A Characterization of Conway's Group C_3

By Tomoyuki Yoshida

§ 1. Introduction

In this paper we characterize the Conway's simple group C_3 of order 2^{10} $3^7 \cdot 5^3 \cdot 7 \cdot 11 \cdot 23$ by the structure of the centralizer of a noncentral involution.

Main theorem. Let G be a finite group satisfying the following properties:

- (i) G has an involution e with $C_G(e) \cong Z_2 \times M_{12}$,
- (ii) $e \in O^2(G)$.

Then $G \cong C_3$.

The centralizer of a central involution of the Conway's group C_3 is isomorphic to the perfect central extention of $S_p(6,2)$ by a group of order 2. The main difficulty in proving the main theorem is in the determination of the structure of a S_2 -subgroup of G. If this is established, we can easily know that G has the same involution fusion pattern and the centralizer of a central involution as the Conway's group C_3 . Thus the characterization theorem of C_3 by D. Fendel [1] implies that $G \cong C_3$.

Throughout, all group considered are finite. Most of our notations are standard (see [2]) and we use the "bar" convention for homomorphic images. Furthermore we use the following notations:

$$x \sim y$$
 x is conjugate to y ,
 $a: x \longrightarrow y$ $y = x^a = a^{-1}xa$,
 x^H $= \{x^h | h \in H\}$,
 $\langle x^H \cap K \rangle$ $= \langle y | y \in K, x \sim y \text{ in } H \rangle$,
 $A \otimes B$ the central product,
 $A \otimes B$ the wreathed product.

§ 2. Preliminalies

A. Mathieu group M_{12} . We list some properties of Mathieu group $M_{12}=M$. Let c be an involution of the center of a S_2 -subgroup of M.

(1) Generators and relations of the centralizer of c.

$$C_M(c) = \langle a_1, a_2, b_1, b_2, s, t \rangle,$$

 $a_1^2 = a_2^2 = b_1^2 = b_2^2 = [a_1, a_2] = [b_1, b_2] = c,$

$$[a_1, b_1^{\dagger}] = [a_1, b_2] = [a_2, b_1] = [a_2, b_2] = 1,$$

$$s_1^3 = t^2 = (st)^2 = 1,$$

$$s: a_1 \longrightarrow a_2 \longrightarrow a_1 a_2, b_1 \longrightarrow b_2 \longrightarrow b_1 b_2,$$

$$t: a_1 \longrightarrow a_1 c, a_2 \longrightarrow a_1 a_2 c, b_1 \longrightarrow b_1 c, b_2 \longrightarrow b_1 b_2 c.$$

(2) The fusion pattern of involutions. $T_0 = \langle a_1, a_2, b_1, b_2, c, t \rangle$ is the S_2 -subgroup of M and every involution of M is conjugate to c or $a_2b_1b_2$. Furthermore the following hold:

$$c \sim a_1 b_1 \sim a_2 b_2 \sim t$$
,
 $a_2 b_1 b_2 \sim a_1 b_2 \sim a_2 b_1$.

(3) New generators of T_0 .

Set as follows:

$$a = a_2b_2t$$
, $b = a_2b_1b_2ct$, $u = a_2b_1b_2$, $r = a_1b_2$.

Then a, b, u and r generate T_0 , and

$$a^{4} = b^{4} = u^{2} = r^{2} = [a, b] = [u, r] = 1,$$

 $u: a \longrightarrow a^{-1}, b \longrightarrow b^{-1}, r: a \longleftrightarrow b,$
 $a_{1} = au, b_{1} = ab^{-1}, a_{1}b_{1} = a^{2}, c = a^{2}b^{2},$
 $a_{2} = a^{2}ur, b_{2} = a^{-1}b^{-1}r, a_{2}b_{2} = a^{-1}bu,$
 $t = a^{2}bu.$

(4) Another 2-local subgroup.

$$N_{M}(\langle a^{2}, b^{2} \rangle) = \langle a, b, u, s', r \rangle,$$

 $s'^{3} = (s'r)^{2} = 1,$
 $s': a \longrightarrow b \longrightarrow a^{-1}b^{-1}, u \longrightarrow u.$

For the original generators, s' normalizes $\langle c, a_1, b_1, a_2b_2, t \rangle$ and

$$s': c \longrightarrow a_1b_1 \longrightarrow a_1b_1c, t \longrightarrow a_2b_2 \longrightarrow a_1t,$$

