Notes on Green lines

By Yukio NAGASAKA

1. Introduction

Let R be a hyperbolic Riemann surface and $g(z)=g(z, z_0)$ be the Green function on R with a fixed pole z_0 in R. For the following definitions and properties of Green lines and compactifications of R, we refer to Sario-Nakai [7] and Constantinescu-Cornea [2] respectively. We consider the Green lines issuing from the fixed point z_0 . The set L of all Green lines admits the Green measure m. A Green line l for which $\inf_{z \in l} g(z)=0$ is called a regular Green line. Any regular Green line tends to the ideal boundary of R as $g(z) \rightarrow 0$. The set of all regular Green lines is denoted by L_r . It is known (Brelot-Choquet [1]) that $m(L-L_r)=0$.

Let R^* be a resolutive compactification of R and μ_z be the harmonic measure on the ideal boundary $\Delta = R^* - R$ with respect to $z \in R$. We are interested in the behavior of $l \in L_r$ in R^* . We set $e(l) = \overline{l} - l \cup \{z_0\}$ with \overline{l} the closure of l in R^* . We call e(l) the end part of l in R^* . Given a subset $S \subset \Delta$ we write $\tilde{S} = \{l \in L_r | e(l) \cap S \neq \phi\}$ and $\tilde{S} = \{l \in L_r | e(l) \subset S\}$. Let $C(\Delta)$ be the set of all bounded continuous functions on Δ . We set $C_D(\Delta)$ $= \{f \in C(\Delta) | H_f^{R,R*} \in HD(R)\}$. If $C_D(\Delta)$ is dense in $C(\Delta)$ with respect to the uniform convergence topology, then R^* is said to be a regular compactification of R (Maeda [4]).

In this paper we shall prove the following theorems:

THEOREM 1. Let R^* be a resolutive compactification of R. For every compact set K (resp. open set U) in Δ ,

$$\overline{m}(\check{K}) \leq \mu_{z_0}(K), \quad \underline{m}(\widetilde{U}) \geq \mu_{z_0}(U),$$

where \overline{m} and \underline{m} are the outer and inner measures induced by m. For every Baire set S in Δ , $\overline{m}(\check{S}) \leq \mu_{z_0}(S) \leq \underline{m}(\check{S})$.

COROLLARY 1. Let R^* be resolutive. If R^* is metrizable, then for every Borel set S in Δ , $\overline{m}(\check{S}) \leq \mu_{z_0}(S) \leq \underline{m}(\check{S})$.

COROLLARY 2. (i) Let R^* be resolutive and Γ be the harmonic boundary of R^* . If R^* is metrizable, then $m(\widetilde{\Gamma})=1$.

(ii) Let R_{M}^{*} be the Martin compactification of R and Δ_{1} be the set of all minimal points of $\Delta_{M} = R_{M}^{*} - R$. Then $m(\tilde{\Delta}_{1}) = 1$.

Y. Nagasaka

THEOREM 2. Let R^* be a regular compactification of R and Γ_r be the set of all regular points for Dirichlet problem with respect to R^* . If R^* is metrizable, then $e(l) \cap \Gamma_r$ consists of at most a single point for malmost every $l \in L_r$.

COROLLARY. Let R^* be regular and metrizable. If Γ_r is of $\mu_{z_0}(\Gamma_r)=1$, then $e(l) \cap \Gamma_r$ consists of exactly a single piont for m-almost every $l \in L_r$.

Although the next Theorem 3 follows from Theorem 8 of Maeda [3], we shall give an alternative proof.

THEOREM 3. ([3]) Let R_N^* be the Kuramochi compactification of R and μ_z^N be the harmonic measure on $\Delta_N = R_N^* - R$ with respect to $z \in R$ and $e_N(l)$ be the end part of $l \in L_r$ in R_N^* . For every compact set K in Δ_N we set $K^* = \{l \in L_r | e_N(l) \text{ is a single point and } e_N(l) \in K\}$. Then K^* is m-measurable and $m(K^*) = \mu_{z_0}^N(K)$.

REMARK. For the case of the Royden compactification, the following Nakai's theorem is much better than Theorem 1.

