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Introduction

Goldie introduced finite-dimensional modules in [4]. By dualizing the
notion of finite-dimensionality, “cofinite-dimensional modules” may be defind.
The object of this article is to study the properties of cofinite-dimensional
modules under certain conditions. Our basic tools are coessential extensions
and cocomplements in a module, and our main guides are Miyashita [9],
[10] and Utumi [14].

It will be assumed throughout that R is a nonzero ring with identity
and that all modules over R are unital left R-modules. Let M be a nonzero
R-module and let A\subset B be submodu1es^{1)} of M. Then B is called a coes-
sential extension of A in M iff B/A is a small submodule of M/A. This
definition originates in the necessity of treating not merely small submodules
of M but small submodules of factor modules of M. A set \{A_{\lambda}|\lambda\in\Lambda\} of
submodules of M is called coindependent iff n1\cap A_{\lambda_{i}}+A_{\lambda_{n}}=M for any finite

i=1

subset \{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\} of \Lambda(n\geqq 2), and M is called cofinite-dimensional iff every
coindependent set of submodules of M is finite. Zelinsky proves in [17]
that every linearly compact module is cofinite-dimensional. As for the
coindependency, Proposition 1.3 is fundamental and Proposition 1.6 shows
the relationship between coessential extensions and coindependent sets of
submodules.

For a submodule A of an R-module M, a complement A’ of A in M
is a maximal submodule of M with respect to the property A\cap A’=0 ;
dually, a cocomplement A^{c} of A in M is a minimal submodule of M with
respect to the property A+A^{c}=M. Clearly, each direct summand of M
is a complement and also a cocomplement (of some submodule) in M.
Section 2 is devoted to the propositions about cocomplements in a module.

It is proved by applying Zorn’s Lemma that every submodule has a

1) Henceforward, submodules, factor modules, homomorphisms, epimorphisms, etc. of
left R-modules will be understood to possess the sense of “R-,,.
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complement. But it is not always true that every submodule has a cocom-
plement in the module. An R module M is called cocomplemented iff every
submodule of M has a cocomplement in M, and M is called completely
cocomplemented iff for any pair of submodules A, B of M with A+B=M,
there exists a cocomplement A^{c} of A in M such that A^{c} is included in B.
Every linearly compact module is completely cocomplemented (Corollary 3.7).
An R module M is called semiperfect iff every factor module of M has
a projective cover. Every semiperfect module is also completely cocomple-
mented. The study of these modules is supplementarily shown in Section 3.

A proper submodule A of an R module M is called couniform in M
iff every proper submodule B, A\subset B, of M is a coessential extension of A
in M, and then M is called locally couniform iff every proper submodule
of M is included in a couniform submodule of M. These are of course
the dual notions to uniform submodules and locally uniform modules. The
uniqueness of the cardinal number of the maximal coindependent set of
couniform submodules of M deduces the definition of the codimension of
M. Thus, in Section 4, we obtain the following result (Proposition 4.11
and Theorem 4. 13):

THEOREM. Let M be a completely cocomplemented R module. Then
the following statements are equivalent:

(1) M is cofifinite-dimensional.
(2) M satisfifies the descending chain condition for cocomplements in M.
(3) M satisfifies the ascending chain condition for cocomplements in M.
(4) M has a cocomplement composition series.
(5) M is locally couniform and the codimension of M is fifinite.
(6) M is an irredundant sum of a fifinite number of minimal cocom-

plements in M.

It is to be noted that the verification of the above is considerably due
to Theorem 3.9.

In Section 5, we mention quasi-projective modules relating to cocom-
plements, and also those modules which are weaker than quasi-projectives
(see Conditions (I) and (II)).

Let A, A’, A’ be submodules of an R module M such that A’\oplus A’=M.
Then a direct summand A’ of M has been called a direct hull of A in M
iff A’ is an essential extension of A, and M has been called a direct module
iff every submodule of M has a direct hull in M. Dually, a direct summand
A’ of M is called a codirect cover of M/A in M iff A is a coessential
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extension of A’ in M, and M is called a codirect module iff every factor
module of M has a codirect cover in M. The direct module has been
characterized as such a module M that every complement in M is a direct
summand of M. Every quasi-injective module is direct. But in our dual
case, the situation is complicated, as is explained in Section 6. If M is
codirect, then every cocomplement in M is a direct summand of M. The
converse holds under the assumption of M to be completely cocomplemented.
Every codirect module is cocomplemented. Assume that M is a quasi-
projective R-module. Then M is codirect if and only if M is completely
cocomplemented. Furthermore, assume that M is a projective R-module.
Then the following are equivalent (Corollary 6.10):

(1) M is semiperfect.
(2) M is completely cocomplemented.
(3) M is cocomplemented.
(4) M is codirect.
Therefore, for the ring R itself, RR is codirect if and only if R is

a semiperfect ring.
In Sections 7 and 8, cofinite-dimensional codirect modules are studied

by researching of their endomorphism rings. Under the assumption of
RM to be quasi-projective and semiperfect, RM is finitely generated if and
only if the endomorphism ring of RM is a semiperfect ring (Corollary 7.13).

Finally, the author would like to express the gratitude to Dr. T. Onodera
for his cordial guidance. The author would also like to thank Radio Cor-
poration of America for the past backing by the David Sarnoff RCA Schol-
arship Program for Japan.

1. Coessential extensions and coindependent sets of submodules

The notion of a small submodule is well-known as a dual to that of an
essential submodule. However, if we take notice of the essential “extension”
of a submodule, the following dual is obtained:

DEFINITION 1. 1. Let M be a left R-module and let A\subset B be submodules
of M. Then B is called to be a coessential extension of A in M, denoted
by A\subset,B\subset M, iff B+C=M implies A+C=M for any submodule C of M.
This is equivalent to the condition that B/A is a small submodule of the
left R module M/A. (Cf. [2].)

Evidently, for any submodule A of M,
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(1) A\subset\prime A\subset M,
(2) Ac ,McM implies A=M, and
(3) 0\subset,A\subset M means that A is small in M.
The following is a fundamental result of the above definition, although

easily verified :

PROPOSITION 1. 2. Let M, N be left R-modules and let A, B, C, D be
submodules of M.

(1) Let M be a submodule of N. Then A d ,BdM implies that
A\subset\prime B\subset N.

(2) Assume the inclusions A\subset B\subset C. Then B\subset,C\subset M if and only if
B/A\subset\prime C/A\subset M/A .

(3) Assume the inclusions AdBd C. Then A\subset,C\subset M if and only

if A\subset,B\subset M and B\subset,C\subset M.
(4) If A\subset,B\subset M and C\subset,D\subset M, then A+C\subset,B+D\subset M. In par-

ticular, A\subset,B\subset M implies that A+C\subset,B+C\subset M.
(5) Let \phi:Marrow N be a homomorphism. If A\subset , B\subset M, then

A\phi\subset\prime B\phi\subset N^{2)} .
(6) Let \psi:N - \rangle M be an epimorphism^{3)} . If A\subset , B\subset M, then

A\psi^{-1}\subset\prime B\psi^{-1}\subset N.

Let M be a left R-module. A set \{A_{\lambda}|\lambda\in\Lambda\} of submodules of M is
called coindependent ( = independent in Zelinsky [17] =d independent in

Miyashita [10] ) iff n1 \bigcap_{i=1}A_{\lambda_{i}}+A_{\lambda_{n}}=M for any finite subset \{\lambda_{1}, \lambda_{2^{ }},\cdots, \lambda_{n}\} of \Lambda

(n\geqq 2) .

PROPOSITION 1. 3. For any coindependent set \mathfrak{A}=\{A_{\lambda}|\lambda\in\Lambda\} of sub-
modules of M, the following statements hold:

(1) Every subset of \mathfrak{U} is coindependent.
(2) If A_{\lambda}\subset B_{\lambda}(\lambda\in\Lambda) are submodules of M, then \{B_{\lambda}|\lambda\in\Lambda\} is a coin-

dependent set.
(3) Let B be a submodule of M such that \bigcap_{\lambda\in\Lambda},A_{\lambda}+B=M for any fifinite

subset \Lambda’ of \Lambda . Then \mathfrak{U}\cup\langle B} is a coindependent set.

PROOF. Both (1) and (2) are evident and so we prove only (3). Let
\Lambda’ be a finite subset of \Lambda and \lambda’ an element of \Lambda-\Lambda’ . Putting A= \bigcap_{\lambda\in A},A_{\lambda} ,

we have only to deduce (A\cap B)+A_{\lambda’}=M from assumption. But since

2) Homomorphisms will be written opposite to scalars.
3) The symbol ”-\gg” means an epimorphism.
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B+(A\cap A_{\lambda},)=M and A+A_{\lambda’}=M, we can immediately obtain

(A\cap B)+A_{\lambda’}=(A\cap B)+(A\cap A_{\lambda’})+A_{\lambda} ,

=A\cap(B+(A\cap A_{\lambda’}))+A_{\lambda’}

=M

Now the following are easily seen:

CoROLLARY 1. 4. If \{A_{1}, A_{2}, \cdots, A_{n}\}(n\geqq 1) is a coindependent set of
submodules of M and if a submodule B of M satisfifies \bigcap_{i=1}^{n}A_{i}+B=M, then
\{A_{1}, A_{2^{ }},\cdots, A_{n}, B\} is coindependent.

COROLLARY 1. 5. If \{A_{1}, A_{2}, \cdots, A_{n}\}(n\geqq 2) is a coindependent set of
submodules of M, then \bigcap_{i=1}^{m}A_{i}+\bigcap_{i=m+1}^{n}A_{i}=M for each m, 1\leqq m\leqq n-1 .