 $a_1 \longrightarrow a_1a_2b_1b_2t, b_1 \longrightarrow ca_1a_2b_1b_2t.$

- (5) $C_M(c)$ and $N_M(\langle a^2, b^2 \rangle)$ are maximal 2-local subgroups of M. In particular, $N_M(\langle c, a_1b_1, a_2b_2 \rangle) = C_M(c)$.
- (6) $R_0 = \langle a_1, a_2, b_1, b_2, c \rangle$ is the unique subgroup of T_0 isomorphic to $Q_8 * Q_8$. Quaternion subgroups of R_0 are only $\langle a_1, a_2, c \rangle$ and $\langle b_1, b_2, c \rangle$. Furthermore $Aut \ Q_8 * Q_8 \cong S_4 \ S_2$.

 $B_0 = \langle a, b, u \rangle = \langle a_1, b_1, a_2b_2, c, t \rangle$ is the unique subgroup of T_0 isomorphic to B_0 .

234 T. Yoshida

PROOF. We recall the definition of M_{12} by Witt [4], and also a set of generators and relations for $C_M(c)$ by Wong [5]. Let α be a primitive element of GF(9) satisfying $\alpha^2 + \alpha = 1$. As a permutation group on the projective line $L = GF(9) \cup \{\infty\}$, we define

$$M_{10} = \langle PSL(2, 9), s_1 \rangle$$

where $s_1: x \longrightarrow \alpha x^3$. If new points v and w are adjoining to L, M_{11} and M_{12} are defined as the transitive extensions in succession as follows.

$$M_{11} = \langle M_{10}, s_2 \rangle, M_{12} = \langle M_{11}, S_3 \rangle,$$

where

$$s_2: x \longrightarrow \alpha^2 x + \alpha x^3, \infty \longleftrightarrow v,$$

 $s_3: x \longrightarrow x^3, v \longleftrightarrow w.$

Let

$$\pi: x \longrightarrow -x,$$

$$\beta: x \longrightarrow \alpha_{2n}^{-1} x^{3},$$

$$7: x \longrightarrow \alpha x^{3},$$

$$\tau: x \longrightarrow \alpha x^{-1},$$

$$\varepsilon: x \longrightarrow -\alpha x^{3} - \alpha^{3} x^{-1} (x \neq 0, \infty), \ 0 \longleftrightarrow v, \ \infty \longleftrightarrow w,$$

$$\lambda: x \longrightarrow \alpha^{2} x^{-1} + \alpha x^{-3} (x \neq 0, \infty), \ 0 \longrightarrow v \longrightarrow \infty \longrightarrow 0,$$

$$\mu: x \longrightarrow x^{-1}.$$

Then π is in the center of a S_2 -subgroup of M and $C(\pi)$ is generated by π , β , γ , τ , ε , λ , μ . If we put

$$c = \pi$$
, $a_1 = \beta \gamma$, $a_2 = \gamma$, $b_1 = \beta \tau$, $b_2 = \pi \gamma \varepsilon$, $s = \lambda$, $t = \mu$,

then we can check easily that a_1, a_2, b_1, b_2, c, s and t satisfy the relations in (1) using relations (1) in [5].

Since M_{11} has only one class of involutions, we have the fusion pattern of involutions in (2).

If we set

$$s' = (0, \alpha^2, \alpha^3)(\infty, -\alpha^2, -\alpha^3)(v, 1, -\alpha)(w, -1, \alpha),$$

then $s' \in M_{12}$ and s' satisfies the relations in (4). The proof of (3), (5) and (6) are easy.

B. The order of a S_2 -subgroup.

LEMMA. Let H be a subgroup of a group G and e an involution of $H \cap O^2(G)$.

(1) If χ is a character of G, then $\chi(1) \equiv \chi(e) \pmod{4}$.

(2) Assume that $e^{\alpha} \cap H = e_1^H + \dots + e_n^H$. Let α be a character of H. Then

$$\alpha^{G}(e) = \frac{|C^{G}(e)|}{|H|} \sum_{i} |e_{i}^{H}| \alpha(e_{i}) \equiv |G:H| \alpha(1)$$
(mod 4).

