Note on H-separable extensions

Dedicated to Professor Kiiti Morita on his 60th birthday

By Taichi NakamoTo and Kozo Sucano

It is the purpose of this note to give a (self-contained) computational
proof to the principal theorem (1. 3) of and a theorem concerning ring-
endomorphisms of an H-separable extension. QOur tool employed in this
note is an H-system of an H-separable extension, which was introduced
in [4].

Recently, we found that the proof of [6, Proposition 1] contained an
error and the same was repeated in the proof of main part of [7, (1.3)].
So, the present note comprehends the correction to the previous papers
[6] and [7].

Throughout, A/B will represent a ring extension with common iden-
tity 1, V the centralizer V,(B) of B in A, and C the center of A.

The next will be useful occasionally in the subsequent study.

(1) Let B'CB" be intermediate rings of A|/B. Let V' =V, (B),
and V"=V (B"). If 3B QzB"'5—5B"5.(b'Qb"—>b'b") splits then 5 V.
<@y Vp.. A

ProoF. There exists an element ), 5,®bY€(B'®zB"* such that
2+ b6y =1. Then, the map ¢: V-V’ defined by v—);, bivby is a
V'-V"-homomorphism and induces the identity map on V’, which means
Vi <@y Vp.

A/B is called an H-separable extension if A®zA is A-A-isomorphic
to an A-A-direct summand of a finite direct sum of copies of A. To
be easily seen, A/B is H-separable if and only if there exist some v,e V
(i=1,-,m) and X, x,;®y;;€(ARA)* such that X, ,; x,;Quv.=1®1.
Following [4], such a system {v,; X;x,;®v.,}; will be called an H-system
for A/B.

In what follows, we assume always A/B is an H-separable exten-
sion with an H-system {v;; X ;2,;®%};. Then the map 7: ARQA—
Hom¢(V, A) (a;®@a,—>(v>ayva,)) is an A-A-isomorphism, whose inverse is
given by h—=>X,; ; 2;,,Qyh(v;) (cf. also (2. 1')).

(2) If o is an arbitrary ring-endomorphism of A which leaves every
element of B invariant, gcHom(Ag, Ap) and heHom(zA, 3A), then
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(2.1) 2103 9(xi) vo(yey) a(a) o(vi) = g(a) v
and -
(2. 2) 2.3 0(v;) a(a) a(xy) vh(y.y) = vha) (a€A,veV).

PROOF. 214; i@ ygavi=a®1 implies }3,,; 9(x:)®a(yssav) =g (@)@ 1.
Applying », we obtain (2.1). ‘

The above formulae are specialized in various ways :

(2. 3) 24,5 0(xeg) v (Yis) 0(vs) = 24,5005 0 (x5)) vo(yy)=v.
(2.1 24,5 9(&ig) vyyav, = g(a)v .
(2.2') | 24,5 VeaZyVh(yey) = vh(a).

In particular, we have };;v,x;;vy;;=v, which means:
(3) Vi is f.g (finitely generated) projective ([3, p. 112]).
(4) A|B is a separable extension ([3, Theorem 2. 2]).

'Proor. Since V. is f.g. projective by (3), there exists a C-epi-
morphism ¢: V—C which induces the identity map on C. Obviously,
2 Xg®visq(vs) s in (ARpA) and X4y Ziy¥e3q(ve)=q(Ls,s Tus¥esv) =1,
which means that A/B is separable.

Next, by a brief computation with (2.1’') and (2.2'), we see that the
map &: VR¢V—Hom(zAz 545 (Qu—>(a—>uau,)) is a V-V-isomorphism,
whose inverse is given by A2, 21, A(xi)) Y6,@v= 21 vi® 215 Zush(yey)-

- (5) If sB<@3A or Be<@®Ajp then V,(V)=B ([5, Proposition 1. 2]).

Proor. Let p: A—B be a left B-epimorphism which induces the
identity map on B. Then, for a€V,(V) we have p(a)=2,; viaz,p(y:)
=a Y vZup(¥s)=a by (2.2'). Hence, V,(V)=B.

