A Characterization of Conway’s Group C3

By Tomoyuki YosHIDA

§1. Introduction

In this paper we characterize the Conway’s simple group C; of order 2"
37.53.7.11-23 by the structure of the centralizer of a noncentral involution.

Main theorem. Let G be a finite group satisfying the following
properties :

(i) G has an involution e with Cg(e)=Z, x M,,,

(ir) ee O*(G).

Then G=C;.

The centralizer of a central involution of the Conway’s group C; is
isomorphic to the perfect central extention of S,(6,2) by a group of order
2. The main difficulty in proving the main theorem is in the determina-
tion of the structure of a S,-subgroup of G. If this is established, we can
easily know that G has the same involution fusion pattern and the cen-
tralizer of a central involution as the Conway’s group C;. Thus the char-
acterization theorem of C; by D. Fendel implies that G=C;.

Throughout, all group considered are finite. Most of our notations
are standard (see [2]) and we use the “bar” convention for homomorphic
images. Furthermore we use the following notations :

x~y x is conjugate to v,

a: z—y y=x"=alza,

x" = {x"|he H},

"N K> ={yly €K, x~y in H),
AxB the central product,
ASB the wreathed product.

§ 2. Preliminalies

A. Mathieu group M;;. We list some properties of Mathieu group
M,;=M. Let ¢ be an involution of the center of a S,-subgroup of M.

(1) Generators and relations of the centralizer of c.

CM(C) = <a1, a, by, b,, s, t> s

af=a§=b§=b§=[a1,a2]=[b1,b2]=c,
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[als b}] = [a1, b2] = [a29 bl] = [aZ, bZ] = 1 >
S=p=(stf=1,

S aqgi—a,—a1q,, b1"_"bz_’b1b2 ’

l: a—ac, a;—a,a,C, bl——‘)blc, bz‘—‘)blbzc .

(2) The fusion pattern of involutions. T,={a, a,, b, b;, ¢, t) is the
S;-subgroup of M and every involution of M is conjugate to ¢ or a,b,b,.
Furthermore the following hold:

| CNalblNagb2~t,

a2b1b2~a1b2~a2b1 .

(3) New generators of T,.
Set as follows:
a=a,b,t, b=a,bb,ct, u=a,bb,, r=a,b,.
Then a, b, u and r generate 7T,, and
ad=b=wt=r=[abl=[ur]=1,
u: a—al, b—b, r: a—b,
a=au, by=ab™?, a,b,=a’, c=a*b*,
a,=aur, by=a'b7'r, a,b,=a 'bu,
t=abu.
(4) Another 2-local subgroup.
Ny({d, b*)={a,b,u,s’, ry,
sP=(s'rf=1,

{

sia—b—a'b, u—u.

For the original generators, s’ normalizes {c, a, b, @;b,, t) and
s c—-—>albl———>a1blc, t_"’agbz—'—"alt s
al-_’alagblbzt, bl"—*calazblbgt .

(5) Cylc) and Ny({a? b*)) are maximal 2-local subgroups of M. In
particular, Ny ({c, a1b,, a,b,))=Cy(c).

(6) Ro={ai, as, b, b, c> is the unique subgroup of 7, isomorphic to
Qs+ Q;. Quaternion subgroups of R, are only {a,, a;,¢) and (b, b, c).
Furthermore Aut Q*Q,=S,S Z,.
By={a,b,uy={a,, b,, a,b,, c, t) is the unique subgroup of 7} isomorphic
tO Bo. ’ . N
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Proor. We recall the definition of M, by Witt [4], and also a set of
generators and relations for Cy(c) by Wong [5]. Let a be a primitive

element of GF(9) satisfying a’+a=1. As a permutation group on the pro-
jective line L=GF(9)U {cc}, we define

Mlo = <PSL(29 9)7 Sl> ’

where s,: x—ax®. If new points v and w are adjoining to L, M;, and
M,, are defined as the transitive extensions in succession as follows.

My, = <M10a sZ>a M, = <M11> S3>,

where
S: x—dfxr+ax’, 0,
S5: x— X, ve— w.
Let
T T— —ZX,
B: x—a 2,
7. x—ax’,
r: r—ax’t,
e: x— —ax’—atx ' (x#0, ), 0—v, ©e—w,
A: x—rafxrt+ax?(x#0, o), 0—v—>00—0,
p: x—x .