Nakai's theorem. Let R_D^* be the Royden compactification of R and μ_z^D be the harmonic measure on $\Delta_D = R_D^* - R$. For every F_σ -set K (resp. G_{δ} -set U) in Δ_D ,

$$\overline{m}(\widetilde{K}) \leq \mu_{z_0}^D(K), \quad \underline{m}(\check{U}) \geq \mu_{z_0}^D(U).$$

2. The proof of Theorem 1.

We consider two kinds of Dirichlet problems:

(a) Let ψ be a bounded function on L_r . We consider the following classes :

$$\vec{\mathcal{I}}_{\phi} = \begin{cases} s \mid \text{ superharmonic, bounded below on } R, \\ \lim_{z \in \overline{l, g(z)} \to 0} s(z) \ge \psi(l) \text{ for } m\text{-almost every } l \in L_r \end{cases}$$

and $\underline{\mathcal{F}}_{\psi} = \{-s | s \in \overline{\mathcal{F}}_{-\psi}\}$. We set $\overline{G}_{\psi}(z) = \inf \{s(z) | s \in \overline{\mathcal{F}}_{\psi}\}$ and $\underline{G}_{\psi}(z) = \sup \{s(z) | s \in \underline{\mathcal{F}}_{\psi}\}$ ($z \in R$). It is known ([1]) that \underline{G}_{ψ} and \overline{G}_{ψ} are harmonic on R and that

(1)
$$\underline{G}_{\psi}(z_0) \leq \underline{\int} \psi \, dm \leq \overline{\int} \psi \, dm \leq \overline{G}_{\psi}(z_0) \, .$$

(b) Let R^* be a compactification. Let ϕ be a bounded function on $\Delta = R^* - R$. We consider the following classes:

$$\overline{\mathscr{I}}_{\phi}^{R,R*} = \overline{\mathscr{I}}_{\phi} = \{ s | \text{ superharmonic, bounded below on } R, \}$$
$$\{ \lim_{z \to b} s(z) \ge \phi(b) \text{ for every } b \in \Delta \}$$

and $\underline{\mathscr{G}}_{\phi}^{R,R*} = \underline{\mathscr{G}}_{\phi} = \{-s | s \in \overline{\mathscr{G}}_{-\phi}\}.$

We set $\overline{H}_{\phi}^{R,R*}(z) = \overline{H}_{\phi}(z) = \inf \{s(z) | s \in \overline{\mathscr{I}}_{\phi}\}$ and $\underline{H}_{\phi}^{R,R*}(z) = \underline{H}_{\phi}(z) = \sup \{s(z) | s \in \underline{\mathscr{I}}_{\phi}\} \ (z \in R)$. We know that \underline{H}_{ϕ} and \overline{H}_{ϕ} are harmonic on R. We make use of the next result.

LEMMA 1. (cf. Hilfssatz 8.3 and Satz 8.3 in [2]). Let R^* be a resolutive compatification. For any bounded function ϕ ,

$$\underline{H}_{\phi}(z) \leq \underline{\int} \phi d\mu_{z} \leq \overline{\int} \phi d\mu_{z} \leq \overline{H}_{\phi}(z)$$

for every $z \in R$. If ϕ is bounded lower semicontinuous (resp. bounded upper semicotinuous), then $\underline{H}_{\phi}(z) = \int \phi d\mu_z \left(\text{resp. } \overline{H}_{\phi}(z) = \int \phi d\mu_z \right)$. If ϕ is a bounded Baire function on Δ , then $\underline{H}_{\phi}(z) = \overline{H}_{\phi}(z) = \int \phi d\mu_z$.

The proof of Theorem 1.

Let E be any subset of Δ . We denote by χ_E and $\chi_{\tilde{E}}$ (or $\chi_{\check{E}}$) be the characteristic function of the set E and \tilde{E} (or \check{E}) on Δ and L_r respectively. We note $\sup_{b\in e(I)} \chi_E(b) = \chi_{\tilde{E}}(l)$ for every $l \in L_r$. Let $s \in \mathcal{L}_{\chi_E}$. Since $\lim_{z \to b} s(z) \leq \chi_E(b)$ for every $b \in \Delta$, we have

$$\overline{\lim_{\varepsilon^{I},g(z)\to 0}} \ s(z) \leq \sup_{b\in e(I)} \overline{\lim_{z\to b}} \ s(z) \leq \sup_{b\in e(I)} \chi_E(b) = \chi_{\widetilde{E}}(b) \,.$$

Hence $s \in \mathcal{F}_{\mathfrak{x}_{\tilde{E}}}$. Then $\mathcal{I}_{\mathfrak{x}_{E}} \subset \mathcal{F}_{\mathfrak{x}_{\tilde{E}}}$ and by (1) we have (2) $\underline{H}_{\mathfrak{x}_{E}}(z_{0}) \leq \underline{m}(\tilde{E})$.

