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1. Introduction

Let R be a hyperbolic Riemann surface and g(z)=g(z, z_{0}) be the Green
function on R with a fixed pole z_{0} in R. For the following definitions and
properties of Green lines and compactifications of R, we refer to SariO-
Nakai [7] and Constantinescu-Cornea [2] respectively. We consider the
Green lines issuing from the fixed point z_{0} . The set L of all Green lines
admits the Green measure m. A Green line l for which \inf_{z\epsilon\iota}q(z)=0 is
called a regular Green line. Any regular Green line tends to the ideal
boundary of R as g(z)arrow 0. The set of all regular Green lines is denoted
by L_{r} . It is known (Brelot-Choquet [1]) that m(L-L_{r})=0 .

Let R^{*} be a resolutive compactification of R and \mu_{oe} be the harmonic
measure on the ideal boundary \Delta=R^{*}-R with respect to z\in R . We are
interested in the behavior of l\in L_{r} in R^{*} . We set e(l)=\overline{l}-l\cup\{z_{0}\} with 7
the closure of l in R^{*} . We call e(l) the end part of l in R^{*} . Given a
subset S\subset\Delta we write S =\{l\in L_{r}|e(l)\cap S\neq\phi\} and S =\{l\in L_{r}|e(l)\subset S\} . Let
C(\Delta) be the set of all bounded continuous functions on \Delta . We set C_{D}(\Delta)

=\{f\in C(\Delta)|H_{f}^{R,R*}\in HD(R)\} . If C_{D}(\Delta) is dense in C(\Delta) with respect to the
uniform convergence topology, then R^{*} is said to be a regular compactifi-
cation of R (Maeda [4]).

In this paper we shall prove the following theorems:
THEOREM 1. Let R^{*} be a resolutive compactifification of R. For every

compact set K (resp. open set U) in \Delta,

\overline{m}(\check{K})\leq\mu_{z_{0}}(K)’. n–(\tilde{U})\geq\mu_{z_{0}}(U) ,

where \overline{m} and \underline{v\iota} are the outer and inner measures. induced by m. For
every Baire set S in \Delta,\overline{m}(S)\leq\mu_{t_{0}}(S)\leq\underline{n}(\tilde{S.}) .

COROLLARY 1. Let R^{*} be resolutive. If R^{*} is metrizable, then for
every Borel set S in \Delta,\overline{m}(S)\leq\mu_{z_{0}}(S)\leq\underline{v\iota}(S) .

COROLLARY 2. (i) Let R^{*} be resolutive and \Gamma be the harmonic bound-
ary of R^{*} . If R^{*} is metrizable, then m(\overline{\Gamma})=1 .

(ii) Let R_{M}^{*} be the Martin compactifification of R and \Delta_{1} be the set of
all minimal points of \Delta_{M}=R_{M}^{*}–R. Then m(\tilde{\Delta}_{1})=1 .
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THEOREM 2. Let R^{*} be a regular compactification of R and \Gamma_{r} be
the set of all regular points for Dirichlet problem with respect to R^{*} . If
R^{*} is metrizable, then e(l)\cap\Gamma_{r} consists of at most a single point for m-

most every l\in L_{r} .
COROLLARY. Let R^{*}be regular and metrizable. If \Gamma_{r} is of \mu_{z_{0}}(\Gamma_{r})=1 ,

then e(l)\cap\Gamma_{r} consists of exacdy a single piiont for m-almost every l\in L_{r} .
Although the next Theorem 3 follows from Theorem 8 of Maeda [3],

we shall give an alternative proof.

THEOREM 3. ([3]) Let R_{N}^{*} be the Kuramochi compactification of R and
\mu_{z}^{N} be the harmonic measure on \Delta_{N}=R_{N}^{*}-R with respect to z\in R and e_{N}(l)

be the end part of l\in L_{r} in R_{N}^{*} . For every compact set K in \Delta_{N} we set
K^{*}= {l\in L_{r}|e_{N}(l) is a single point and e_{N}(l)\in K}. Then K^{*} is m-measurable
and m(K^{*})=\mu_{z_{0}}^{N}(K) .