The above propositions and corollaries will yield the following relation-
ship between coessential extensions and coindependent sets of submodules:

PROPOSITION 1. 6. Let A\subset B, C\subset D, A_{i}\subset B_{i}(i=1,2, \cdots, n), A_{1}\subset B_{\lambda}

(\lambda\in\Lambda) be submodules of M.
(1) Assume that A\subset,B\subset M. If B+C=M, then A+C=M and

A\cap C\subset,B\cap C\subset M.
(2) Assume that A\subset,B\subset M and C\subset,D\subset M. If B+D=M, then

A+C=M and A\cap C\subset,B\cap D\subset M.
(3) Assume that A_{i}\subset,B_{i}\subset M for each i, 1\leqq i\leqq n . If \{B_{i}|i=1,2, \cdots, n\}

is coindependent then \{A_{i}|i=1,2,\cdots,n\} is coindependent and \bigcap_{i=1}^{n}A_{i}\subset,\bigcap_{i=1}^{n}B_{i}\subset M.
(4) Assume that A_{\lambda}\subset,B_{\lambda}\subset M for each \lambda\in\Lambda . If \{B_{\lambda}|\lambda\in\Lambda\} is coin-

dependent, then \{A_{\lambda}|\lambda\in\Lambda\} is coindependent and \bigcap_{\lambda\in\Lambda},A_{\lambda}\subset,\bigcap_{J\in A},B_{\lambda}\subset M for any

fifinite subset \Lambda’ of \Lambda .

PROOF. In order to prove (1) let D be a submodule of M such that
(B\cap C)+D=M. Then the set \{B, C, D\} is coindependent by Corollary 1.4,
and so B+(C\cap D)=M. Hence A+(C\cap D)=M. It follows from this that
\{A,C,D\} is a coindependent set since C+D=M. Therefore (A\cap C)+D=M,
as desired.

(2) follows from (1) by (3) of Proposition 1. 2.
(3) holds by (2) and (4) follows from (3) easily.
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REMARK. As for (1) of the above proposition, we can say a little more
precisely: Assume that A\subset,B\subset M. If B+C=M, then A+C=M and
A\cap C\subset\prime B\cap C\subset C.

2. Cocomplements and coclosed submodules

Let M be a left R-module and let A be a submodule of M. A cocom-
plement ( =d-complement in [10]) A^{c} of A in M is a minimal submodule
of M with respect to the property A+A^{c}=M. A is called a cocomplement
in M iff A is a cocomplement of some submodule of M in M.

The following are evident:
(1) M (resp. 0) is the only cocomplement of 0 (resp. M) in M.
(2) Every direct summand of M is a cocomplement in M.
(3) If A^{c} is a cocomplement of a submodule A in M, then A\cap A^{c}, is

small in A^{c} and hence in M.
(4) If a submodule A of M has a cocomplement A^{c} in M, and if A^{c}

has a cocomplement (A^{c})^{c} in M, then A^{c} is a cocomplement of (A^{c})^{c} in M.
A submodule A of M is called (coessentially) coclosed in M iff B\subset,A\subset M

implies B=A for any submodule B(\subset A) of M (see Golan [3]). Obviously,
every cocomplement in M is coclosed in M. A double cocomplement A^{cc}

of A in M is a cocomplement in M of some cocomplement of A in M
such that A^{cc}\subset A . We can easily see that AccC,AcM. Actually, suppose
that A^{cc}=(A^{c})^{c} for some cocomplement A^{c} of A in M. Since A\cap A^{c} is
small in M, i . e. , 0\subset,A\cap A^{c}\subset M, we have A^{cc}\subset,(A\cap A^{c})+A^{cc},=A\subset M by
Proposition 1.2, (4).

The following is rather fundamental on the coessentiality:

PROPOSITION 2. 1. Let A\subset B\subset C^{c} be submodules ofM. Then A\subset,B\subset M

if and only if A\subset,B\subset C^{c} .

PROOF. We have only to prove the “only if” part. Let D be a sub-
module of M such that D\subset C^{c} and B+D=C^{c} . Then B+D+C=M and
hence A+D+C=M. The minimality of C^{c} which includes A+D implies
A+D=C^{c} .

PROPOSITION 2. 2. Let A\subset C^{c} be submodules of M. Then A is coclosed
(resp. a cocomplement) in M if and only if A is coclosed (resp. a cocomple-
ment) in C^{c} .

PROOF. The “coclosed” part is clear by the above.
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Assume that A is a cocomplement of a submodule A_{1}(\subset C^{c}) in C^{c}.
Then A\dagger A_{1}=C^{c} and so A+A_{1}+C=M. If B_{1}+A_{1}+C=M for some sub-
module B_{1}\subset A , then the minimality of C^{c} which includes B_{1}+A_{1} yields
B_{1}+A_{1}=C^{c}. The minimality of A in C^{c} deduces B_{1}=A . Thus A is
a cocomplement of A_{1}+C in M.

Conversely, assume that A is a cocomplement of a submodule A_{2} in M.
Then A_{2}\cap C^{c} is a submodule of C^{c} and A+(A_{2}\cap C^{c})=C^{c}. If B_{2}+(A_{2}\cap C^{c})=C^{c}

,

for some submodule B_{2}\subset A , then C^{c}\subset B_{2}+A_{2} and so B_{2}+A_{2}=M. The
minimality of A implies B_{2}=A . Thus A is a cocomplement of A_{2}\cap C^{c} in C^{c}.

PROPOSITION 2. 3. Let A\subset B and C^{c} be submodules of M.
(1) Assume that A\subset,B\subset M. If M/B is fifinitely generated, then so is

M/A. In particular, if M/B is fifinitely generated for some small submodule
B of M, then so is M.

(2) If M is fifinitely generated, then so is C^{c}.

PROOF. (1) Let M/B be finitely generated: M/B= \sum_{i=1}^{n}R(m_{i}+B) with

m_{i}\in M. Then M= \sum_{i=1}^{n}Rm_{i}+B and therefore M= \sum_{i=1}^{n}Rm_{i}+A , or M/A=

\sum_{i=1}^{n}R(m_{i}+A) . This means that M/A is finitely generated.
(2) Assume that C^{c}= \sum_{\lambda\epsilon\Lambda}C_{\lambda} with submodules C_{\lambda}(\lambda\in\Lambda) of C^{c}. Then

\sum_{\lambda\in A}C_{\lambda}+C=M. Therefore, if M is finitely generated, \sum_{i=1}^{n}C_{\lambda_{i}}+C=M for

some C_{\lambda_{i}} . The minimality of C^{c}. implies \sum_{i=1}^{n}C_{\lambda_{i}}=C^{c}, . Thus C^{c} is finitely
generated.

PROPOSITION 2. 4. Let A\subset B, C be submodules of M and suppose that
A\subset,C\subset M. If B/A is coclosed {resp. a cocomplement) in M/A, thm (B+C)/C
is coclosed {resp. a cocomplement) in M/C^{\urcorner}.

PROOF. Let B/A be coclosed in M/A. If D/C\subset,(B+C)/C\subset M/C for
some submodule D, C\subset D\subset B+C, then D\subset,B+C\subset M. Since A\subset,C\subset M,
we have A+(B\cap D)\subset , C+(B\cap D)\subset M, i . e. , B\cap D\subset , D\subset M. Thus
B\cap D\subset,B+C\subset M and hence B\cap D\subset,B\subset M, or (B\cap D)/A\subset,B/A\subset M/A .
Therefore B\cap D=B by assumption. Accordingly, B\subset D and D=B+C.
This shows that (B+C)/C is coclosed in M/C.

Similarly, if B/A is a cocomplement of B_{1}/A in M/A, then (B+C)/C
is a cocomplement of (B_{1}+C)/C in M/C.
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A homomorphism is called minimal iff its kernel is a small submodule
(see Bass [1]).

COROLLARY 2. 5. Let \phi:Marrow’ N be a minimal epimorphism. If C

is coclosed (resp. a cocomplement) in M, then C\phi is coclosed (resp. a cocom-
plement) in N.

PROOF. Let C be coclosed (resp. a cocomplement) in M. Since Ker \phi

is small in M, (C+Ker\phi)/Ker\phi is coclosed (resp. a cocomplement) in
M/ Ker \phi by the above. The isomorphism M/Ker\phi\cong M\phi=N implies that
C\phi is coclosed (resp. a cocomplement) in N.

The following is proved easily:

PROPOSITION 2. 6. Let A be a submodule of M such that A has a
double cocomplement in M. Then the following conditions are equivalent:

(1) A is coclosed in M.
(2) A is a cocomplement in M.
(3) A=A^{cc} for some double cocomplement A^{cc} of A in M.
(4) A=A^{cc} for every double cocomplement A^{cc} of A in M.

3. Semiperfect and completely cocomplemented modules

Let M be a nonzero left R-module. Then we recall the following
three types of modules :

(1) M is called semiperfect iff every factor module of M has a pr0-

jective cover. This definition was given in Mares [8] under the assumption
of M to be projective, but we do not add the projectivity according to the
seminar note on algebra in Universit\"at M\"unchen in 1964.

(2) We should like to call M completely cocomplmented iff for any
pair of submodules A, B of M with A+B=M, there exists a cocomplement
A^{c}, of A in M such that A^{c}\subset B. Such a module was defined in Miyashita
[10] as a “perfect” module, but this does not coincide with a “perfect”
module in Mares [8].

(3) M is called cocomplemented ( =komplementiert in Kasch and Mares
[6] ) iff every submodule of M has a cocomplement in M.

A ring R is called semiperfect iff RR is a semiperfect module (see Bass
[1] ). Obviously, an Artinian module is completely cocomplemented and a
completely cocomplemented module is cocomplemented. Moreover, a semi-
perfect module is completely cocomplemented. This is seen in the proof
of Miyashita [10; Theorem 3.3], and indeed verified as follows:
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Let M be a semiperfect module and set A+B=M for submodules
A, B of M. Then M/A has a projective cover \phi:P-\gg M/A . For the
natural eqimorphism \pi:Barrow*M/A , where b\pi=b+A\in M/A(b\in B)^{4)} , there
exists a homomorphism \psi : Parrow B such that \psi\pi=\phi, by the projectivity of
P. Hence A+P\psi=M with P\psi\subset B. If A+B’=M for some submodule
B’\subset P\psi, then we have B’\psi^{-1}+Ker\phi=P. Since Ker \phi is small in P,
B’\psi^{-1}=P and so B’=P\psi . Thus A has a cocomplement P\psi\subset B in M.
This shows that M is completely cocomplemented.