Let U, K and S be an open set, a compact set and a Baire set in Δ respectively. Then χ_{v} and χ_{s} are a lower semicontinuous function and a Baire function respectively. Hence by Lemma 1 and by (2) we have

(3)
$$\mu_{z_0}(U) \leq \underline{m}(\widetilde{U}) \text{ and } \mu_{z_0}(S) \leq \underline{m}(\widetilde{S}).$$

We note $\dot{E} = L_r - (\varDelta - E)$ for any subset E of \varDelta . Since $\varDelta - K$ and $\varDelta - S$ are an open set and a Baire set in \varDelta , by (3) we have

$$\overline{m}(\check{K}) = m(L_r) - \underline{m}(\check{\varDelta} - K) \leq 1 - \mu_{z_0}(\varDelta - K) = \mu_{z_0}(K)$$

and similarly $\overline{m}(\check{S}) \leq \mu_{z_0}(S)$. Thus we have the theorem.

The proof of Corollary 1 is obvious.

The proof of Corollary 2. We know (cf. [2]) the next facts: (i) Γ is a compact set in Δ and the support of μ_z is equal to Γ , (ii) R_M^* is metrizable and Δ_1 is a G_{δ} -set and $\mu_z(\Delta_1)=1$. Hence Corollary 2 follows from Corollary 1.

3. The proof of Theorem 2.

For the following definitions and properties of Q-compactifications we refer to Abschnitt 9 of [2].

Let R^* be regular. Then there exists a subfamily Q of the vector sum $HBD(R) + BCW_0(R)$ such that $R^* = R_q^*$ (Proposition 9 in Tanaka [8]). We use the same notation f as the continuous extention of any $f \in Q$ to R_q^* . We set

$$Q_1 = \{H_f^{R,R*} | f \in Q\}$$
 and $Q_0 = \{f - H_f^{R,R*} | f \in Q\}$.

Then $Q_1 \subset HBD(R)$ and $Q_0 \subset BCW_0(R)$. We consider two compactifications $R_{\varrho_1 \cup \varrho_0}^*$ and $R_{\varrho_1}^*$ besides $R^* = R_{\varrho}^*$. We denote by $\Gamma_{\varrho_1 \cup \varrho_0}$ and Γ_{ϱ_1} the harmonic boundary of $\Delta_{\varrho_1 \cup \varrho_0} = R_{\varrho_1 \cup \varrho_0}^* - R$ and $\Delta_{\varrho_1} = R_{\varrho_1}^* - R$ respectively. We note that every $f \in Q$ can be continuously extended over $R_{\varrho_1 \cup \varrho_0}^*$ and that $Q_1 \cup Q_0 \supset Q_1$. Hence there exists the canonical mapping π (resp. π_1) of $R_{\varrho_1 \cup \varrho_0}^*$ onto R^* (resp. $R_{\varrho_1}^*$) (cf. Satz 9.4 in [2]).

By a discussion similar to that in the proof of Satz 9.4 in [2], we can prove

LEMMA 2. If $b \in \Gamma_r$, then $\pi^{-1}(b)$ is a single point and $\pi^{-1}(b) \in \Gamma_{Q_1 \cup Q_0}$.

Let $e_{Q_1 \cup Q_0}(l)$ and $e_{Q_1}(l)$ be the end part of $l \in L_r$ in $R^*_{Q_1 \cup Q_0}$ and $R^*_{Q_1}$ respectively. We set

 $A = \left\{ l \in L_r | e(l) \cap \Gamma_r \text{ contains at least two distinct points} \right\}.$

Let $l \in A$. Since $\pi(e_{Q_1 \cup Q_0}(l)) = e(l)$, by Lemma 2 we see that $e_{Q_1 \cap Q_0}(l) \cap \Gamma_{Q_1 \cup Q_0}$ contains at least two distinct points. On the other hand it follows from Satz 9.4 in [2] that $\pi_1: \Gamma_{Q_1 \cup Q_0} \to \Gamma_{Q_1}$ is a homeomorphism. Hence we obtain that $e_{Q_1}(l) \cap \Gamma_{Q_1}$ contains at least two distinct points for every $l \in A$. Since $R_{Q_1}^*$ is metrizable and $Q_1 \subset HBD(R)$, by the aid of Theorem 2 in Maeda [3], we see that *m*-almost every Green line tends only one point of \mathcal{A}_{Q_1} . Hence m(A)=0. Thus we have the theorem.