(3) Let I be the principal character of H. If $I^{\mathbf{q}}(e)$ is odd, then $|G|_2 = |H|_2$. If $I^{\mathbf{q}}(e) \equiv 2 \pmod{4}$, then $|G|_2 = 2|H|_2$.

PROOF. Let ρ be a matrix representation of G with the character χ . Then the characteristic roots of the matrix $\rho(e)$ are 1 and -1. Let their multiplicities be a and b, where a, $b \ge 0$. Since $e \in O^2(G)$, $det \ \rho(e) = 1$. Thus we have that b is even. Since $\chi(1) = a + b$ and $\chi(e) = a - b$, $\chi(1) - \chi(e) = 2b \equiv 0 \pmod{4}$, proving (1). The rest of the lemma is easily proved.

§ 3. The proof of the main theorem

Throughout this section G denotes a simple group satisfying the hypothesis of the main theorem, and let e be an involution of G such that $C_G(e) = \langle e \rangle \times M$, where $M = M_{12}$. Furthermore $a_1, a_2, b_1, b_2, c, s, t, a, b, u, r$ and s' denote the same elements of M as those in § 2.

LEMMA 1. e is not a central involution of G.

PROOF. Assume false, in which case $T = \langle e \rangle \times \langle a_1, a_2, b_1, b_2, c, t \rangle \in Syl_2G$ and $T \cap M \in Syl_2M$. By § 2 (1), c is the square of an element of G and e is not. Thus $e \not\sim c$. Since $Z(T) = \langle e, c \rangle$, Burnside's theorem ([1], Theorem 7. 1. 1) implies that c, e and ce are not conjugate in G each other. However M possesses exactly two conjugate classes of involutions, and so it follows from Thompson's fusion theorem that two of c, e and ce are conjugate in G each other, a contradiction.

Set $T = \langle e \rangle \times \langle a_1, a_2, b_1, b_2, c, t \rangle$ and $B = \langle e \rangle \times \langle a, b, u \rangle$. Then we note that B is weakly closed in T.

LEMMA 2. $|N_G(T):T|=2$ and $N_G(B)/B=N_GZ(B)/B\cong S_4$. In particular $|G|_2\geqq 2^9$.

PROOF. Since $Z(T) = \langle c, e \rangle \cong Z_2^2$ and $N_G(T) \cap C_G(e) = T$, we have that $|N_G(T):T| = 2$ by Lemma 1. Since $B = C_T \Omega_1 Z_2(T)$ char T, if we set Z = Z(B) and $N = N_G(Z)$, then $N_G(T) \subseteq N$, and so $e \sim ec$ in N. Since $ea^2 \sim eb^2 \sim ea^2b^2$ in N by § 2(3), we have that N acts transitively by conjugation on the set $e^G \cap Z = e\langle a^2, b^2 \rangle$. Since $C_N(Z) = B$ and $C_N(e)/B \cong S_3$, we conclude that $B \triangleleft N$ and $N/B \cong S_4$.

Lemma 3. There exists an element
$$d \in N_G(T) - T$$
 such that $d^2 = 1$, $[d, s] = 1$, $[d, t] = c^{\alpha}$, where $\alpha = 0$ or 1, $[a_1, d] = [a_2, d] = [b_1, d] = [b_2, d] = 1$.

236 T. Yoshida

PROOF. Set $R = \langle e \rangle \times \langle a_1, a_2, b_1, b_2, c \rangle \cong \mathbb{Z}_2 \times (Q_8 * Q_8)$. Then $R/Z(T) \cong \mathbb{Z}_2^4$ is the unique abelian maximal subgroup of $T/Z(T) \cong \mathbb{Z}_2^2 \otimes \mathbb{Z}_2$, and so R char T. Thus $T^* = N_G(T) \subseteq N_G(R) = N$. Since $Z(T) = Z(R) = \langle c, e \rangle \triangleleft N$, $|N: C_N(e)| = 2$. By Frattini argument, $N = N_N(\langle s \rangle)R$, and so $|C_N(s)| = 24$. Since $C_N(s) \oplus C_G(e)$, $O_2C_N(s) \cong D_8$. Let d be an involution of $C_N(s) = T$. Then we have that $T^* = \langle T, d \rangle$, $C_N(s) = \langle s \rangle \times \langle c, d, e, \rangle$ and [d, e] = c. t normalizes $\langle c, d, e \rangle$ and $[d, t] = c^{\alpha}$ for $\alpha = 0$ or 1 (because otherwise $(dt)^2 = [d, t] \sim e$).