Now we prepare the following:

Lemma 3. 1. Let \psi : Narrow M and \phi:Marrow N be homomorphisms.
Then the following are equivalent :

(1) \psi and \phi are minimal epimorphisms.
(2) \psi\phi and \phi are minimal epimorphisms.
(3) \psi and \psi\phi are minimal epimorphisms.

PROOF. (1) implies (2) : The minimality of \psi\phi will be shown. By
Proposition 1. 2, (6), 0\subset , Ker \phi\subset M asserts that 0\psi^{-1}\subset , (Ker \phi) \psi^{-1}\subset N,
i.e. , Ker \psi\subset , Ker \psi\phi\subset N. Since 0\subset , Ker \psi\subset N, we obtain that
0\subset , Ker \psi\phi\subset N, as desired.

(2) implies (3): M\phi=N’=N\psi\phi and hence M=N\psi+Ker\phi. Since Ker \phi

is small in M, N\psi=M;\psi is an epimorphism. Since Ker \psi\subset Ker\psi\phi,
which is small in N, \psi is minimal.

(3) implies (1) : If Ker \psi\phi is small in N, then (Ker \psi\phi) \psi=Ker\phi is
small in M.

PROPOSITION 3. 2. Let M be a semiperfect module. Then every factor
module of M and every cocomplement in M are smiperfect.

PROOF. The first half is obvious by definition. Now let C be a cocom-
plement in M, let A be a submodule of C and let C^{c} be any cocomplement
of C in M. Then M/(A+C^{c}) has a projective cover \phi:Parrow M/(A+C^{c}),
and the natural epimorphism \pi : C/Aarrow’ M/(A+C^{c}) is minimal since
A\subset,A+(C^{c}\cap C)\subset C. By the projectivity of P, there exists a homomor-
phism \psi:Parrow C/A such that \psi\pi=\phi. Then, \psi is a projective cover of
C/A by the above lemma.

4) Henceforward, the letter “
\pi

” will always be used to indicate such a natural epimor-
phism. Suppose the general situation that A, B, C, D are submodules of M such
that A\subset B\subset D, A\subset C\subset D and B+C=D. Then the natural epimorphism \pi:C/Aarrow\rangleD/B
is a mapping defined by (c+A)\pi=c+B\in D/B(c+A\in C/A) .
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PROPOSITION 3. 3. Assume that A\subset,B\subset M. If M/B is semiperfect,
then so is M/A.

PROOF. Let C/A be a submodule of M/A, where A\subset C are submodules
of M. We shall show that M/C has a projective cover. M/(B+C), which
is isomorphic to a factor module of M/B, has a projective cover \phi :
Parrow M/(B+C), and the natural epimorphism \pi:M/C- M/(B+C) is
minimal since C\subset,B+C\subset M. By the projectivity of P, there exists a
homomorphism \psi:Parrow M/C such that \psi\pi=\phi. Then, \psi is a projective
cover of M/C by Lemma 3.1.

COROLLARY 3. 4. If M/A is semiperfect for a small submodule A of
M, then so is M. In particular, if M is semiperfect, then so is any prO-
jective cover of M. (See [10; Proposition 3. 13] and [8; Theorem 5.6].)

Let M be a completely cocomplemented module. Then the following
two statements hold (see [10; pp. 89-90]):

(1) Every factor module of M is completely cocomplemented.
Let M/A=B/A+C/A for submodules A\subset B, C of M. Since M=B+C,

B has cocomplement B^{c}\subset C in M. Then (B^{c}+A)/A\subset C/A is a cocomple-
ment of B/A in M/A.

(2) Every cocomplement C^{c}. in M is completely cocomplemented.
Let C^{c}=A+B for submodules A, B\subset C^{c} . Since C+A+B=M, C+A

has a cocomplement (C+A)^{c}’\subset B in M, which is a cocomplement of A in C^{c} .
We note here that in a completely cocomplemented module, a coclosed

submodule is nothing but a cocomplement (see Proposition 2.6).
A left R module M is called linearly compact iff any finitely solvable

system of congruences in M :

\alpha\equiv a_{\lambda} (mod A_{\lambda}) (\lambda\in\Lambda) ,

where a_{\lambda}\in M and A_{\lambda} is a submodule of M for each \lambda\in\Lambda, is solvable (see
Zelinsky [17] ) .

The following three results are seen substantially in Sadomierski [11;
p. 335] :

LEMMA 3. 5. Let A, B_{\lambda}(\lambda\in\Lambda) be submodules of M such that A+B_{\lambda}=M

for all \lambda\in\Lambda . Assume that \{B_{\lambda}|\lambda\in\Lambda\} is linearly ordered by set-inclusion. If
A is linearly compact, then A+ \bigcap_{\lambda\in A}B_{\lambda}=M.

PROOF. Let c be an arbitrary element of M. Then for each \lambda\in\Lambda, we
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have c=a_{2}+b_{\lambda} with a_{\lambda}\in A and b_{\lambda}\in B_{\lambda} . Consider a system of congruences
in A :

\alpha\equiv a_{\lambda} (mod A\cap B_{\lambda}) (\lambda\in\Lambda)\tau

For any finite number of elements \lambda_{1} , \lambda_{2}, \cdots , \lambda_{n}\in\Lambda , there exists r, 1\leqq r\leqq n

such that B_{\lambda_{r}}= \bigcap_{i=1}^{n}B_{\lambda_{i}} , by assumption. Therefore, a_{\lambda_{r}}-a_{\lambda_{i}}=-b_{\lambda r}+b_{\lambda_{i}}\in A\cap B_{\lambda_{i}}

for each i, 1\leqq i\leqq n . Accordingly, this system is finitely solvable in A, and
hence this is solvable in A. Thus there exists an element a in A such that

a\equiv a_{\lambda} (mod A\cap B_{\lambda} ) (\lambda\in\Lambda) .
Since c-a=b_{\lambda}-(a-a_{\lambda})\in B_{\lambda} for any \lambda\in\Lambda, we can deduce that A+ \bigcap_{\lambda\in A}B_{\lambda}=M.

PROPOSITION 3. 6. Assume that A+B=llX for submodules A, B of M.
If A is linearly compact, then there exists a cocomplment A^{c} of A in M
such that A^{c}\subset B.

PROOF. Consider the set \mathfrak{V} of all submodules B’ of M such that B’\subset B

and A+B’=M, with the order opposite to the set-inclusion. Let \mathfrak{B}’=

\{B_{\lambda}|\lambda\in\Lambda\} be a nonempty chain in \mathfrak{V} . Then, by the above lemma, we have
A+ \bigcap_{\lambda\in A}B_{\lambda}=M since A is linearly compact. This means that \mathfrak{B}’ contains an

upper bound in \mathfrak{V} . Thus by Zorn’s Lemma \mathfrak{B} has a maximal element,
which is a required cocomplement of A in M.

Now the following is evident, noting that every submodule of a lineary
compact module is linearly compact:

COROLLARY 3. 7. If M is a linearly compact module, then M is com-
pletely cocomplemented.

Let M be a cocomplemented module. Then every factor module of
M is cocomplemented. Actually, let B/A be a submodule of M/A with sub-
modules A\subset B of M. If B^{c} is a cocomplement of B in M, then (B^{c}+A)/A

is a cocomplement of B/A in M/A.
The (Jacobson) radical of M(i. e. , the sum of all small submodules of

M) will be denoted by J(M).

PROPOSITION 3. 8. Let M be cocomplemented and C a cocomplement
in M. Then C/J(C) is semisimple. In particular, if M is cocomplemmted,
then M/J(M) is semisimple. (Cf. [7 ; p. 13].)
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PROOF. Let A/J(C) be a submodule of C/J(C), where A, J(C)\subset A\subset C,
is a submodule of M. By assumption, there exists a cocomplement A^{c} of
A in M. Then,

A+((A^{c}\cap C)+J(C))=(A+A^{c})\cap C=C .

And next,

A\cap((A’\cap C)+J(C))=(A\cap A^{c})+J(C)=J(C) .

Because, A\cap A^{c} is small in M and hence in C (Proposition 2.1). Thus,
C/J(C) is the direct sum of the submodules A/J(C) and ((A^{c}\cap C)+J(C))/J(C) .
This shows that C/J(C) is semisimple.

THEOREM 3.95). Let M be completely coeomplemented and let A, B,
C be submodules of M such that A\subset B and A+C=M. Then for any
cocomplement B^{c} of B in M with B^{c}\subset C, there exists a cocomplement A^{c}

of A in M such that B^{c}\subset A^{c}\subset C.

PROOF. Let B^{c}\subset C be a cocomplement of B in M. Since M/B^{c}=

(A+B^{c},)/B^{c}+C/B^{c} is completely coeomplemented, there exists a cocomple-
n ot D/B^{c}\subset C/B^{c} of (A+B^{c})/B^{c} in M/B^{c}, where D, B^{c}\subset D\subset C, is a sub-
module of M. Hence A+D=M, so that there exists a cocomplement
A^{c}\subset D of A in M. On the other hand {A+Bc)/Bc\cap D/B^{c} is small
in D/B^{c}, i . e. , B^{c}\subset,(A+B^{c})\cap D\subset D. Since B^{c}+(B\cap D)=D, we have
B^{c}\cap(B\cap D)\subset,(A+B^{c})\cap(B\cap D)\subset D. Hence 0\subset,(A+B^{c})\cap B\cap D\subset D. There-
fore it follows from A^{c}+((A+B^{c})\cap B\cap D)=(A^{c}+((A+B^{c})\cap B))\cap D=D that
A^{c}=D. Thus we obtain B^{c}\subset A^{c}\subset C, as required.

Now the following are easy by the above:

COROLLARY 3. 10. Let M be completely coeomplemented and let A\subset B

be submodules of M. Then for any cocomplement A^{c} of A (resp. B^{c} of B)
in M, there exists a cocomplement B^{c} of B (resp. A^{c} of A) in M such that
B^{c}\subset A^{c} .