REMARK. For the case of the Royden compactification, the following
Nakai’s theorem is much better than Theorem 1.

Nakai’s theorem. Let R_{D}^{*} be the Royden compactification of R and \mu_{z}^{D}

be the harmonic measure on \Delta_{D}=R_{D}^{*} –R. For every F_{\sigma}-set K (resp. G_{\delta}-

set U) in \Delta_{D},

\overline{m}(\overline{K})\leq\mu_{z_{0}}^{D}(K) , \underline{v\iota,}(U)\geq\mu_{z_{0}}^{D}(U)v .

2. The proof of Theorem 1.

We consider two kinds of Dirichlet problems:
(a) Let \psi be a bounded function on L_{r} . We consider the following classes:

\overline{\overline{f}}_{\psi}=\{

s| superharmonic, bounded below on R,
\varliminf s(z)\geq\psi(l) for m-almost every

l\in L_{r}\}

z\epsilon l,g(z)arrow 0

and \underline{\xi}_{-}T_{\psi}^{d}= \{-s|s\in\overline{\mathscr{F}}_{-d},\} . We set \overline{G}_{\psi}(z)=\inf\{s(z)|s\in\overline{E}_{\emptyset}\} and \underline{G}_{\psi}’(z)=\sup

\{s(z)|s\in^{c}\underline{f}_{\phi}\}(z\in R) . It is known ([1]) that \underline{G}_{4}| and \overline{G}_{\psi} are harmonic on R
and that

(1) \underline{G}_{\phi}(z_{0})\leq\underline{\int}\psi dm\leq\overline{\int}\psi dm\leq(_{\tau_{\psi}}^{\overline{\gamma}}-(z_{0}) .

(b) Let R^{*} be a compactification. Let \phi be a bounded function on \Delta=

R^{*}-R . We consider the following classes:

\overline{\mathscr{S}}_{\phi}^{R,R*}=\overline{\mathscr{S}}_{\phi}=\{

s| superharmonic, bounded below on
R,| \int

\varliminf s(z)\geq\phi(b) for every b\in\Delta

xarrow b
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and \underline{\mathscr{S}}_{\phi}^{R,R*}=\underline{\mathscr{S}}_{\phi}=\langle-s|s\in\overline{\mathscr{S}}_{-\phi}\} .
We set \overline{H}_{\phi}^{R,R*}(z)=\overline{fI}_{\phi}(z)=\inf\{s(z)|s\in\overline{\mathscr{S}}_{\phi}\} and \underline{H}_{\phi}^{R,R*}(z)=\underline{H}_{\phi}(z)=\sup

\{s(z)|s\in\underline{\mathscr{S}}_{\phi}\}(z\in R) . We know that \underline{H}_{\phi} and \overline{H}_{\phi} are harmonic on R. We
make use of the next result.

LEMMA 1. (cf. Hilfssatz 8. 3 and Satz 8. 3 in [2]). Let R^{*} be a res0-

lutive compatification. For any bounded function \phi,

\underline{H}_{\phi}(z)\leq\underline{\int}\phi d\mu_{z}\leq\overline{\int}\phi d\mu_{z}\leq\overline{H}_{\phi}(z)

for every z\in R . If \phi is bounded lower semicontinuous (resp. bounded upper
semicotinuous), then H_{\phi}-(z)= \int\phi d\mu_{x}(resp.\overline{H}_{\phi}(z)=\int\phi d\mu_{z}) . If \phi is a bounded

Baire function on \Delta, then \underline{H}_{\phi}(z)=\overline{H}_{\delta}(z)=\int\phi d\mu_{z} .
The proof of Theorem 1.
Let E be any subset of \Delta . We denote by \chi_{E} and \chi_{\tilde{E}} (or \chi_{\check{r}} )