Now d normalizes $[R,s]=Q_1Q_2$ where $Q_1=\langle a_1,a_2,c\rangle$ and $Q_2=\langle b_1,b_2,c\rangle$. Since $[R,s]\cong Q_8*Q_8$ possesses exactly two quaternion subgroups, which are Q_1 and Q_2 , we have that either $d:Q_1\longrightarrow Q_1,Q_2\longrightarrow Q_2$ or $d:Q_1\longleftrightarrow Q_2$. If $d:Q_1\longrightarrow Q_1,Q_2\longrightarrow Q_2$, then since $Aut\ Q_8\cong S_4$ and d commutes with the element of order 3, d centralizes both Q_1 and Q_2 . Thus in this case the lemma holds.

Next we assume that $d: Q_1 \longleftrightarrow Q_2$. Since $[d, t] = c^{\alpha}$, we have that $d: a_1 \longleftrightarrow b_1 c^i$ for i = 0 or 1. Thus $d: a_2 = a_1^s \longleftrightarrow a_1^{sd} = a_1^{ds} = b_1^s c^i = b_2 c^i$. Similarly $d: a_2^s \longleftrightarrow b_2^s c^i = b_1 b_2 c^i$. On the other hand $d: a_2^s = a_1 a_2 \longleftrightarrow b_1 c^i b_2 c^i = b_1 b_2$. Hence we have that i = 0, and so

$$d: a_1 \longleftrightarrow b_1, a_2 \longleftrightarrow b_2, e \longrightarrow ec.$$

Thus we have that $T_1 = C_{T*}(ea_1b_1) = \langle c, a_1, b_1, a_2b_2, e, t, a_2d \rangle$ and $cl\ T_1 = 4$, and so T_1 is not isomorphic to T. On the other hand, it follows from Lemma 2 that $x = d^{s'} \in N_G(T^*)$ and $x : e \longrightarrow a_1b_1e$. Thus $T_1 = T_1^x \cong T$, a contradiction. The lemma is proved.

LEMMA 4. Set $Z=Z(B)=\langle e,a^2,b^2\rangle$ and set $d'=d^{s'}$. Then $N_G(Z)=\langle B,d,d',s',r\rangle$ and the following relations holds:

- (i) $d: a \longrightarrow ac^{\alpha}, b \longrightarrow bc^{\alpha}, u \longrightarrow u, e \longrightarrow ec$
- (ii) $d': a \longrightarrow a, b \longrightarrow ba^{2a}, u \longrightarrow u, e \longrightarrow ea^2,$
- (iii) $s': d \longrightarrow d' \longrightarrow dd' u^{\alpha} c^{\beta} e^{\beta}$,
- (iv) $r: d \longrightarrow d, d' \longrightarrow dd' u^{\alpha} c^{\beta} e^{\beta},$
- $(v) [d, d'] = (dd')^2 = b^{2\beta},$

where $\beta = 0$ or 1.

PROOF. By § 2 (4) and Lemma 3, (i) and (ii) hold. Set $N=N_G(Z)$ and let $s': d' \longrightarrow d''$. Then $N/B \cong S_4$ by Lemma 2 and d centralizes $B' = \langle a^2, b^2 \rangle$, and so $\langle B, d, d' \rangle = C_N(B') = O_2(N)$. Thus [d, d'] and $dd' d'' \in B$. Set x=d' dd''. Then

$$x: a \longrightarrow a^{1+2\alpha}, b \longrightarrow b^{1+2\alpha}, u \longrightarrow u, e \longrightarrow e.$$

Thus we can write

$$x = u^{\alpha} a^{2i} b^{2j} e^{\beta}$$
, where $i, j, \beta = 0$ or 1.

Since $s': d \longrightarrow d' \longrightarrow d'' \longrightarrow d$, we have that $s': x = d' dd'' \longrightarrow d'' d' d = dd'$ $xd' d = xb^{2\beta}$. Thus $b^2 = [x, s'] = [u^{\alpha} a^{2i} b^{2j} e^{\beta}, s'] = a^{2i+2j} b^{2i}$, and so $i = j = \beta$, proving (iii). Since $r: s' \longrightarrow s'^{-1}$, (iv) follows easily from (iii). Finally since $d''^2 = (dd' x)^2 = (dd')^2 x^{dd'} x = (dd')^2 b^{2\beta} = 1$, (v) also holds. The lemma is proved.