COROLLARY 3. 11. Let M be completely coeomplemented and let A be
a submodule of M, A_{\neq}^{\subset}B a cocomplement in M. Then for any cocomple-
ment A^{c} of A (resp. B^{c} of B) in M, there exists a cocomplement B^{c} of B
(resp. A^{c} of A) in M such that B^{c\subset}\llcorner\neq A^{c} .

5) The dual statements of 3.9-12 will hold. Of course, we need not assume that M is
“(completely) complemented”.
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PROPOSITION 3. 12. Let M be completely cocomplemented and let A\subset B

be submodules of M. Then for any double coeomplement A^{cc} of A in M,

there exists a double coeomplement B^{cc} of B in M such that A^{cc}\subset B^{cc}.

PROOF. Let A^{cc}=(A^{c})^{c} be a double coeomplement of A in M. For
the coeomplement A^{c}, there exists a cocomplement B^{c} of B in M such that
B^{a}\subset A^{c} . Since A^{cc}\subset B, there exists a cocomplement (B^{c})^{c} of B^{c} in M such
that A^{cc}\subset(B^{c})^{c}\subset B, by the above theorem. Hence this coeomplement (B^{c})^{c}

is a double coeomplement of B in M, completing the proof.

PROPOSITION 3. 13. Let M be completely cocomplemented and C a c0-

complement in M. Then there exists a one-tO-One inclusion preserving cor-
respondence betvoeen the set of all cocomplemmts in M that include C and
the set of all cocomplements in M/C.

PROOF. Let A=A^{cc} be a coeomplement in M including C. Then
A/C+(A^{c}.+C)/C=M/C. Suppose that A’/C+(A^{c}+C)/C=M/C for a sub-
module A’, C\subset A’\subset A, of M. Since A’+A^{c}=M, the minimality of A=A^{cc}

implies A’=A. Therefore A/C is a coeomplement of (A^{c}+C)/C in M/C.
Conversely, let B/C be a coeomplement in M/C. By Proposition 3.12,

there exists a double coeomplement B^{cc} of B in M such that C\subset B^{cc} . Thus
B^{cc}/C\subset , B/C\subset M/C, so that B^{cc}/C=B/C, since B/C is coclosed in M/C.
Hence B=B^{cc} is a coeomplement in M.

Therefore our proposition holds.

4. Cofinite-dimensional modules

Let M be a nonzero left R-module. Then M is called sum-irreducible
iff for any proper submodules A, B of M, A+B is a proper submodule of
M. This is equivalent to the condition that every proper submodule of
M is small in M. Let A be a proper submodule of M. Then A is called
a couniform ( =d-uniform in [10]) submodule of M, or couniform in M iff
M/A is a sum-irreducible module. This is equivalent to the condition that
A\subset,B\subset M for any proper submodule B, A\subset B, of M. Evidently, a simple
module is sum-irreducible and a sum-irreducible module is indecomposable.
For a ring R, RR is sum-irreducible if and only if R is a local ring. Every
maximal submodule is a couniform submodule.

PROPOSITION 4. 1. Let A\subset B be proper submodules of M.
(1) If A is couniform in M, then B is couniform in M.
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(2) Assume that A\subset,B\subset M. If B is couniform in M, then A is
couniform in M.

(3) B is couniform in M if and only if B/A is couniform in M/A.
(4) Assume that A is proper in B. If A is couniform in B, thm

A+B^{c}=M or A+B^{c} is couniform in Mfor any cocomplement B^{c} of B in M.
(5) Let A_{\lambda\neq}\subset B(\lambda\in\Lambda) be submodules of M, B a cocomplment in M,

and B^{c} a cocomplement of B in M. If \{A_{\lambda}|\lambda\in\Lambda\} is a coindependent set of
couniform submodules of B, then \{A_{\lambda}+B^{c}|\lambda\in\Lambda\} is a coindependent set of
couniform submodules of M.

PROOF. (1) and (3) are obvious by Proposition 1.2, (3) and (2), respec-
tively.

(2) If C is a submodule with A\subset C\overline{\neqarrow}M, then C\subset,B+C\subset M. This
shows that B+C is proper in M. Therefore B\subset,B+C\subset M and hence
A\subset,C\subset M.

(4) If C is a submodule with A+B^{c}\subset C\overline{\sim}M\neq, then B\cap c_{\neq-}\subset B and so
A\subset,B\cap C\subset B. Therefore A+B^{c}\subset,(B\cap C)+B^{c}=C\subset M.

(5) is obvious by (4), since each A_{\lambda}+B^{c} is proper in M.

PROPOSITION 4. 2. Let M be completely cocomplemented and A a non-
zero submodule of M. Then the following conditions are equivalent:

(1) A is a minimal cocomplement in M(i. e. , minimal as a nonzero
cocomplement in M).

(2) A is a cocomplement in M and any cocomplement A^{c} of A in M
is a couniform submodule of M.

(3) A is a cocomplement in M of some couniform submodule of M.
(4) A is sum-irreducible and not small in M.

PROOF. (1) implies (2): Let A^{c} be a cocomplement of A in M. The
assumption A^{c}=M would imply (A^{c})^{c}=0 and so A=A^{cc}=0, a contradiction.
Hence A^{c} is proper in M. If B is a submodule with A^{c}\subset B’\overline{\neq}M, B has
a nonzero cocomplement B^{c}\subset A in M. The minimality of A deduces B^{c}=A .
Therefore A^{c} is a double cocomplement of B in M, and consequently
A^{c}\subset\prime B\subset M.

(2) implies (3) obviously.
(3) implies (4): Assume that A=B^{c}, where B is a counifrom submodule

of M. Then M=A+B with B_{\neq}\subset M, which means that A is not small in
M. Next, let C, D_{\neq}^{\subset}A be submodules of M. Then B+C, B+D_{\neq}\subset M

and B\subset,B+C\subset M, B\subset,B+D\subset M since B is couniform in M. Hence
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B\subset,B+C+D\subset M, so that B+C+D\neq M\subset. Thus C+D\neq\subset B^{c}-=A , showing
that A is sum-irreducible.

(4) implies (1): Let A be not small in M. Then there exists a sub-
module B of M such that A+B=M and B_{\neq}\subset M. Then A includes a
cocomplement B^{c} of B in M. Assume that B^{c},\neq A . If A is sum-irreducible,
B^{c} is small in A and hence in M. This contradicts the fact that B is
proper in M. Thus, A=B^{c} is a cocomplement in M. If c_{\neq}\subset A is a c0-

complement in M, then C^{c},=M, so that C=0. Therefore A is a minimal
cocomplement in M.

PROPOSITION 4. 3. Let M be completely cocomplemented and Aa
proper submodule of M. Then the following conditions are equivalmt:

(1) A is a couniform cocomplement in M.
(2) A is minimally couniform in M.
(3) A is a maximal cocomplement in M(i. e. , maximal as a proper

cocomplement in M).

PROOF. (1) implies (2): Let B\subset A be a couniform submodule of M.
Since A is proper in M, B\subset , A\subset M, so that B=A. Because, A is
cocolosed in M.

(2) implies (3): By Proposition 4.1, (2), any double cocomplement A^{cc}

of A in M is couniform in M. The minimality of A yields A^{cc}=A , show-
ing that A is a cocomplement in M. Let B be a cocomplement in M such
that A\subset B\subset^{-}M\neq. Since A is couniform in M, A\subset,B\subset M and we have
A=B. Because, B is coclosed in M.

(3) implies (1): Let B be a submodule of M such that A\subset B\subset M\neq.
Then by Proposition 3.12, there exists a double cocomplement B^{cc} of B in
M such that A\subset B^{cc}. Since B^{cc} is proper in M, the maximality of A
asserts A=B^{cc},. Therefore A\subset,B\subset M, as requested.

Let M be a nonzero left R-module. Then M is called locally couniform
iff every proper submodule of M is included in a couniform submodule of
M. (Cf. [9 ; p. 167].)

PROPOSITION 4. 4. Let M be completely cocomplemented. Then the
following statements are equivalent:

(1) M is locally couniform.
(2) Every proper cocomplement in M is included in a maximal cocom-

plement in M.
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(3) Every nonzero cocomplement in M includes a minimal cocomple-
ment in M.

PROOF. (1) implies (2): Let A be a proper cocomplement in M. Then
A is included in a couniform submodule B of M. By Proposition 3.12,
there exists a double cocomplement B^{cc}, of B in M which includes A. Since
B^{cc} is couniform in M, B^{cc_{J}} is a maximal cocomplement in M by the above
proposition.

(2) implies (3): Let A be a nonzero cocomplement in M. Any cocom-
plement A^{c} of A in M is proper in M and hence included in a maximal
cocomplement B in M. Then A includes a cocomplement B^{c} of B in M
which is nonzero. By Propositions 4.2 and 4.3, B^{c} is a minimal cocom-
plement in M.

(3) implies (1): Let A be a proper submodule of M. If A^{cc}=(A^{c})^{c} is
a double cocomplement of A in M, A^{c}\neq 0 includes a minimal cocomplement
B in M. Then for A^{cc},

, there exists a cocomplement B^{c} of B in M such
that A^{cc}\subset B^{c} . Since B=B^{cc}\neq 0 , B^{c} is proper in M, so that A+B^{c} is proper
in M. Because B^{c} is couniform in M by Proposition 4.2, so is A+B^{c}, in
M, which includes A.

LEMMA 4. 5. IfM has a strictly descending chain of an infifinite number
of cocomplements in M, then there exists a coindependent set of an infifinite
number of proper submodules of M

PROOF. Let M=C_{0\neq}^{c}\supset C_{1\neq}^{c}\supset C_{2\neq}^{c}\supset\cdots be a strictly descending chain of
cocomplements in M. Then each C_{i}+C_{i+1}^{c} is proper in M(i=0,1,2, \cdots) .
Noting C_{n}^{c} \subset n1\bigcap_{i=0}(C_{i}+C_{i+1}^{c})(n=1,2, \cdots), it is easily seen that \{C_{i}+C_{i+1}^{c}|i=0,

1, 2, \cdots } is a coindependent set of proper submodules of M, by Corollary 1.4.