Then 7 is in the center of a S,-subgroup of M and C(x) is generated by
7, B, 7,7, ¢ A p. 1f we put

c=ma=pa=1,b=0Fc,b,=nle,s=At=1p,
then we can check easily that a,, a, b1, b,, ¢, s and ¢ satisfy the relations
in (1) using relations (1) in [5]
Since My, has only one class of involutions, we have the fusion pattern
of involutions in (2).
If we set
s’ = (O’ azy aa) (OO, _az, _aa) ('U, 1, '—a) (w’ _1s a) ’
then s'€eM,, and s’ satisfies the relations in (4). The probf of (3), (6) and
(6) are easy.
B. The order of a S,subgroup.

LEMMA. Let H be a subgroup of a group G and e an involution of
HNn O (G). |
(1) If x is a character of G, then X(1)=2X(e)(mod 4).
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(2) Assume that eGﬂH=eIH+---+eZ Let a be a character of H.
Then
oy 1C°E)] ) o
a®le)=——Tg7 H| 2 leflale)=|G: Hla(l) (mod 4).
) (1

(3) Let I be the principal character of H. If I°(e) is odd, then
|Gl.=|H|,. If I¢(e)=2 (mod 4), then |G|,=2|H]|,.

Proor. Let @ be a matrix representation of G with the character X.
Then the characteristic roots of the matrix @(¢) are 1 and —1. Let their
multiplicities be a and b, where a, 5=0. Since ecO*(G), det P(e)=1. Thus
we have that b is even. Since X(1)=a+b and X(e)=a—b, X(1)—X(e)=2b
=0 (mod 4), proving (1). The rest of the lemma is easily proved.

§ 3. The proof of the main theorem

Throughout this section G denotes a simple group satisfying the hy-
pothesis of the main theorem, and let e be an involution of G such that
Cesle)={e) x M, where M=M,,. Furthermore a,, a,, b,, b,, ¢, s, ¢, a, b, u, r
and s’ denote the same elements of M as those in § 2.

LEMMA 1. e is not a central involution of G.

PrOOF. Assume false, in which case T={e) x<ay, a,, b, b,, ¢, ) €Syl,G
and TNMeSyl,M. By §2 (1), ¢ is the square of an element of G and e
is not. Thus e~ c. Since Z(T)=/{e, ¢), Burnside’s theorem ([1], Theorem
7. 1. 1) implies that ¢, e and ce are not conjugate in G each other. How-
ever M possesses exactly two conjugate classes of involutions, and so it
follows from Thompson’s fusion theorem that two of ¢, e and ce are con-
jugate in G each other, a contradiction.

Set T={e) x{ay, a;, by, b,,c,t) and B=<e) x{a,b,u). Then we note
that B is weakly closed in 7. ,

LEMMA 2. |Ng(T):T|=2 and Ng(B)/|B=NzZ(B)|B=S,. In particular
|Gl.=2° '

ProoF. Since Z(T)={c,ed=Z; and Ng(T)NCgq(e)=7T, we have that
|INg(T): T|=2 by Lemma 1. Since B=C,Z,(T) char T, if we set Z=
Z(B) and N=Ng(Z), then Ng(T)SN, and so e~ec in N. Since ea’~eb?
~ea®h? in N by §2(3), we have that N acts transitively by conjugation on
the set e?NZ=ela? b*). Since Cy(Z)=B and Cy(e)/B=S;, we conclude
that BN and N/B=S,.

LeEMMA 3. There exists an element dENQ(T)——T such that
d*=1, [ds]=1, [d ¢]=c*, where a=0 or 1,
[alyd] [aZ, d] [blyd]=[b2’d]=l'
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ProOF. Set R={e) x{ay, a, by, by, c)=Z, x (Qs*Qs). Then R/Z(T\=Z}
is the unique abelian maximal subgroup of T/Z(T)=Z%S Z,, and so R char
T. Thus T*=Ng(T)SNg(R)=N. Since Z(T)=Z(R)={c,e) { N, |N:Cyle)|
=2. By Frattini argument, N=N({s))R, and so |Cy(s)|=24. Since Cy(s)
Cqle), O.LCx(s)=ZD;. Let d be an involution of Cy(s)—7. Then we have
that T*={T,d), Cy(s)=<{s) x{c,d,e,y and [d,e]=c. ¢ normalizes {c, d,e)
and [d,t]=c* for a=0 or 1 (because otherwise (dt’=[d, t]~e).