LEMMA 5. The following hold:

(1) Set $V = \langle c, v_1, v_2, e \rangle$, $E = \langle a_1, a_2, b_1, b_2, c, d, e \rangle$ and $N = N_G(V)$, where $v_1 = a_1b_1$, $v_2 = a_2b_2$. Then N normalizes $\langle c \rangle$, $\langle c, v_1, v_2 \rangle$ and E. $N/E \cong S_4$. $|N| = 2^{10} \cdot 3$. Furthermore with respect to the basis $\{c, v_1, v_2, e\}$ of $V \cong \mathbb{Z}_2^4$, N/V is represented as the subgroup of $GL(4.2) (\cong Aut\ V)$ of matrices

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ * & * & * & 0 \\ * & * & * & 1 \end{bmatrix}$$

- (2) $\alpha = \beta$
- (3) If we set $w=d'(ta_1a_2b_2de^{\alpha})^{\alpha}c^{\gamma}$ and $w'=w^s$ for a suitable $\gamma=0$ or 1, then

$$w: v_1 \longrightarrow v_1, v_2 \longrightarrow v_2 c^{\alpha}, e \longrightarrow v_1 e c^{\alpha},$$

$$d \longrightarrow (v_1 c)^{\alpha} d, a_1 \longrightarrow a_1 v_1^{\alpha}, b_1 \longrightarrow b_1 v_1^{\alpha},$$

$$a_2 \longrightarrow a_2 (v_1 v_2 c)^{\alpha} d e^{\alpha},$$

$$b_2 \longrightarrow b_2 (v_1 v_2)^{\alpha} d e^{\alpha},$$

$$w': v_1 \longrightarrow v_1 c^{\alpha}, v_2 \longrightarrow v_2, e \longrightarrow v_2 e c^{\alpha},$$

$$d \longrightarrow (v_2 c)^{\alpha} d, a_2 \longrightarrow a_2 v_2^{\alpha}, b_2 \longrightarrow b_2 v_2^{\alpha},$$

$$a_1 \longrightarrow a_1 (v_1 v_2)^{\alpha} d e^{\alpha},$$

$$b_1 \longrightarrow b_1 (v_1 v_2 c)^{\alpha} d e^{\alpha},$$

(4) $\langle w, w' s, t \rangle \cong S_4$ and $N = E \cdot \langle w, w', s, t \rangle$. Furthermore

$$w^2 = w'^2 = [w, w'] = 1,$$

 $s: w \longrightarrow w' \longrightarrow ww',$
 $t: w \longrightarrow w, w' \longrightarrow ww'.$

PROOF. By Lemma 4 (ii) and § 2 (4), we see that d' normaizes $V = \langle c, v_1, v_2, e \rangle = \langle a^2, b^2, a^{-1}bu, e \rangle$ and $d' : e \longrightarrow v_1 e$. Thus $e^G \cap V = \langle c, v_1, v_2 \rangle e = e^N \cap V$. Set $\overline{N} = N/V$. Then since $C_N(e) = \langle e \rangle \times C_M(c)$ by Lemma § 2 (5), we have that $C_{\overline{N}}(e) \cong S_4$. Thus it follows that $|\overline{N} : C_{\overline{N}}(e)| = |e^N \cap V| = 8$, and so

238 T. Yoshida

 $|\overline{N}|=2^6\cdot 3$. Now we can regard \overline{N} as a subgroup of $GL(4,2)\cong Aut\ V$. With respected to the basis $\{c,v_1,v_2,e\}$, we have that

Hence it follows from a comparison between the orders that

$$\overline{N} \longrightarrow \left\{ \begin{pmatrix} 1 & 0 & 0 & 0 \\ * & * & * & 0 \\ * & * & * & 0 \\ * & * & * & 1 \end{pmatrix} \in GL(4, 2) \right\},$$

and so (1) follows at once.