LEMMA 4. 6. Let M be completely cocomplemented. If there exists a
coindependent set of an infifinite number of proper submodules of M, then
M has a strictly ascending chain of an infifinite number of cocomplements
in M.

PROOF. Let \{A_{i}|i=0,1,2, \cdots\} be a coindependent set of proper sub-
modules of M. Consider the submodules of M : B_{i}=\cap iA_{j}(i=1,2, \cdots) .

f=1
Then M\supset B_{1}\supset B_{2}\supset\cdots gives an ascending chain B_{1}^{c}\subset B_{\acute{2}}^{c}\subset\cdots\subset M, which is
strict. Because, assume B_{i}^{c}=B_{i+1}^{c} . Since B_{i}^{c}+B_{i+1}=M, there exists a c0-

complement (B_{i}^{c})^{c}\subset B_{i+1} of B_{i}^{c} in M. But this is a double cocomplement of
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B_{i} in M, so that B_{i+1}\subset,B_{i}\subset M. Since A_{i+1}+B_{i}=M, we have A_{i+1}=A_{i+1}

+B_{i+1}=M, a contradiction.

DEFINITION 4. 7. A nonzero left R-module M is called to be finite.
dimmsional iff every coindependent set ofproper submodules of M is fifinite.

PROPOSITION 4. 8. Let M be cofifinite-dimmsional. Then every factor
module of M and every cocomplement in M are cofifinite-dimensional.

PROOF. The first half is obvious. Now let C^{c} be a cocomplement in
M and assume that \{A_{i}|i=1,2, \cdots, n\} is a coindependent set of proper

submodules of C^{c},. Since n1 \bigcap_{i=1}(A_{i}+C)+(A_{n}+C)\supset(_{i=1}^{n1}\cap A_{i}+A_{n})+C=M, we
deduce that \{A_{i}+C|i=1,2, \cdots, n\} is a coindependent set of proper sub-
modules of M. Thus it follows that C^{c} is cofinite-dimensional.

Under the assumption that A\subset,B\subset M, if \{A_{i}/A|i=1,2, \cdots, n\} is a coin-
dependent set of proper submodules of M/A, then \{(A_{i}+B)/B|i=1,2, \cdots, n\}

is a coindependent set of proper submodules of M/B. Thus we obtain:

PROPOSITION 4. 9. Assume that A\subset , B\subset M. If M/B is cofifinite-
dimmsional, then so is M/A. In particular, if M/B is cofinite-dimensional
for a small submodule B of M, thm so is M.

The following was given in Zelinsky [17; Proposition 6], but we shall
prove by making use of Lemma 3.5.

PROPOSITION 4. 10. If M is a linearly compact module, then M is
cofifinite-dimmsional.

PROOF. Assume that \{A_{i}|i=1,2, \cdots\} is a coindependent set of proper
submodules of M and put A_{0}= \bigcup_{J\geq 1}\bigcap_{i\gtrless f}A_{i} . Fix the elements a_{i} of M arbitrarily

such that a_{0}=0 and a_{i} is not contained in A_{i} for each i\geqq 1 . Now consider
a system of congruences in M :

\alpha\equiv a_{i} (mod A_{i}) (i=0,1,2, \cdots) .
Treating only A_{1} , A_{2}, \cdots , A_{n}(n\geqq 2), A_{i}+ \bigcap_{f\neq i}A_{f}=M implies that we can set

a_{i}=a_{i}’+b_{i}(i=1,2,\cdots, n), where a_{i}’\in A_{i} and b_{i} \in\bigcap_{f\neq i}A_{j} . If we put b= \sum_{i=1}^{n}b_{i} ,

then
b=b_{i}+ \sum_{J\neq i}b_{f}\equiv b_{i}\equiv a_{i} (mod A_{i} ) (i=1,2, \cdots, n) .
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On the other hand, since

\bigcap_{i=1}^{n}A_{i}+\bigcap_{i=1}^{f}A_{n+i}=M (j=1,2, \cdots) ,

we can conclude by Lemma 3.5 that

\bigcap_{i=1}^{n}A_{i}+\bigcap_{i\geqq 1}A_{n+i}=M

Thus there holds b=b’+b’ for some b’ \in\bigcap_{i=1}^{n}A_{i} , b’ \in\bigcap_{i\geqq 1}A_{n+i} . Hence,

b’\equiv b\equiv a_{i} (mod A_{i}) (i=1,2, \cdots, n) ,

b’\equiv 0=a_{0} (mod A_{0}).

This shows that our present system is finitely solvable. Therefore it has
a solution c in M ;

c\equiv a_{i} (mod A_{i}) (i=0,1,2, \cdots) .
Let c, contained in A_{0} , be in A_{m} with m\geqq 1 . Then c-a_{m}\in A_{m} yields
a_{m}\in A_{m} , a contradiction. Thus we deduce that M is cofinite-dimensional.

Lemma 4.5, Corollary 3.11 and Lemma 4.6 assert the following:

PROPOSITION 4. 11. Let M be completely cocomplemented. Then the
following statements are equivalent:

(1) M is cofifinite-dimensional.
(2) M satisfifies the descending chain condition for cocomplements in M.
(3) M satisfifies the ascending chain condition for cocomplements in M.

A finite chain of submodules of M :
M=C_{0\neq}\supset C_{1\neq}\supset C_{2\neq\neq}^{-}\sim\cdots\supset C_{n-1\neq}\supset C_{n}=0

is called a cocomplement composition series of M iff each C_{i+1} is a maximal
cocomplement in C_{i} (i=0,1, \cdots, n-- 1) . This is equivalent to the condition
that each C_{i} is a cocomplement in M(i=0,1, \cdots, n) and there exists no
cocomplement in M which is strictly intermediate between C_{i} and C_{i+1}

(i=0,1, \cdots, n-1) .
Let M\supset A , N\supset B be left R-modules and submodules of them. Then

we shall say that A is cosimilar to B in (M, N) : A\sim B(M, N), iff there
exist coessential extensions A\subset,A_{1}\subset M and B\subset,B_{1}\subset N such that M/A_{1} is
isomorphic to N/B_{1} . (Cf. [10; p. 106].) This cosimilarity is an “equivalence
relation”. To show the transitivity, assume that A\sim B(M, N) and B\sim C
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(N, L). Then M/A_{1}\cong N/B_{1} and N/B_{2}\cong L/C_{1} for some coessential extensions
A\subset,A_{1}\subset M, B\subset,B_{1}\subset N;B\subset,B_{2}\subset N, C\subset,C_{1}\subset L . These isomorphisms
imply A_{2}/A_{1}\cong(B_{1}+B_{2})/B_{1} and (B_{1}+B_{2})/B_{2}\cong C_{2}/C_{1} for some A_{1}\subset,A_{2}\subset M and
C_{1}\subset,C_{2}\subset L, since B_{1} , B_{2}\subset,B_{1}+B_{2}\subset N. Hence M/A_{2}\cong N/(B_{1}+B_{2})\cong L/C_{2},
where A\subset,A_{2}\subset M and C\subset,C_{2}\subset L. Thus A\sim C(M, L) .

Assume that A\subset,A_{1}\subset M and B\subset,B_{1}\subset N. If A_{1}\sim B_{1}(M, N), then
A\sim B(M, N) . Therefore, if A is a small submodule of M, then A\sim 0^{6)} .

Now the following is easily verified:

PROPOSITION 4. 12. Let M_{i}\supset A_{i}(i=1,2) be left R modules and sub-
modules of them, and let P_{i} be projective covers of M_{i}/A_{i}(i=1,2) . Then
A_{1}\sim A_{2}(M_{1}, M_{2}) if and only iJ^{\cdot}P_{1} is isomorphic to P_{2} .

A set \{A_{\lambda}|\lambda\in\Lambda\} of submodules of M is called homogeneous if A_{\lambda}\sim A_{\lambda’}

for all \lambda, \lambda’\in\Lambda .
By [10; \S 5], we know the following results:
(1) If M has a couniform submodule, then there exists a maximal

coindependent set of couniform submodules of M.
(2) Let \{A_{\lambda}|\lambda\in\Lambda\} and \{B_{r}|\gamma\in\Gamma\} be maximal coindependent homogeneous

sets of couniform submodules of M such that A_{\lambda}\sim B_{\gamma} for \lambda\in\Lambda and \gamma\in\Gamma_{\wedge}

Then \#\Lambda=\#\Gamma-

(3) Let \{A_{\lambda}|\lambda\in\Lambda\} be a maximal coindependent set of couniform sub-
modules of M. Then for any \lambda_{0}\in\Lambda , \{A_{\lambda}|A_{\lambda}\sim A_{\lambda_{0}}(\lambda\in\Lambda)\} is a maximal coin-
dependent homogeneous set of couniform submodules of M.

(4) Let \{A_{\lambda}|\lambda\in\Lambda\} and \{B_{\gamma}|\gamma\in\Gamma\} be maximal coindependent sets of
couniform submodules of M. Then there exists a one-t0-0ne correspondence
\chi : \Lambdaarrow\Gamma such that A_{\lambda}\sim B_{\chi(\lambda)} for all \lambda\in\Lambda .

(5) Assume that M has a couniform submodule. Then we can define
the codimension of M as the cardinal number of \Lambda : codim M=\#\Lambda, where
\Lambda is denoted in the condition that \{A_{\lambda}|\lambda\in\Lambda\} is a maximal coindependent
set of couniform submodules of M.

THEOREM 4. 13. Let M be completely cocomplemented. Then the fol-
lowing are equivalent :

(1) M is cofinite-dimensional
(2) M has a cocomplement composition series.
(3) M is locally couniform and codim M is fifinite.

6) In case of N=M, “(M, M)” will be omitted.
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(4) M is an irredundant sum of a fifinite number of minimal cocom-
plemmts in M.