Now d normalizes [R,s]=0Q.Q, where Q,=<a,, a;,c) and Q,=<b,, b,,
¢>. Since [R,s]|=Q:*Q; possesses exactly two quaternion subgroups, which
are Q, and Q,, we have that either d: Q;—Q,, Q,—Q, or d: Q, — Q,.
Ifd: Qi—Q, Q:—>Q,, then since Aut Q;=S, and d commutes with
the element of order 3, d centralizes both Q; and Q,. Thus in this case
the lemma holds. '

Next we assume that d: Q,«——Q,. Since [d, {]=c*, we have that d:
a,—b,c® for i=0 or 1. Thus d: a,=ai—a{*=a¥=bic*=b,c*. Similarly
d: aa—bic*=b,b,c’. On the other hand d: ai=a,a,—b,c*b,c*=b,b,.
Hence we have that {=0, and so .

d: ay—b,, ay——b,, e—ec.

Thus we have that Ty=Cp(eaib))={c, ay, by, a2bs, ¢, t, axd) and cl T =4,
and so 7) is not isomorphic to 7. On the other hand, it follows from
that xt=d”€Ngx(T*) and x: e—>a;b,e. Thus Ty=T%=T, a con-
tradiction. The lemma is proved.

LEMMA 4. Set Z=Z(B)={e, a’, b*) and set d=d*. Then Ng(Z)={(B,
d,d,s',r) and the following relations holds :

(i) d: a—ac*, b—bc*, u—u, e—rec
(i) d':a—a, b—ba*, u—>u, e—ea’,
(i) §': d—d'—dd'u*cPé,
(iv) r:d—d, d—>dd u"ce*,
(v) [d,d]=(ddy="0",

where =0 or 1. ’

Proor. By §2 (4) and (i) and (ii) hold. Set N=N4(Z)
and let s': &——d". Then N/B=S, by and d centralizes B'=
{a% b%), and so (B, d,d'Y=Cy(B')=0,(N). Thus [d,d'] and dd’d"€B. Set
x=d'dd". Then

xr: a—at, b— b, u—>u, e—e.

Thus we can write
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x=u"a*b’e?, where 7,7, =0 or 1.
Since §': d—d —d"—d, we have that s': x=d'dd’" —d"d' d=dd’
xd' d=xb*. Thus U=z, s'|=[u"a*b¥ &’ s'|=a*** b¥, and so i=j=p, prov-
ing (iii). Since r: s’'——s'"?, (iv) follows easily from (iii). Finally since d'"*
=(dd xf=(dd'}x™ x=(dd' Y b*=1, (v) also holds. The lemma is proved.

Lemma 5. The following hold :

(1) Set V=Xc, 11, vs, €), E={ay, as, by, by, ¢, d, &) and N=N4(V), where
vi=a,b,, v,=a,b,. Then N normalizes {c), {c,v\,vsy and E. N|E=S,.
|N|=2"-3. Furthermore with respect to the basis {c, v, vz, €} of V=Z;,
N|V is represented as the subgroup of GL(4.2)(=Aut V) of matrices

B! 0

-

0
*
%
*

= = R ]

* *
* *
\.* * J
(2) a=§
(3) If we set w=d'(taya,b,de*)"c" and w'=w* for a suitable T=0 or
1, then
W: UVy—V;, V3—VC%, e—>vec”,
d—(v,c)0°d, a,-— a,v%, by—> b, v},
a,— a, (v, v,¢)* de”,
by— by (v, v,) de”,
w': v, — U, %, V,— U, e—>vec’,
d—(v,0)*d, a,— a,vt, by—>b,15,
a,~— a, (v,v,)" de”,
b,— b, (v,v,¢) de”,
(4) (w,w's, t)=S, and N=E-{w,w, s,t).
Furthermore :
w=w""=[w,w]=1,
s: w—w —ww,
t: w—w, w—ww'.
Proor. By (ii) and §2 (4), we see that d normaizes V=g,
V1, Vg, €)=, ", a'bu,e) and d': e—vie. Thus €N V={c v, vyye=e"
NV. Set N=N/V. Then since Cy(e)={e)> x Cy(c) by §2 (5), we
have that Cz(e)=S,. Thus it follows that |N: Cx(e)|=|e"N V|=8, and so
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IN|=2°-3. Now we can regard N as a subgroup of GL(4,2)=Aut V.
With respected to the basis {c, vi, v,, €}, we have that