Next set $x=d'(ta_1a_2b_2de^{\beta})^{\alpha}$, $y=x^s$ and $z=y^s$ we see that $\langle E, x, y \rangle = O_2(N)$ by the matrix representation of N. By Lemma 4 (ii) and § 2 (1),

$$x: c \longrightarrow c, v_1 \longrightarrow v_1, v_2 \longrightarrow v_2, e \longrightarrow c^{\alpha} v_1 e,$$
 $d \longrightarrow c^{\alpha+\beta+\alpha\beta} v_1^{\beta} d, a_1 \longrightarrow a_1 v_1^{\alpha},$
 $a_2 \longrightarrow a_2 (v_1 c)^{\beta} v_2^{\alpha} de^{\beta}, t \longrightarrow t$
 $(sx)^3: c \longrightarrow c, v_1 \longrightarrow v_1, v_2 \longrightarrow v_2, e \longrightarrow e,$
 $d \longrightarrow c^{\alpha+\beta} d, a_1 \longrightarrow a_1 c^{\alpha+\alpha\beta} v_1^{\alpha+\beta},$
 $a_2 \longrightarrow a_2 (v_2 c)^{\alpha+\beta}.$

Thus $(sx)^3 \in C_G(V) = V$. Since $[V, a_1] = E' = \langle c \rangle$, we have $\alpha = \beta$, proving (2). Thus $(sx)^3$ centralizes E, and so $(sx)^3 \in C_G(E) = \langle c \rangle$. Let $(sx)^3 = c^r$, $\gamma = 0$ or 1. Then $zyx = c^r$.

Since |x|=2 by Lemma 4 (ii) and §2 (1), we have that |y|=|z|=2, and so $1=z^2=(c^rxy)^2=[x,y]$. Thus if we set $w=xc^r$, then (3) and (4) follow from (2).

LEMMA 6. $\alpha = 1$.

PROOF. Assume that $\alpha=0$. Then $N=N_{\sigma}(V)$ possesses fourteen conjugate classes of involutions, representatives of which together with their cardinalities are given by

Here $u=a_2b_1b_2=b_1v_2$ and w=d'c'. By Lemma 4, Lemma 5 and §2 (4), we have that s' normalizes $\langle c, a_1, b_1, v_2, d, e, t, w \rangle$ and

$$s': c \longrightarrow v_1 \longrightarrow v_1 c, t \longrightarrow v_2 \longrightarrow a_1 t,$$
 $a_1 \longrightarrow v_1 v_2 t, b_1 \longrightarrow c v_1 v_2 t, e \longrightarrow e,$
 $d \longrightarrow d' = w c^r, w \longrightarrow d w c^r v_1^r.$

Thus it follows that

$$c \sim v_1 \sim t \sim dt \sim v_2 w \sim uw \sim v_1 d \sim w \sim cw \sim d$$
,
 $e \sim et \sim ue$, $u \sim uw$

in Ns'N. Furthermore, we have that $C_s(u) = \langle c, u, v_1, b_1 b_2, d, e, w \rangle$, and so $C_s(u)' = \langle c, v_1, d \rangle \cong Z_2^3$. On the other hand, since $T' = \langle c, a_1, b_1 \rangle \cong Z_2 \times Z_4$, $e \not\sim u$. Hence $e^g = e^N + (et)^N + (ue)^N$.

By Lemma (2) of § 2,

$$I_N^G(e) = \frac{|C_G(e)|}{|N|} \{8 + 24 + 48\} \equiv 2 \pmod{4}$$

Thus Lemma (3) of §2 implies that $|G|_2=2^{11}$.

Next we shall prove that E is characteristic in S. Let D be a normal subgroup of S isomorphic to E. Then since $D \cong E = D_8 D_8 * D_8 *$ and $S/E \cong D_8$, we have that $Z(D) = D' = \langle c \rangle$ and if $D \neq E$, then $w \in DE$. Set $\overline{S} = S/\langle c \rangle$. Then $|\overline{D} \cap \overline{E}| \ge 16$. Since $C_{\overline{v}}(\overline{w}) = \langle \overline{v}_1, \overline{v}_2, \overline{a}_1, \overline{d} \rangle \subseteq \overline{D} \cap \overline{E}$, we have that $\overline{D} \cap \overline{E} = \langle \overline{v}_1, \overline{v}_2, \overline{a}_1, \overline{d} \rangle$. Thus $\overline{D} \subseteq C_{\overline{s}}(\overline{v}_1, \overline{v}_2, \overline{a}_1, \overline{d}) = \langle \overline{E}, \overline{w} \rangle$, and so $|\overline{D}| = 32$,

a contradiction. This means that E is the unique normal subgroup of S isomorphic to $D_8*D_8*D_8$. Hence E char S.