\lrcorner
be the

characteristic funtion of the set E and \tilde{E} (or \check{E} ) on \Delta and L_{r} respectively.
We note \sup_{b\epsilon e(l)}\chi_{E}(b)=\chi_{\tilde{E}}(l) for every l\in L_{r} . Let s\in.-- f_{x_{E}} . Since \varlimsup_{tarrow b}s(z)\leq\chi_{E}(b)

for every b\in\Delta, we have

\varlimsup_{\iota\in l,g(x\ranglearrow 0}s(z)\leq\sup_{b\in e(l)}\varlimsup_{zarrow b}s(z)\leq\sup_{b\in e(l)}\chi_{E}(b)=\chi_{\tilde{E}}(b)t

Hence s\in\underline{E}_{x_{\tilde{E}}} . Then \underline{\mathscr{S}}_{x_{E}-}\subset I_{\gamma-}

. and by (1) we have
(2) \underline{H}_{x_{E}}(z_{0})\leq\underline{v\iota}(\tilde{E}) .

Let U, K and S be an open set, a compact set and a Baire set in \Delta

respectively. Then \chi_{\sigma} and \chi_{S} are a lower semicontinuous function and a
Baire function respectively. Hence by Lemma 1 and by (2) we have

(3) \mu_{z_{0}}(U)\leq-(\overline{\Gamma J}) and \mu_{z_{0}}(S)\leq\underline{n}(S) .
We note E=L_{r}-(\Delta-E) for any subset E of \Delta . Since \Delta-K and \Delta-S are
an open set and a Baire set in \Delta, by (3) we have

\overline{m}(\check{K})=m(L_{r})_{--}-n(\overline{\Delta-}K)\leq 1-\mu_{z_{0}}(\Delta-K)=\mu_{z_{0}}(K)

and similarly \overline{m}(S)\leq\mu_{z_{0}}(S) . Thus we have the theorem.
The proof of Corollary 1 is obvious.
The proof of Corollary 2. We know (cf. [2]) the next facts: (i) \Gamma is

a compact set in \Delta and the support of \mu_{t} is equal to \Gamma, (ii) R_{M}^{*} is metrizable
and \Delta_{1} is a G_{\delta}- set and \mu_{z}(\Delta_{1})=1 . Hence Corollary 2 follows from Corol-
lary 1.
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3. The proof of Theorem 2.

For the following definitions and properties of Q-compactifications we
refer to Abschnitt 9 of [2].

Let R^{*} be regular. Then there exists a subfamily Q of the vector sum
HBD(R)+BCW_{0}(R) such that R^{*}=R_{Q}^{*} (Proposition 9 in Tanaka [8]). We
use the same notation f as the continuous extention of any f\in Q to R_{Q}^{*} .
We set

Q_{1}=\{H_{f}^{R,R*}|f\in Q\} and Q_{0}=\{f-H_{f}^{R,R*}|f\in Q\}\not\subset

Then Q_{1}\subset HBD(R) and Q_{0}\subset BCW_{0}(R) . We consider two compactifications
R_{Q_{1}\cup Q_{0}}^{*} and R_{Q_{1}}^{*} besides R^{*}=R_{Q}^{*} . We denote by \Gamma_{Q_{1}\cup Q_{0}} and \Gamma_{Q_{1}} the harmonic
boundary of \Delta_{Q_{1}\cup Q_{0}}=R_{Q_{1}\cup Q_{0}}^{*}-R and \Delta_{Q_{1}}=R_{Q_{1}}^{*}-R respectively. We note that
every f\in Q can be continuously extended over R_{Q_{1}\cup Q_{0}}^{*} and that Q_{1}\cup Q_{0}\supset Q_{1} .
Hence there exists the canonical mapping \pi (resp. \pi_{1}) of R_{Q_{1}\cup Q_{0}}^{*} onto R^{*}