If one of these equivalent conditions is satisfified, then the following hold:
(5) The length of any cocomplement composition series of M is equal

to codim M.
(6) If M has two cocomplemmt composition series:

M=C_{0\neq}\supset C_{1\neq}\supset C_{2\neq}\supset\cdots\supseteqq C_{n-1\neq}\supset C_{n}=0 ,

M=D_{0\neq}\supset D_{1\neq}\supset D_{2\neq}\overline{\sim}\cdots\supset.D_{n-1\neq}\wedge\neq\supset D_{n}=0 ,

then there exist cocomplements (C_{i}/C_{i+1})^{c} of C_{i}/C_{i+1} in M/C_{i+1} and (D_{f}/D_{f+1})^{c}
’

of D_{f}/D_{J+1} in M/D_{f+1}(0\leqq i, j\leqq n-1), and a permutation \chi of the numbers
0, 1, 2, \cdots , n –1 such that

(C_{i}/C_{i+1})^{c}’\sim(D_{f}/D_{J+1})^{c} (M/C_{i+1}, M/D_{f+1}) ,

where j=\chi(i), 0\leqq i\leqq n-1 .

PROOF. By Proposition 4. 11, (1) implies (2).
(2) implies (3), (5) and (6) : Assume that

M=C_{0\neq} \supset C_{1}\frac{\neg}{\neq}C_{2\neq\overline{\overline{\neq}}}\supset\cdots C_{n-1\neq}\supset C_{n}=0

is a cocomplement composition series of M.
First, let A be a proper submodule of M. Then there exist cocomple-

ments C_{t}’\subset A of C_{i} in M(i=0,1,2, \cdots, r) such that A+C_{r+1} is proper in
M for some r, 0\leqq r\leqq n-1 . Since C_{r}’+C_{r+1} is couniform in M (Propositions
4.1 and 4.3), A+C_{r+1} is couniform in M. Thus M is a locally couniform
module.

Next, let C_{i}^{c} be any cocomplements of C_{i} in M(i=0,1,2, \cdots, n) . Then
\{C_{i}^{c}+C_{i+1}|i=0,1,2, \cdots, n-- 1\} is a coindependent set of couniform submodules
of M (see Proposition 4.5). Moreover, this is a maximal coindependent
set. Because,

C_{i}\subset,(C_{i-1}\cap C_{i-1}^{c})+C_{i}=C_{i-1}\cap(C_{i-1}^{c_{J}}+C_{i})\subset M ,

C_{i+1}\subset,(C_{i}\cap C_{i})+C_{i+1}\subset,(C_{i-1}\cap(C_{i-1}^{c}+C_{i})\cap C_{\acute{i}}^{c})+C_{i+1}\subset M ,

and so we have

0 \subset’\bigcap_{i=0}(C_{\acute{i}}^{c}+C_{i+1})\subset Mn1 .

Thus codim M is finite and the length of the cocomplement composition
series of M is equal to codim M.

Finally, let



On cofinite-dimensional modules 21

M=D_{0} \supseteqq D_{1}\frac{\neg}{\neq}D_{2\neq\neq}\overline{arrow}\cdots\supset D_{n-1\neq}\supset D_{n}=0

be another cocomplement composition series of M. Then we have two
maximal coindependent sets

\{C_{i}+C_{i+1}|i=0,1,2, \cdots, n-1\}’. \{D_{f}^{c}+D_{f+1}|j=0,1,2, \cdots, n-1\}

of couniform submodules of M. Accordingly, there exists a permutation
\chi of the numbers 0, 1, 2, \cdots , n –1 such that

C_{i}^{c}+C_{i+1}\sim D_{f}^{c}+D_{f+1} , j=\chi(i) (0\leqq i\leqq n-1) .
Hence there exist coessential extensions

C_{i}^{c}+C_{i+1}\subset\prime C_{i}’\subset M , D_{\acute{j}}^{r}+D_{f+1}\subset\prime D_{f}’\subset M

such that M/C_{i}’ is isomorphic to M/D_{f}’ . Since
(C_{i}^{c}+C_{i+1})/C_{i+1}\subset\prime C_{i}’/C_{t+1}\subset M/C_{i+1}.

,

(D_{\acute{j}}^{c}+D_{f+1})/D_{j+1}\subset\prime D_{f}’/D_{f+1}\subset M/D_{f+1} ,

we have
(C_{i}^{a}+C_{i+1})/C_{i+1}\sim(D_{\acute{j}}^{c}+D_{J+1})/D_{f+1} (M/C_{i+1}, M/D_{f+1}) .

As is easily seen, (C_{i}^{J}+C_{i+1})/C_{i+1} is a cocomplement of C_{i}/C_{i+1} in M/C_{i+1}

and (D_{f}^{c}+D_{f+1})/D_{f+1} is a cocomplement of D_{f}/D_{f+1} in M/D_{f+1} . Thus (6)
has been deduced.

(3) implies (4): Assume codim M=n and let \{C_{1}, C_{2^{ }},\cdots, C_{n}\} be a
maximal coindependent set of couniform submodules of M. Then \bigcap_{i=1}^{n}C_{i}

is a small submodule of M since M is locally couniform. By C_{i}+ \bigcap_{J\neq i}C_{f}=M,

there exist cocomplements C_{i}^{c} \subset\bigcap_{f\neq i}C_{f} of C_{i} in M(1\leqq i\leqq n), which are mini-
mal cocomplements in M. Now,

\sum_{i=1}^{n}C_{\acute{i}}^{c}+\bigcap_{i=1}^{n}C_{i}=\sum_{i=2}^{n}C_{i}^{c}+(C_{1}+C_{1})\cap(\bigcap_{i=2}^{n}C_{i})

= \sum_{i=2}^{n}C_{i}^{c}+\bigcap_{i=2}^{n}C_{i}=\cdots=M.
,

so that \sum_{i=1}^{n}C_{i}=M. The irredundancy of the sum follows from \sum_{f\neq i}C_{f}\subset C_{i\neq}\subset M.
(4) implies (3): Assume that M is an irredundant sum of a finite

number of minimal cocomplements C_{i} in M:M= \sum_{i=1}^{n}C_{i} .
First, let A be a proper submodule of M. Then there exists r, 1\leqq r\leqq n,

such that
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A+C_{1}+\cdots+C_{r-1}+C_{r}=M ,

A+C_{1}+\cdots+C_{r-1\neq}\subset M1

Therefore C_{r} has a cocomplement C_{r}’\subset A+C_{1}+\cdots+C_{r-1} in M, which is
couniform in M by Proposition 4.2. Thus A is included in a couniform
submodule A+C_{1}+\cdots+C_{r-1} of M. This shows that M is locally couniform.

Next, put D_{i}= \sum_{f\neq i}C_{f} (being proper in M) for each i, 1\leqq i\leqq n . Since

C_{i}+D_{i}=M, C_{i} has a cocomplement C_{i}^{c}\subset D_{i} in M. Since C_{t}^{c} are couniform
in M, so are D_{i} in M(1\leqq i\leqq n) . Hence \{D_{1}, D_{2^{ }},\cdots, D_{n}\} is a coindependent

set of couniform submodules of M, because \bigcap_{f=1}^{i}D_{f}+D_{i+1} includes C_{i+1}

+ \sum_{f\neq i+1}C_{f}=M(1\leqq i\leqq n-1) . On the other hand, C_{i}^{c}\subset,D_{i}\subset M and so

0\subset , C_{i}\cap C_{i}^{c}\subset , C_{i}\cap D_{i}\subset M(1\leqq i\leqq n) . Hence \sum_{i=1}^{n}(C_{i}\cap D_{i})=\bigcap_{i=1}^{n}D_{i} is a small

submodule of M. This yields that the above coindependent set {D_{1} , D_{2}, \cdots ,

D_{n}\} is maximal. Thus codim M=n.
(3) implies (1): Suppose that \{A_{1}, A_{2^{ }},\cdots, A_{n}\} is a coindependent set of

proper submodules of M. Then each A_{i} is included in a couniform sub-
module B_{i} of M, since M is locally couniform. Hence \{B_{1}, B_{2}, \cdots, B_{n}\} is
a coindependent set of couniform submodules of M, so that n\leqq co\dim M.
This completes the proof.

By Propositions 4.8. and 3.13, the theorem gives the following:

COROLLARY 4. 14. Let M be completely cocomplmented and C a cocom-
plment in M. Then M is cofifinite-dimmsional if and only if M/C and
C are finite-dimensional. In this case, codim M=co\dim M/C+co\dim C.

5. Quasi-projective and pseudo-projective modules

Henceforth, we shall adopt the following notations: M is a nonzero
left R-module and S is the (R-)endomorphism ring of M, acting on the
right side of M. Therefore M=_{R}M_{S} is an (R, S)-bimodule. The (Jacobson)

radical of M is denoted by J(M).
M is called quasi-projective iff for any submodule A of M and for any

homomorphism \phi:Marrow M/A , there exists an endomorphism x\in S such
that \phi=x\pi(Marrow\geq M/A), where \pi(M- M/A) means the natural epimorphism
of M onto M/A (see the footnote 4) ). Evidently, every direct summand of
a quasi-projective module is also quasi-projective. Among some characteri-
zations, we use the following one (see [10; Proposition 2.1]):
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M is quasi-projective if and only if for any submodules A, B of M
and for any epimorphism \phi:B-\gg M/A , there exists a homomorphism \psi :
Marrow B with \pi(M-- M/A)=\psi\phi .

The following is seen in Miyashita [10; Theorem 2.3]:

PROPOSITION 5. 1. Let M be quasi-projective and C a cocomplemmt in
M such that C has a cocomplment C^{c} in M. Then C is a direct summand
of M.

PROOF. For the natural epimorphisms \pi(Marrow\rangle M/C^{c}) and \pi’(C-M/C^{c}),
the quasi-projectivity of M yields the existence of an endomorphism x\in S

such that Mx\subset C and x\pi’=\pi .