/1 \ 1 }
1 1
K R 4 , [— ,
1 1 1
\ by 1
1 \ 1 \
| 1 11
a 1 1 y Az 1 ’
\ 1 1)
1 \ 1
1 1
dl ta____) , (dl ta)a____) ,
1 1
\ 1 1 11
/1 \
d 1
1
\1 1

Hence it follows from a comparison between the orders that

1 00 0y *
. * %k Xk 0
N— . % N OeGL(4,2)>,
X %k Xk 1 )

and so (1) follows at once.
Next set x=d' (ta,a,b,de’)’, y=x' and z=y* we see that (E, z, y)>=
O;(N) by the matrix representation of N. By (i) and §2 (1),
X €C—C, V1=V, Up—U,, e—C" V1€,
d—>c* ¥ Pyfd, ay— a1, |
a,— ay(vicfvide®, t—t
(sx}: c—>c, v,—v,, V;— vV, e—e,
d—c**d, ay—a,c**Pvite,

a,—— a, (vyc)* .
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Thus (sx’€Cq(V)=V. Since [V,a]=E'={c), we have a=p, proving (2).
Thus (sx)® centralizes E, and so (sz)’€Cy(E)={c). Let (sx=c’, 7=0 or 1.
Then zyx=c". ’

Since |x|=2 by [Lemma 4 (ii) and §2 (1), we have that |y|=|z|=2,
and so 1=2=(c"zyf=[x,y]. Thus if we set w=uxc’, then (3) and (4) fol-
low from (2).

LEMMA 6. a=1.

PrOOF. Assume that a=0. Then N=N4(V) possesses fourteen con-
jugate classes of involutions, representatives of which together with their
cardinalities are given by

c d v, vd e u ue
1 2 6 6 8 24 24
W W VW uw t dt et

12 12 24 24 48 48 48.
Here u=a,b,b,=b,v, and w=d'c’. By [Lemma 4, Lemma 5 and §2 (4),

'we have that s’ normalizes {c, a,, b,, v,, d, ¢, t, w) and

s

C— UV, —> ¢, t—""vz__’)alt,
a,—> 0V t, bp—cv,v,t, e—e,

d—d = wc’, w—>dwcvi.
Thus it follows that
c~v~t~di~w~uwe~Svd~w~cw~d,
e~et~ue, u~uw
in Ns'N. Furthermore, we have that Cg(u)={c, u,v,, b,b,,d, e, w), and so
Cs(u)={c,v1,dy=Z3;. On the other hand, since T"={c, ai, b)=Z,xZ,,
e~ u. Hence e®=e" +(et)” + (ue)”. -

By (2) of §2,

a 1Cs(e)| |
IS(e)=-S%7 (8+24+48)=2  (mod 4)
Thus (3) of §2 implies that |G|,=2".

Next we shall prove that E is characteristic in S. Let D be a normal
subgroup of S isomorphic to E. Then since D= E=D;Dyx Dyx and S/E=
Dy, we have that Z(D)=D'={c) and if D=E, then w_EDE. Set S =S/£c>.
Then |DNE|=16. Since Cy(®)={%, 7, @, a};?ﬂ E, we have tl:l_at Dn
E = <-i).1’ 772a d], a)- Thus 1_) - Cg (ﬁly '525 dl’ a_) = <E9 ‘Z_E:’>, and SO IDI = 32’
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a contradiction. This means that E is the unique normal subgroup of S
isomorphic to Dy* Dy Dy. Hence E char S.

Set L=N,4(E). Then L2{N, Ng(S)y and clearly |e*|=|L: Cr(e)|=|L:
Colc, €)|=|L|/2-3. If ef=e?, then LCNg({e"))=Ng(V)=N, and so L=N.
Thus |G|,=|S|=2", which contra dicts to the fact that |G|, =2". Hence
e“=e"+(ue)®. Thus we have that |L|=27-3|e*|=2"-3(8+24)=2"-3, a con-
tradiction. The lemma is proved. |

LemMA 7. The following hold :

(1) Every involution of N is conjugate to c or e.
Furthermore,

| c~U~E~d~w,
e~et~det~ a, we~u~ue,
where u=a2b1b2=‘v1'v2a1.
(2) S=<(E,w,w, t)eSy.G.
(3) LIE=GL(3,2) and L'=L, where L=N4(E).

