,),om=Nyys Npy <V ymy-

vy DV —=V 4
Then

#(A)<L0)<lim p,,(0) = lim »,(0)

k—oo k—oo

= lim M(N,) STV, ).
k—co

Then by LEmMMA 4 and ProrosiTioN 4, we have g(A)<lImI(V )=
M(V,)=0. Hence u(4f)=0.
CoroLLARY. ([4]). If p is canonical, then IM(N,)= p(4f).

§5. Relation between 4¢ and 4%

In this section, we denote by 4 the Kuramochi boundary of R, and by
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4, the set of all minimal points of 4. Let F be a closed set of R. When
L(-,p)s(2)#£L(z, p), we call that F is thin at p (cf. p 221 in [1]. We set
4,(G)={ped,|R—G is thin at p}. We shall study the relation between
GU4F and GU 4,(G).

THEOREM A (Kuramochi [3]). Let qedf and B(q; R,) = {p€d|There
is a sequence {z,})CG such that z,—p (L-top.) and z,—>q (N-top.)}). Then
B(q; Ry) consists of only one point and B(q; R)e4,(G). We define a mapping
JGU4? into GUA(G) by j(z)==z for any 2€G and j(q)=B(q; R, for any
q€d?. Then j is a one to one continuous mapping of GU ¢ onto GU 4,(G)
and furthermore j satisfies

N(z,q)=L(2j(@)— L(-,j(@) ,_,(2)
Jor any qeGU 4°.
THEOREM B (Kuramochi [3]). Let V(z) be a G—F,H function with

M(V)<oo. Then there exists a Ry—F,H function U(z) such that V(z)=
U(2)—Ur-a(2).

For continuity of j7!, we have THEOREM 3 and 4.
THEOREM 3. If G satisfies
Condition (I): GNR—GN4y=¢,

then j=' is continuous on (G—9G)N 4,.

Proor. Let pe(G—3dG)N4,. Set B(p, G)={qed?|There is a sequence
{2} CG such that z,—p (L-top.) and z,—>q (N-top.)}. By Lemma 3 of [3],
B(p; G)N 4§ consists of only one point. Let z,—p (L-top.), z,—>q (N-top.)
and g, be the canonical measure such that L(-, Za)r-6(2)=L, (2). Since the
support S, of p, contains GNR—G in [7])) and g, (GNR—G)
<1, there is a subsequence {g, }7_, and some measure z on GNR—G such
that p, —>p (vague) as 2—>oo. Then lim L(-, 2,)z_¢(2) and L,(z) are super-

7—00

harmonic in G. Since RNGNR—G=0G and 8G is locally Lebesgue measure
0, we have lim L(-, 2,)z_¢(2)=L,(2) except for of locally Lebesgue measure

7n—00

0. Hence we have lim L(-, 2,)r_¢(2)=L,(2). By of [3], there is
a constant ¢ (Ogcﬁnﬁn such that L,(2)=cL(z, p)+(1—c) L(-,p)r (). By
assumption, S,CGNR—GCR,U 4, and p is canonical. Then, by the unique-
ness of the canonical measure and {p}NR—G=¢, we have p({p})=c=0
and lim L(:, 2,)z¢(2) = L(-, p)r-4(2). Hence Ni(z, q)=L(z, p)—L(-, p)r-4(2)

for any q€B(p; G). Then B(p; G) consists of only one point and B(p; G)
€4f. Then we have j7'(p)=B(p; G) for any pe(G—0G)N 4, and j* is con-
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tinuous on (G—0G)N 4.

THEOREM 4. Let pe(G—aG)N4,. If
Condition (II): lim L(-, 2)p_a(2)< o

2—p

is satisfied, then j™' is continuous at p.
Proor. We show that the g in THEOREM 3 is canonical. We denote
by || the energy of g, (|g.lP={L,d

lpwali? = § L, it = [ L, zn>ﬁ_g<z>dyn<z>
< [ L(z z)du(z) = L, (z.) = L(-, z)r-a(2) -

By assumption, {||¢.]|} are bounded. Then, by Satz 17. 4 in [1], we have
that g is canonical measure. Hence, on the analogy of the proof of THE-
OREM 3, we complete the proof.

Let V(2) be a G—F,H function and K be a regular compact set in G.
Then Vj is extended continuously on GU4% C. Constantinescu and A.

Cornea defined the value of V on 4% by V(p)=sup V(p)=lim Vi(p) for
x K7G
any p€d® Then, by Satz 17.2 of [1}, we have V(p)=lim V(z) for any

Gdz2—p
pedf.

THEOREM 5. Let V be a G—F,H function with M(V)< oo and pe
(G—8G)N4,. Ifj' is continuous at p, then for U(R) which satisfies the
condition in THEOREM B and Uy ¢(p)< oo, we have V(j ' (p) = U(p)—
Ur-a(p)- :

" ProoF. By [Bl Ve, (2)+Us a(®=Us umo(@). Let pe(G—3G)N4;. j

and j! are continuous at p and j~!(p) respectively. Then for any 1
- n

neighbourhood D(j(p), -1_> of j(p) (resp. »—1—-neighbourhoodD(p, i) of p),
n . n n
there is a L-neighbourhood D (p, L) of p (resp. L-neighbourhood
m m

m
1 %) NG (resp. D( ip) -;—Z)

.D&ﬂﬁrL>m&tMtDQyidﬂGCDp@L
m
nGeD (p, i) nG). Then

n

lim (VE.(2) + Ur-a(2) = lim Us,ucr-a)(=).-

G3z—F " p) @3z2—p

By
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lim  Ve()=lm V& (x)=VE (i)

G32—7 *(p) G3z2—J" U(p)

and
lim Ve-a2)=lim Vi g(2)= Vi a(p),
@32—3 " (p) GI2-p

we have

VE (77(2)) + Un-a(p) = Us, yn-a(2) -
as n—>oo0, we obtain V(i ' (p)=U(p)—Ur_g(p).

CoroLLARY. Let pe(G—0G)N4y. If Condition (I) or (I) is satisfied,
we have V(;7(p)=U(p)—Ugr-a(p).

The function V in Theorem B is not necessary uniquely determined.
But V is uniquely determined in the sense of the following theorem.

THEOREM 6. Let V(2) be a G—FH function and p; (i=1,2) be canoni-
cal measures. If V(2)=L,,(2)—(L,)r-¢(2) ((=1,2), then m|4,(G)=pm|d(G)
(&514,(G) means the restriction of ¢ to 4,(G) of p). And furthermore V(=)=
L,(2)=(L,)r-a(2) on G where v=y,|G.

ProOOF. Let g, »_q be a canonical measure of (L,)r-a(2). By Folgesatz
16. 4 of [1], s »-e is a measure on {PERUL|L(-, p)r_g(z)=L(z, p)}. Hence
tsr-¢(GU4(G)=0. Since L,(x)+L,,, (=L, (2+L,, , .(2), we have p,
+th r-a={+ th r-e Dy the uniqueness of a canonical measure. Then we see
t]d(G)= ] 4(G). Let p|4(G)=v and g,—v=y. Then L, (2)—(L,)z-¢(2)
=(L,+ L,)(2)—(L,+ L,)p-¢(2)=L,(2) —(L,)r_s(2).
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