(resp. R_{Q_{1}}^{*} ) (cf. Satz 9. 4 in [2]).
By a discussion similar to that in the proof of Satz 9. 4 in [2], we

can prove

LEMMA 2. If b\in\Gamma_{r}, then \pi^{-1}(b) is a single point and \pi^{-1}(b)\in\Gamma_{Q_{1}\cup Q_{0}} .
Let e_{Q_{1}\cup Q_{0}}(l) and e_{Q_{1}}(l) be the end part of l\in L_{r} in R_{Q_{1}\cup Q_{0}}^{*} and R_{Q_{1}}^{*}

respectively. We set

A=\{l\in L_{r}|e(l)\cap\Gamma_{r} contains at least two distinct points\}

Let l\in A . Since \pi(e_{Q_{1}\cup Q_{0}}(l))=e(l), by Lemma 2 we see that e_{Q\cap Q_{0}}‘(l)\cap\Gamma_{Q_{1}\cup Q_{0}}

contains at least two distinct points. On the other hand it follows from
Satz 9.4 in [2] that \pi_{1} : \Gamma_{Q_{1}\cup Q_{0}}arrow\Gamma_{Q_{1}} is a homeomorphism. Hence we obtain
that e_{Q_{1}}(l)\cap\Gamma_{Q_{1}} contains at least two distinct points for every l\in A . Since
R_{Q_{1}}^{*} is metrizable and Q_{1}\subset HBD(R), by the aid of Theorem 2 in Maeda ]3],

we see that m-almost every Green line tends only one point of \Delta_{Q_{1}} . Hence
m(A)=0. Thus we have the theorem.

The corollary follows from Corollary 2 of Theorem 1 and Theorem 2.

4. The proof of Theorem 3.

We set L_{N}= {l\in L_{r}|e_{N}(l) is a single point}. Maeda (Theorem 2 in [3])

proved that

(4) m(L_{N})=1\mathfrak{l}

Let S be any subset of \Delta_{N} . We set S^{*}=\{l\in L_{N}|e_{N}(l)\in S\} . Let \pi be the
canonincal mapping from R_{D}^{*} onto R_{N}^{*} . By an easy computation we see
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S^{*}=\pi^{\check{-1}}(S)\cap L_{N}=\pi^{\overline{-1}}(S)\cap L_{N} . Hence by (4) we heve

(5) m-(S^{*})=\overline{m}(\pi^{\overline{-1}}(S)) and \underline{m}\cdot(S^{*})=\underline{n}(\pi^{\check{-1}}(S))

On the other hand we know

(6) \mu_{l}^{D}(\pi^{-1}(S))=\mu_{z}^{N}(S)

for every Borel set in \Delta_{N} .
Let K and U be a compact set and an open set in \Delta_{N} respectively.

By (5), (6) and Nakai’s theorem we have

(7) \overline{m}(K^{*})=\overline{m}(\pi^{\overline{-1}}(\check{K}))\leq\mu_{z_{0}}^{D}(\pi^{-1}(K))=\mu_{z_{0}}^{N}(K) .

\underline{n}(U^{*})=\underline{n}(\pi^{\check{-1}}(U))\geq\mu_{z_{0}}^{D}(\pi^{-1}(U))=\mu_{z_{0}}^{N}(U) .

Take a sequence \{U_{n}\}_{n=1}^{\infty} of open sets in \Delta_{N} with
\infty

U_{n+1}\subset\overline{U}_{n+1}\subset U_{n} and \bigcap_{n=1}U_{n}=K. Then U_{n+1}^{*}\subset U_{n}^{*} and \bigcap_{n=1}U_{n}^{*}=K^{*} .

By the decreasing monotone continuity of m—, and the continuity of \mu and
by (7),

\underline{n}(K^{*})=\lim_{narrow\infty}\underline{v\iota}(U_{n}^{*})\geq\lim_{narrow\infty}\mu_{z_{0}}^{N}(U_{n})=\mu_{z_{0}}^{N}(K) .

Hence by (7) we see that K^{*} is m-measurable and m(K^{*})=\mu_{z_{0}}^{N}(K) . Thus
we have the theorem.
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