Set $L=N_G(E)$. Then $L\supseteq \langle N,N_G(S)\rangle$ and clearly $|e^L|=|L:C_L(e)|=|L:C_G(c,e)|=|L|/2^7\cdot 3$. If $e^L=e^N$, then $L\subseteq N_G(\langle e^N\rangle)=N_G(V)=N$, and so L=N. Thus $|G|_2=|S|=2^{10}$, which contra dicts to the fact that $|G|_2=2^{11}$. Hence $e^L=e^N+(ue)^N$. Thus we have that $|L|=2^7\cdot 3|e^L|=2^7\cdot 3(8+24)=2^{12}\cdot 3$, a contradiction. The lemma is proved.

LEMMA 7. The following hold:

(1) Every involution of N is conjugate to c or e. Furthermore,

$$c \sim v_1 \sim t \sim d \sim w$$
,
 $e \sim et \sim det \sim a_1 we \sim u \sim ue$,

where $u = a_2 b_1 b_2 = v_1 v_2 a_1$.

- (2) $S = \langle E, w, w', t \rangle \in Syl_2G$.
- (3) $L/E \cong GL(3,2)$ and L'=L, where $L=N_G(E)$.

PROOF. N has eleven conjugate classes of involutions. Their representatives and cardinalities are given by

By Lemma 4, Lemma 5 and §2 (3), (4), we have that s' normalizes $\langle c, u_1, v_2, a_1, t, e, d, w \rangle$ and

$$s': c \longrightarrow v_1 \longrightarrow cv_1, t \longrightarrow v_2 \longrightarrow a_1t,$$
 $a_1 \longrightarrow v_1v_2t, b_1 \longrightarrow cv_1v_2t, e \longrightarrow e,$
 $d \longrightarrow d' = c^{\tau}v_1v_2a_1dewt,$
 $w \longrightarrow v_1^{\tau}v_2cd.$

Thus it follows that

$$c \sim v_1 \sim t \sim d \sim w$$
,
 $e \sim et \sim det \sim a_1 we \sim u \sim ue$

in Ns'N, proving (1).

By Lemma of §2, we have that

$$I_N^{\alpha}(e) = \frac{|C_{\alpha}(e)|}{|N|} \{8 + 48 + 48 + 48 + 24 + 24\}$$

 $\equiv 1 \pmod{2}.$

Thus N contains a S_2 -subgroup of G, proving (2).

Let D be a subgroup of S isomorphic to E. Then since $S/E \cong D_8$ and $D \cong E \cong D_8 * D_8 * D_8$, we have that $|D \cap E| \geq 16$, and so $c \in D \cap E$. Thus $Z(D) = \langle c \rangle$. It follows easily from Lemma 5 (3) that $E/\langle c \rangle$ is the unique elementary abelian subgroup of $S/\langle c \rangle$ of order 64. Hence D = E. This means that E is weakly closed in S.

Let x be an involution of E conjugate to e in G. Then $x \sim e$, u or ue in N. Thus $C_E(x) \cong Z_2 \times (Q_8 * Q_8)$. Since $C_E(e) = \langle a_1, a_2, b_1, b_2, c, e \rangle$ is weakly closed in $T = C_E(e) \langle t \rangle \in Syl_2 C_G(e)$, x and e are conjugate in $C_G(c)$ each other. Thus it follows from Sylow's theorem that x and e are conjugate in $N_G(E)$ = L. Thus $|e^L| = |e^G \cap E| = |e^N| + |u^N| + |(ue)^N| = 8 + 24 + 24 = 2^3 \cdot 7$. Since $|C_L(e)| = |C_G(c,e)| = 2^7 \cdot 3$, we have that $|L| = 2^{10} \cdot 3 \cdot 7$, and so $|L/E| = 2^3 \cdot 3 \cdot 7$. Set $A = \langle c^G \cap E \rangle$. Then it follows from (1) and Lemma 5 (3) that $A = \langle c, v_1, v_2, d \rangle \cong Z_2^4$ and $C_N(A) = A < S$. Thus $C_G(A) = A \times K$, where $K = OC_G(A)$. Clearly $C_K(e) = 1$. Since L acts on K and $e \sim u \sim eu$ in L, we have that K = 1, and so $C_G(A) = A$. $N/E \cong S_4$ acts faithfully on $A/\langle c \rangle$. Thus we see that $C_L(A/\langle c \rangle) = E$, and so L/E acts faithfully on $A/\langle c \rangle \cong Z_2^3$. Hence $L/E \cong GL(3, 2)$. Furthermore, since $\langle e^G \cap E \rangle = \langle e^L \rangle = E$, it follows that $L' \supseteq E$, proving (3).