Proor. N has eleven conjugate classes of involutions. Their repre-
sentatives and cardinalities are given by ’

c v, d e u ue w aywe t det et
1 6 8 8 24 24 24 48 48 48 48

By Lemma 4 Lemma 5 ‘and .§ 2 (3), (4)1 we have that s’ normalizes {c, u,,

vy, a4y, t,e,d, w) and

- s

C— UV —CV;, L—>V,—> a4,
a,— v, U, by— cv,v,t, e%\e,
_d—-——}d’ = c'v,v,a dewt
w—viv,ed.
Thus it follows that
c~v1~t~d':~w,
e~et~det~a,we~u~ue
in Ns'N, proving (1).
By of §2, we have that

IS(e) = l(f}’v(.f)' (8-+48-+48 + 48+ 24+ 24)

=1 (mod 2).
Thus N contains a S,-subgroup of G, proving (2).
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Let D be a subgroup of .S isomorphic to E. Then since S/E=D, and
D= E= Dy Dy* Dy, we have that |DNE|=16, and so ce DNE. Thus Z(D)
={c). It follows easily from (3) that E/{c) is the unique ele-
mentary abelian subgroup of S/{c) of order 64. Hence D=E. This means
that E is weakly closed in S.

Let x be an involution of E conjugate to e in G. Then z~e, u or ue
in N. Thus Cz(2)=Z, x(Qs* Qs). Since Cyle)={a, as, by, b, ¢, €) is weakly
closed in T'=Cgz(e)Xt)€Syl.Cq(e), x and e are conjugate in Cy(c) each other.
Thus it follows from Sylow’s theorem that x and e are conjugate in Ng(E)
=L. Thus |e’|=|e?N E|=|e”| + |u”| + |(ue)¥| =8+ 24 +24=2%7. Since |Cyle)|
=|Cq(c,€)|=2"-3, we have that |L|=29.3.7, and so |L/E|=2%-3-7. Set
A={c*NE). Then it follows from (1) and (3) that A={c, v,
vy, dy=Z; and Cy(A)=A<S. Thus C4(A)=AxK, where K=0C,(A).
Clearly Cx(e)=1. Since L acts on K and e~u~eu in L, we have that
K=1, and so C4(A)=A. NJE=S, acts faithfully on A/{c). Thus we see
that C.(A/{c))=E, and so L/E acts faithfully on A/{c>=Z3. Hence L/E
=GL(3,2). Furthermore, since (N E)={e*)=E, it follows that L'DE,
proving (3).

LEMMA 8. Cg(c)Kc)=S, (6, 2).

- Proor. Set C=Cy4(c) and C=C/{c). Firstly the S;-subgroup S of C

is of type A;;. Actually the map S— Ay, given by

viv,de— (1 2)(3 4), aya,e—(1 3)(2 4),

v,de—(5 6)(7 8), a,e—(5 7)(6 8),

vyde—s (9 10)(11 12), ayd—(9 11)(10 12),

w—s(1 2)(5 6), w'—(1 2)(9 10),

t—(1 5)(2 6)(3 7)(4 8),
defines a homomorphism onto a S,-subgroup of A, with the kernel <{c)
(See R. Solomon [3], P. 347 and 349), as required.

Next we shall prove that C is fusion simple, that is O(é)=Z(C’)=1
and C=0*C). Since L=N4x(E)CC, L'=L and Z(L mod O(G)=1, we
have that C=0*(C) and Z(C)=1. The four group <«, ¢) normalizes O(C),
where u=v,va;,, and u~e~ue in C. Since O(C)NCqs(e)OCql(c, €)=1,
O(C)=<0(C)NCq¢(x)|x=u,e,euy=1. Thus O(C)=0(C)=1.

Finally we shall prove that C#L=N,(E). Since.s': c—v,— ;¢
— ¢ and w': v;«—vc, we have that s’ w’'s’eC. By §2 (4),
and we have that ' -

sws': v,—cvTwegE
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Thus E is not normal in C, as required. '

We proved that C is fusion simple, N;(E)E=GL(3,2) and E is not
normal in C. Hence R. Solomon derives the lemma.

We can now complete the proof of the main theorem. By
Cq(c) is a perfect central extension of S,(6,2). Furthremore, since Cq(e)Z
Celc) O(G), G#C4(c)O(G). Thus we conclude that G is isomorpeic to
Conway’s group C, by D. Fendel [1].
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Hokkaido University
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