~ Let B, be the set of all intermediate rings B’ of A/B such that
2 By< @Ay and 5B RzA, A4 ('Qa—>b'a) splits, and B, the set of all
intermediate rings V'’ of V/C such that , V' <@,V and . V'Q;Vy—y Vy
(v'®u+>v'v) splits. Similarly, we can consider the sets B, and B,. Finally,
let B be the set of all intermediate rings B’ of A/B such that B'/B is
separable and 3Bz <@ Az, and B the set of all intermediate rings V’ of
V/C such that V’/C is separable. Needless to say, B is a subset of %B,.
(In [7], B was denoted as .

(6) Let B' be an intermediate ring of A|B with V'=V(B'). If
2By <@ p Ay or By <@ Az then V(V')=B'. Especially, if B is in
B, (resp. B,) then V' is in B, (resp. B,) and V,(V')=B"

Proor. Let p: A—B' be a B’'-B-epimorphism which induces the
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identity map on B'. Then, by >}, p(x;,) v,;€ V' and (2.1'), we obtain for
every b€V, (V'), p(b")= 20 P(%is) ¥isb" ve=b" Tos; p(Xis) yesve=0". This
proves V,(V')=B’. Henceforth, we assume further that B'®zA>5A,
('@a—>b'a) splits. Then, , V' <@,V by (1. We define-a V’'-V-homo-
morphism V-V ®.;V by vr}, 225 P(Xig) VYs3 Q@ Us= 215 205 P(Xig) Yoy @ V40
(cf.. the definition of & and (2.1'). Then, X, ,;p(x;,) vy vs=v means that
' V'QcVy—p Vi (vV®uv'v) splits. Hence, V'eR,. :

(7) If V' is in B, (resp. B,) then B'=V (V') is in B, (resp. B,) and
VuB)=V".. : : »

Proor. Since ,V'Q¢V,—1 V) (v ®u+>v'v) splits, there exists an ele-
ment 2, v:®u€(V'QV)” such that X, viu,=1. Obviously, X, vhx,u.
€B' and »By<@pAp by (1). Next, we consider an arbitrary left V’-epi-
mor phism ¢: V—V’ which induces the identity map on V’, and define the
map ¢: A—=>B'®zA by a—>},; 2k vitiu:®vy.5q9(v) a. By (2.1'), we have
2it,5,8 ViZagha0¥439(05) B'a= T viq(uv) b'a=b' 3, ;4 Vitiusvyq(vy) a (H'eB,
veV). Then, regarding B'® A as a submodule of A®j;A, we see that
¢ is a B'-A-homomorphism and 3, ;. Ve Ty Ur Y45 9(0:) a= X Viqlus) a=a.
Hence, B’'€®,. Moreover, if v'’e Vu(B') then v"=7v"1= '
V" Diegk ViZigaYis (V)= 1 s viq(uv”)€ V', which means V,(B)=V".

Now, as a combination of (6) and (7), we readily obtain the main part
of [7, (1.3)]: '

THEOREM 1. Let A/B be an H-separable extension.

(@) B'~V,(B') and V'V (V') are mutually converse 1—1 correspon-
dences between B, (resp. B,) and B, (resp. B,).

(b) B'=>V,(B') and V'V (V') are mutually converse 1—1 correspon-
dences between B and B.

Proor. It remains only to prove (b). First, we claim BcDB, Given
V'eB, we put C*=V,(V'), V"=V, (V'), and U=V,(C*). Since V'/C is
separable, we have ,.V",. <@y Vy. by (1). Recalling that V, is f.g. pro-
jective by (3), we see that V"¢ is f.g. projective. Combining this with the
separability of C*¥/C (cf. [1, Theorem 2.3]), one will readily see that V..
is f. g. projective, so that C*;.<®V ;.. On the other hand, since V'IC* is
central separable by [1, Theorem 2.3], we have V'Q.V"'=V'.-V"=U by
[1, Theorem 3.1] and ,Uy<@yVy by (1). Hence, ,,V'<@®V; and V'eB,.
Moreover, if we set B'=V, (V') then 5 Bs<@zAz by (1) and zB'®zA,
—pAy (0’ @a—b'a) splits by (a). Hence B’/B is separable and B'eS.
Similarly, we can prove that V,(B’) is in 8. Now, the rest of part of
the proof is immediate by (a).
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COROLLARY. Let A/B be an H-separable extension with V,(V)=B,
and B' is in B. If the center Z' of B' is contained in the center of B
then Vg (Vg (B)=B (and conversely).