The corollary follows from Corollary 2 of Theorem 1 and Theorem 2.

4. The proof of Theorem 3.

We set $L_N = \{l \in L_r | e_N(l) \text{ is a single point}\}$. Maeda (Theorem 2 in [3]) proved that

$$(4) m(L_N) = 1.$$

Let S be any subset of \mathcal{A}_N . We set $S^* = \{l \in L_N | e_N(l) \in S\}$. Let π be the canonincal mapping from R_D^* onto R_N^* . By an easy computation we see

$$S^* = \pi^{-1}(S) \cap L_N = \widetilde{\pi^{-1}(S)} \cap L_N. \quad \text{Hence by (4) we heve}$$
(5)
$$\overline{m}(S^*) = \overline{m}\left(\widetilde{\pi^{-1}(S)}\right) \text{ and } \underline{m}(S^*) = \underline{m}\left(\pi^{-1}(S)\right)$$

On the other hand we know

(6)
$$\mu_{z}^{D}(\pi^{-1}(S)) = \mu_{z}^{N}(S)$$

for every Borel set in Δ_N .

Let K and U be a compact set and an open set in Δ_N respectively. By (5), (6) and Nakai's theorem we have

(7)
$$\overline{m}(K^*) = \overline{m}\left(\widetilde{\pi^{-1}(K)}\right) \le \mu_{z_0}^D\left(\pi^{-1}(K)\right) = \mu_{z_0}^N(K) .$$
$$\underline{m}(U^*) = \underline{m}\left(\widetilde{\pi^{-1}(U)}\right) \ge \mu_{z_0}^D\left(\pi^{-1}(U)\right) = \mu_{z_0}^N(U) .$$

Take a sequence $\{U_n\}_{n=1}^{\infty}$ of open sets in Δ_N with

$$U_{n+1} \subset \overline{U}_{n+1} \subset U_n$$
 and $\bigcap_{n=1}^{\infty} U_n = K$. Then $U_{n+1}^* \subset U_n^*$ and $\bigcap_{n=1}^{\infty} U_n^* = K^*$.

By the decreasing monotone continuity of \underline{m} and the continuity of μ and by (7),

$$\underline{m}(K^*) = \lim_{n \to \infty} \underline{m}(U_n^*) \ge \lim_{n \to \infty} \mu_{z_0}^N(U_n) = \mu_{z_0}^N(K) \,.$$

Hence by (7) we see that K^* is *m*-measurable and $m(K^*) = \mu_{z_0}^N(K)$. Thus we have the theorem.

Department of Mathematics, Hokkaido University

References

- M. BRELOT and G. CHOQUET: Espaces et lignes de Green, Ann. Inst. Fourier 3 (1951), 199-263.
- [2] C. CONSTANTINESCU and A. CORNEA: Ideale Ränder Riemannscher Flächen, Springer-Verlag, 1963.
- [3] F.-Y. MAEDA: Notes on Green lines and Kuramochi boundary of a Green space, J. Sci. Hiroshima Univ. 28 (1964), 59-66.
- [4] F.-Y. MAEDA: Normal derivatives on an ideal boundary, J. Sci. Hiroshima Univ. 32 (1968), 113-131.
- [5] M. NAKAI: Behavior of Green lines at Royden's boundary of Riemann surfaces, Nagoya Math. J. 24 (1964), 1–27.
- [6] M. NAKAI and L. SARIO: Behavior of Green lines at the Kuramochi boundary of a Riemann surface, Pacific J. Math. 36 (1971), 447-455.

Y. Nagasaka

- [7] L. SARIO and M. NAKAI: Classification theory of Riemann surface, Springer-Verlag (1970).
- [8] H. TANAKA: On function-theoretic separative conditions on compactifications of hyperbolic Riemann surfaces, Hiroshima Math. J. 2 (1972), 33-65.

(Received June 15, 1974)