LEMMA 8. $C_{\mathfrak{G}}(c)/\langle c \rangle \cong S_{\mathfrak{p}}(6, 2)$.

PROOF. Set $C=C_G(c)$ and $\overline{C}=C/\langle c\rangle$. Firstly the S_2 -subgroup \overline{S} of \overline{C} is of type A_{12} . Actually the map $S \longrightarrow A_{12}$ given by

$$v_1v_2de \longrightarrow (1 \ 2)(3 \ 4), \ a_1a_2e \longrightarrow (1 \ 3)(2 \ 4),$$

 $v_2de \longrightarrow (5 \ 6)(7 \ 8), \ a_2e \longrightarrow (5 \ 7)(6 \ 8),$
 $v_1de \longrightarrow (9 \ 10)(11 \ 12), \ a_1d \longrightarrow (9 \ 11)(10 \ 12),$
 $w \longrightarrow (1 \ 2)(5 \ 6), \ w' \longrightarrow (1 \ 2)(9 \ 10),$
 $t \longrightarrow (1 \ 5)(2 \ 6)(3 \ 7)(4 \ 8),$

defines a homomorphism onto a S_2 -subgroup of A_{12} with the kernel $\langle c \rangle$ (See R. Solomon [3], P. 347 and 349), as required.

Next we shall prove that \overline{C} is fusion simple, that is $O(\overline{C})=Z(\overline{C})=1$ and $\overline{C}=O^2(\overline{C})$. Since $L=N_G(E)\subseteq C$, L'=L and $Z(L \mod O(G))=1$, we have that $\overline{C}=O^2(\overline{C})$ and $Z(\overline{C})=1$. The four group $\langle u,e\rangle$ normalizes O(C), where $u=v_1v_2a_1$, and $u\sim e\sim ue$ in C. Since $O(C)\cap C_G(e)\subseteq OC_G(c,e)=1$, $O(C)=\langle O(C)\cap C_G(x)|x=u,e,eu\rangle=1$. Thus $O(\overline{C})=\overline{O(C)}=1$.

Finally we shall prove that $C \neq L = N_G(E)$. Since $s': c \longrightarrow v_1 \longrightarrow v_1 c$ $\longrightarrow c$ and $w': v_1 \longleftrightarrow v_1 c$, we have that $s'w's' \in C$. By § 2 (4), Lemma 4 and Lemma 5, we have that

$$s' w' s' : v_2 \longrightarrow c^{\tau} v_1^{1-\tau} w \notin E$$

Thus E is not normal in C, as required.

We proved that \overline{C} is fusion simple, $N_{\overline{c}}(\overline{E})/\overline{E} \cong GL(3,2)$ and \overline{E} is not normal in \overline{C} . Hence R. Solomon [3] derives the lemma.

We can now complete the proof of the main theorem. By Lemma 8, $C_G(c)$ is a perfect central extension of $S_p(6, 2)$. Furthremore, since $C_G(e) \not\equiv C_G(c) O(G)$, $G \neq C_G(c) O(G)$. Thus we conclude that G is isomorpeic to Conway's group C_3 by D. Fendel [1].

Department of Mathematics Hokkaido University

References

- [1] D. FENDEL: A characterization of Conway's group. 3, J. Alg. 24 (1973), 159-196.
- [2] D. GORENSTEIN: "Finite Groups", Harper and Row, New York, 1968.
- [3] R. SOLOMON: Finite groups with Sylow 2-subgroups of type A₁₂, J. Alg. 24 (1973), 346-378.
- [4] E. WITT: Die 5-fach transitiven Gruppen von Mathieu, Abh. Math. Sem. Univ. Hamburg 12, 256-264 (1938).
- [5] W. J. Wong: A characterization of the Mathieu group M₁₂, Math. Zeit. 84 (1964), 378-388.

(Received December 21, 1973)