Proor. By (b), V'=V,(B') is separable over C and
V.(VhNV'=B'NV'=Z". Hence, V' is a central separable algebra over
Z' by [1, Theorem 2.3]. Since Z' is contained in V4B, we have
V=V'"®uVy(V)=V'®;Vg(B) by [1, Theorem 3. 1]. It follows then
Ve (Ve(B) =B'N Vu(Va(B)=Va4(V')N Va(Vz(B))= V4(V)=B.

(8) Every ring-homomorphism ¢ of A leaving every element of B
invariant is a monomorphism.

Proor. In fact, if ¢(a)=0 then 0=, ; x,;0(y:y) 0(a) a(v)=a by (2. 1).
We shall conclude this note with the following theorem.

THEOREM 2. Let A/B be an H-separable extension, and o a ring-
endomorphism of A which leaves every element of B invariant.

(@) If Vi(e(A)=C then ¢ is an automorphism.

(b) If o leaves every element of C invariant, then ¢ is an automor-
phism. Especially, if CCB then ¢ is an automorphism.

(c) If sB<@pA or By<@Ajp then o is an automorphism.

PrOOF. Let A'=¢(A), and C'=V (A"

(a) To be easily seen, 3, ;0(Zs) YrsZi50(ysy) is in C’=C. Hence, if a
is an arbitrary element of A then by (2.1') we have (X ;2:;0(ysy) ao(v.)
= Y 0(Xrs) Yrs( 24,5 Tag 6(Ysg) ao(ve) v, = 2 (XLa,g 0(Zrs) Yrs Tog 6(Ysy)) a0 (v;) v,
=AY, Y 0(Zrs) Yrs Zig 0 (Y23) 0(V) Ve = @ D6 0( L) Yra it Tig 0 (Yuy0) 0 =
a Y, .0z, ysv.=a. This together with (8) implies that ¢ is an automor-
phism.

(b) Obviously, A’ is an H-separable extension of B, and hence a sep-
arable extension of B by (4). By (a), our proof will be complete if we can
prove that C’' coincides with C. We consider here the C-homomorphisms
f: C'®;V—V defined by ¢/®v+—>c'a(v) and g: V—=C'Q;V defined by v
i 2 0(xi) vo(ye)®vs.  Then, by (2.3) fglv)=2, a(xi5) vo(ysv)=v. On
the other hand, g¢f(c'®v)=X: X ;0(xy)c'o(v)o0(ys)Q@ui=c" XL o(X; Zi3v¥s))
Rui=¢" Yie.; LisVYe;Qvi=c'®v. Hence, C'®;V=V. Since, V; is {.g. pro-
jective by (3) and ¢Ch <@ Ve by (1), C¢ is an f.g. projective module of
rank 1. Hence, by [2, Corollaire du Théoréme 1], it follows C’'=C.

(c) This is immediate by (5) and (b).

Okayama College of Science,
Hokkaido University



Note on H-separable extensions 299

References

[1] M. AUSLANDER and O. GOLDMAN: The Brauer group of a commutative ring,
Trans. Amer. Math. Soc., 97 (1960), 367-409. _

[2] N. BoURBAKI: FElements de Mathématique, Algébre Commutative, Chaps. 1-2,
Actualités Sci. Ind. 1290, Hermann, Paris, 1961.

[3] K. HIRATA: Some types of separable extensions of rings, Nagoya Math. J., 33
(1968), 107-115.

[4] T. NAKAMOTO: On QF-extensions in an H-separable extension, Proc. Japan
Acad., 50 (1974), 440-443.

[5] K. SUGANO: Note on semi-simple extensions and separable extensions, Osaka
J. Math., 4 (1968), 265-270.

[6] K. SUGANO: On centralizer in separable extensions II, Osaka J, Math., 8 (1971),
465-469. ‘

[7] K.SUGANO: On some commutor theorems of rings, Hokkaido Math. J., 1 (1972),
242-249.

(Received October 21, 1974)



	THEOREM 1. ...
	THEOREM 2. ...
	References