Since C^{c}x is included in C\cap C^{c} and small in M, it follows from
M=M(1-x)+Mx=M(1-x)+Cx+C^{c}x

that

M=M(1-x)+Cx=M(1-x)+C .
The minimality of C^{c_{J}} which includes M(1-x) deduces M(1-x)=C^{c}, and
so C^{c}+Cx=M. Noting that C (a cocomplement in M) is a cocomplement
of C^{c} in M, the minimality of C which includes Cx implies Cx=C, and
so Cx=Mx. Hence C+Kerx=M and the minimality of C^{c}=M(1-x)
which includes Ker x asserts Ker x=C^{c}, and so M(1-x)x=0 or x=x^{2}.
Therefore we conclude that C=Mx is a direct summand of M, as desired.

The following is the result of Kasch and Mares [6]:

COROLLARY 5. 2. If M is projective and cocomplemented, then M is
semiperfect.

PROOF. Let A be a submodule of M. By the above, a cocomplement
A^{c}, of A in M is a direct summand of M and hence projective. Thus the
natural epimorphism \pi:A^{c}\frac{\backslash \backslash }{\nearrow},M/A is a projective cover of M/A.
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Thus, the following are equivalent if M is projective:
(1) M is semiperfect.
(2) M is completely cocomplemented.
(3) M is cocomplemented.
Dualizing the notion of Singh and Jain [12], we shall say that M is

pseudO-projective iff for any submodule A of M and for any epimorphism
\phi:Marrow’ M/A , there exists an endomorphism x\in S such that \phi=x\pi(M

arrow\neq M/A) .
The following are analogous characterizations of pseud0-projectives and

verified easily :
(1) For any submodule A of M and for any epimorphism \phi:M

arrow\neq M/A , there exists an endomorphism x\in S such that \pi(Marrow;M/A)=x\phi.
(2) For any left R module N with epimorphisms \phi, \psi:Marrow 3N, there

exists an endomorphism x\in S such that \phi=x\psi .
(3) For any submodule A of M and for any epimorphism \phi, \psi :

Marrow\neq M/A , there exists an endomorphism x\in S such that \phi=x\psi.
Clearly quasi-projectivity implies pseud0-projectivity but we do not know

how weak the latter is comparing with the former. Every direct summand
of a pseud0-projective module is also pseud0-projective just as in the case
of quasi-projectives.

Now we state the conditions concerning a left R module M. See
Utumi [14].

CONDITION (I): Let A be an arbitrary submodule of M. If M/A is
isomorphic to a direct summand of M, then A is a direct summand of M.

CONDITION (II): Let e, f be arbitrary idempotents of S. If Me+Mf
=M, then Me\cap Mf is a direct summand of M.

CONDITION (II): Let e, f be arbitrary idempotents of S. If Me+Mf
=M, then there exists an idempotent g of S such that Mg=Me and
M(1-g)\subset Mf.

LEMMA 5. 3. If M is pseudO-projective, then M satisfifies Condition (I).

Furthermore Condition (I) implies Condition (II), which is equivalmt to
Condition (II’).

PROOF. PseudO-projectivity implies Condition (I): Let A be a sub-
module of M and let \phi be an isomorphism of M/A to Me, e=e^{2}\in S, a direct
summand of M. Let \kappa be the canonical injection of Me into M. Then,
since M is pseud0-projective, we have an endomorphism x\in S such that
e\phi^{-1}=x\pi(Marrow\neq M/A) .
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Hence \phi\kappa x\pi is the identity mapping of M/A, so that A is a direct
summand of M.

Condition (I) implies Condition (II) : Assume that Me+Mf=M with
e=e^{2}, f=f^{2}\in S. Then M/Ker (e-ef) is isomorphic to M(e-ef)=M(1-f).
By assumption there exists g=g^{2}\in S such that Ker (e - ef)=Mg. Since
M(1-e)\subset Ker (e–ef), we have M(1-e) (1 – g)=0 and so geg. Further
Mg(e-ef)=0 deduces ge=gef. Thus it follows that Me\cap Mf=Mge, where
ge is an idempotent of S.

Condition (II) implies Condition (II’) : Assume that Me+Mf=M,
Me\cap Mf--Mh;e=e^{2}, f=f^{2}, h=h^{2}\in S. Then we have Me\oplus(Mf\cap M(1-h))

=M, since Mfh\subset Me and Mf(1-h)=M(1-fh)f.
Condition (II’) implies Condition (II) : Assume that Me+Mf=M,

Mh=Me, M(1-h)\subset Mf;e=e^{2}, f=f^{2}, h=h^{2}\in S. Then we have Me\cap Mf

Mfh, where fh is an idempotent of S.

6. Codirect modules

The following are the dual notions of direct hulls and (uniquely) direct
modules in [13].

DEFINITION 6. 1. Let A be a submodule of M and Me, e=e^{2}\in S, a
direct summand of M with M(1-e)\subset A . Then Me is called to be a codirect
cover of M/A in M iff M(1-e)\subset,A\subset M, or equivalently iff Ae=A\cap Me

is a small submodule of M.

DEFINITION 6. 2. M is called to be a codirect module iff every factor
module of M has a codirect cover in M. Moreover, a codirect module M
is called to be uniquely codirect iff for any submodules A, B of M, every
isomorphism \phi between M/A and M/B is induced by an isomorphism \phi’

between any codirect covers A’ and B’ of M/A and M/B in M respectively,
in the smse that the following diagram is commutative:
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\cong|\phi’A’

\pi

\equiv|\phi\Lambda\prime\prime\prime A

\pi’

B’ hl/B .

PROPOSITION 6. 3. M is uniquely codirect if and only if M is pseudO-
projective and codirect.

PROOF. Suppose that M is pseud0-projective and codirect. Let \phi :
M/Aarrow M/B be an isomorphism for submodules A, B of M, and let Me and
Mf(e=e^{2}, f=f^{2}\in S) be codirect covers of M/A and M/B in M respectively.

M \frac{\frac{e}{}}{\kappa}MeeM|_{f}\chi_{1}^{I}1\dagger_{f}^{1}II|

\pi’

M/BhllA\equiv|\phi

Since M is pseud0-projective, there exists an endomorphism x\in S such that
e\pi\phi=xf\pi’ . Then \kappa xf is a homomorphism of Me into Mf with \kappa xf\pi’=\pi\phi,
where \kappa is the canonical injection of Me into M. Further, \kappa xf is a minimal
epimorphism by Lemma 3.1, since \pi\phi and \pi’ are minimal epimorphisms.
Since

M(1-e)\subset Kere\kappa xf\subset Kere\kappa xf\pi’= Ker e\pi\phi=Ai

it follows that M(1-e)\subset , Ker e\kappa xf\subset M. But Me\kappa xf=Mf implies that
Ker e\kappa xf is a direct summand of M, because of Condition (I) for M (which
is deduced by the pseud0-projectivity). Hence Ker e\kappa xf=M(1-e) and so
Ker\kappa xf=0 . Thus \kappa xf is an isomorphism which induces \phi. Therefore
M is now uniquely codirect.

Conversely, suppose that M is uniquely codirect. Let A be a submodule
of M and let \phi be an epimorphism of M onto M/A. Then \phi induces an
isomorphism \overline{\phi} : M/Ker\phi\cong M/A . Now, let Me and A’ be codirect covers
of M/Ker\phi and M/A in M respectively. Then, by assumption, there exists
an isomorphism \phi’ such that the diagram

Me

\equiv|\phi’

A’
\pi’

M/Ker \phi

\cong|\overline{\phi}

M/A
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is commutative. Let \kappa be the canonical injection of the direct summand
A’ into M. Then e\phi’\kappa is an endomorphism of M and the diagram

is commutative, since \kappa\pi_{0}=\pi’ and (1–e) \phi=0 . Thus M is pseud0-projective.

PROPOSITION 6. 4. If M is codirect, then every cocomplement in M is
a direct summand of M. Conversely, let M be completely cocomplemmted.
If every cocomplement in M is a direct summand of M, thm M is codirect.

PROOF. Suppose that M is codirect and let C be a cocomplement in M.
Then M/C has a codirect cover Me, e=e^{2}\in S, in M, i. e. , M(1-e)\subset,C\subset M.
Since C is coclosed in M, C=M(1-e), as desired.

Conversely, suppose that every cocomplenet in M is a direct summand
of M. If M is completely cocomplemented, then A^{cc}\subset,A\subset M for any sub-
module A of M. Since A^{cc} is a direct summand of M : (say) A^{cc},\oplus B=M,
M/A has a codirect cover B in M. Thus M is codirect.

The following is immediate by Proposition 5.1 and the above:

COROLLARY 6. 5. If M is quasi-projective and completely cocomple-
mmted, thm M is codirect.

PROPOSITION 6. 6. Every direct summand of a codirect module is
codirect.

PROOF. Let Me (e=e^{2}\in S) be a direct summand of a codirect module
M. If A\subset Me is a submodule of M, then M/A has a codirect cover
Mf(f=f^{2}\in S) in M, i. e. , M(1-f)\subset,A\subset M. Hence M(1-f)\subset,A\subset Me by
Proposition 2.1. It follows from M(1-f)\oplus(Me\cap Mf)=Me that Me\cap Mf

is a codirect cover of Me/A in Me. This shows that Me is codirect.

PROPOSITION 6. 7. If M is codirect, then M is cocomplemented.

PROOF. Let A be a submodule of a codirect module M. Then M/A

has a codirect cover Me(e=e^{2}\in S) in M, i.e. , M(1-e)\subset,A\subset M, and so
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A+Me=M. If A+B=M for a submodule BdMe, then M(1-e)+B=M
and therefore B=Me. This means that Me is a cocomplement of A in M.
Thus M is cocomplemented.

PROPOSITION 6. 8. If M is codirect with Condition (II), then M is
completely cocomplmmted.

PROOF. Let A, B be submodules of M satisfying A+B=M. Since
M is codirect, there exist idempotents e, f\in S such that M(1-e)\subset,A\subset M,
M(1-f)\subset,B\subset M. Then M(1-e)+M(1-f)=M implies that M(1-e)\cap
M(1-f)=Mg for some g=g^{2}\in S, by Condition (II). Accordingly Mg\oplus Md

=M(1-e), Mg\oplus Mf’=M(1-f) with some idempotents e’, f’\in S. Since
M(1-e)\cap Mf’=0 and M(1-e)\oplus Mf’=M, there exists an idempotent h\in S

such that M(1-h)=M(1-e) and Mh=Mf’. Evidently A+Mh=M.
Moreover, if a submodule C\subset Mh satisfies A+C=M, then M(1-e)+C=M
and so Mh=Ch=C. Thus Mh\subset B is a cocomplement of A in M, showing
that M is completely cocomplemented.

Now the following corollaries are obvious:

COROLLARY 6. 9. Let M be quasi-projective. Then the following are
equivdmt :

(1) M is codirect.
(2) M is uniqudy codirect.
(3) M is completely cocomplemented.

COROLLARY 6. 10. Let M be projective. Then the following are
equivdent :

(1) M is semiperfect.
(2) M is completdy cocomplemmted.
(3) M is cocomplemented.
(4) M is codirect.
(5) M is uniquely codirect.

COROLLARY 6. 11. For a ring R, RR is codirect if and only if R is
a semiperfect ring.

Now we prepare a result on the (Jacobson) radical J(M) of a semiperfect
module M.

(1) If M\neq 0 is projective, then J(M)\neq M. (See [1] and [8].)
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(2) If M is projective and semiperfect, then J(M) is a small submodule
of M.

This is Theorem 3.3 of Mares [8], but we can replace “semiperfect”
by “codirect” in the assumption. Thus, if M(1-e)\subset,J(M)\subset M for e=e^{2}\in S,
we have

M(1-e)=M(1-e)\cap J(M)

=M(1-e)\cap(J(Me)\oplus J(M(1-e)))

=(M(1-e)\cap J(Me))\oplus J(M(1-e))=J(M(1-e)) .

Hence M(1-e)=0, i. e. , J(M) is small in M.
(3) If M is semiperfect, then J(M) is a small submodule of M.
This is a known result. Let \phi:Parrow\rangle M be a projective cover of M.

Since M is semiperfect, so is P by Corollary 3.4. Then J(P) is small in
P by the above. Hence J(P)\phi is small in M and included in J(M). Con-
versely, if A is a small submodule of M, then Ker \phi=0\phi^{-1}\subset,A\phi^{-1}\subset P by
Proposition 1. 2, (6). But 0\subset , Ker \phi\subset P, and so 0\subset , A\phi^{-1}\subset P. Thus
A\phi^{-1}\subset J(P), so that A=(A\phi^{-1})\phi\subset J(P)\phi. Consequently J(M)=J(P)\phi is
small in M. Thus we can set up:

PROPOSITION 6. 12. If M is semiperfect, thm J(M) is a small sub-
module of M.

7. Codirect modules with Condition (I)

In this section we shall investigate the endomorphism ring of a codirect
module with Condition (I).

Henceforward, we shall understand the following: M=_{R}M_{S} is a nonzero
(R, S)-bimodule, where S is the endomorphism ring of RM. We put

Y(S)= {x\in S|Mx is small in M} [

This is an ideal of S containing no nonzero idempotent, and we have
MY(S)\subset J(M), where J(M) is the (Jacobson) radical of RM. By \overline{S} we
denote the residue class ring of S modulo Y(S):\overline{S}=S/Y(S), and xarrow is the
residue class of x\in S modulo Y(S).

The following is rather tight and verified easily:

PROPOSITION 7. 1. M is sum-irreducible if and only if M is codirect
and indecomposable.
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Lemma 7. 2. Suppose that M satisfifies Condition (I). Thm Y(S)\subset J(S) .

PROOF. Let x\in S. Then M(1-x)=M since Mx is small in M. By
Condition (I), Ker (1-x) is a direct summand of M. But Ker (1-x)\subset Mx

and so Ker (1-x) is small in M. Thus we have Ker ( 1 – x)=0. Hence
1–x is a unit of S, showing that Y(S)\subset J(S) .

The following may be compared with [10; Theorem 3.6] or [15;

Theorem 4. 2].

PROPOSITION 7. 3. Let M be codirect with Condition (I). Then the
following are equivalent :

(1) M is indecomposable.
(2) M is sum-irreducible.
(3) S is a local ring.

PROOF. (1) implies (2) because of Proposition 7. 1.
(2) implies (3): Let x\in S. Then Mx+M(1-x)=M deduces Mx=M

or M(1-x)=M, since M is sum-irreducible. If Mx=M, Ker x is a direct
summand of M by Condition (I). Since M\neq 0 is indecomposable, Ker x=0
and so x is a unit of S. Similarly, if M(1-x)=M, then 1– x is a unit
of S. This shows that S is a local ring.

(3) implies (1), since in a local ring, 0 and 1 are the only idempotents.

Mares [8; Theorem 2.4] or Miyashita [10; Theorem 2.12] shows the
following in essence :

(1) If M is pseud0-projective, then Y(S)=J(S).
(2) If M is pseud0-projective and cocomplemented, then \overline{S}=S/Y(S) is

a (von Neumann) regular ring.
But we shall maintain here under slightly different assumptions.

PROPOSITION 7. 4. Assume that M is codirect with Condition (I). Thm
Y(S)=J(S) and \overline{S} is a regular ring.

PROOF. The inclusion Y(S)\subset J(S) is deduced by Lemma 7.2. Now
let y\in S. Then, by Proposition 6.7, My has a cocomplement in M and it
is a direct summand of M by Proposition 6.4: say (My)^{c}=M(1-e), e=e^{2}\in S.
Since My+M(1-e)=M, Mye=Me yields that Ker ye is a direct summand
Mf(f=f^{2}\in S) of M, by Condition (I). Therefore, for any element m\in M

we can find a unique m’\in M(1-f) such that me=m’ye. This implies the
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existence of an endomorphism z\in S such that e=zye. Since M(y-yzy)
\subset My\cap M(1-e), which is small in M, we deduce y-yzy\in Y(S) . Thus \overline{S}

is a regular ring.
If in particular y\in J(S), then y\in Y(S) since 1– yz is a unit of S. This

completes the proof.

On lifting idempotents modulo Y(S) we have the following:

PROPOSITION 7. 5. Assume that M is codirect with Condition (II), and
let x, e=e^{2}\in S. If x=x\overline{e}=\overline{x}^{2}arrowarrow, thm there exists an endomorphism f=fe=f^{2}\in S

such that x=\overline{f}arrow .

PROOF. It follows from \overline{x}=Xearrow that M(x-xe) is small in M. Hence
M(1-x)+Mxe=M. Let g, h be idempotents in S such that

M(1-g)\subset,M(1-x)\subset M,\cdot M(1-h)\subset,Mxe\subset M .

Then M(1-g)+M(1-h)=M and there exists, by Condition (II’), an end0-
morphism f=f^{2}\in S such that M(1-f)=M(1-g), Mf\subset M(1-h) . Since
M(1-x)x including M(1-f)x and Mxe(1-x) including Mf(1-x) are
both small in M, (1-f) x and f(1-x), and hence x-f are contained in
Y(S). As Mf\subset Mxe, we have f=fe, completing the proof.

Now we shall mention some results concerning coindependent sets of
direct summands of M.

Lemma 7. 6. Assume that M satisfifies Condition (I). Let e_{1}, e_{2} be idem-
potents of S such that \overline{S}\overline{e}_{1}+\overline{S}\overline{e}_{2}=\overline{S} . Then Se_{1}+Se_{2}=S and Me_{1}+Me_{2}=M.
Furthermore, there exists an idempotent f of S such that Me_{1}\cap Me_{2}=Mf.
It follows that Se_{1}\cap Se_{2}=Sf and \overline{S}\overline{e}_{1}\cap\overline{S}\overline{e}_{2}=\overline{S}\overline{f} .

PROOF. If \overline{S}\overline{e}_{1}+\overline{S}\overline{e}_{2}=\overline{S}, then there exist x_{1}=x_{1}e_{1} , x_{2}=x_{2}e_{2} in S such
that \overline{x}_{1}+\overline{x}_{2}=\overline{1} . Hence 1-(x_{1}+x_{2})\in Y(S)\subset J(S) (Lemma 7.2), and so x_{1}+x_{2}

is a unit of S. Thus there exist y_{1}=y_{1}e_{1} , y_{2}=y_{2}e_{2} in S such that y_{1}+y_{2}=1 .
Hence Se_{1}+Se_{2}=S and Me_{1}+Me_{2}=M. By Condition (II) (implied by Con-
dition (I) ), there exists an idempotent f in S such that Me_{1}\cap Me_{2}=Mf.
This yields Se_{1}\cap Se_{2}=Sf evidently, and this implies \frac{-}{S}\overline{f}\subset\overline{S}\overline{e}_{1}\cap\overline{S}e_{2} . Since
e_{1}-e_{1}y_{1}=e_{1}y_{2}, e_{2}-e_{2}y_{2}=e_{2}y_{1}\in Se_{1}\cap Se_{2}=Sf, it holds for any element \overline{z} of
\overline{S}e_{1}\cap\overline{S}e_{2} that

\overline{z}=\overline{z(y_{1}+y_{2})}=\overline{ze_{2}y_{1}}+\overline{ze_{1}y_{2}}\in\overline{S}\overline{f}

Thus \overline{S}e_{1}\cap\overline{S}\overline{e}_{2}=\overline{S}\overline{\overline{f}}, completing the proof.
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The following are easily deduced by the above:

PROPOSITION 7. 7. Assume that M satisfifies Condition (I). Let e_{\lambda}(\lambda\in\Lambda)

be idempotmts of S. If \{_{S}\overline{S}e_{\lambda}|\lambda\in\Lambda\} is a coindependent set, then so is
\{_{R}Me_{\lambda}|\lambda\in\Lambda\} .

PROPOSITION 7. 8. Assume that M is codirect with Condition (I). Let
x_{\lambda}\in S(\lambda\in\Lambda) and let \{_{S}\overline{S}\overline{x}_{\lambda}|\lambda\in\Lambda\} be a coindependent set of principal left
ideals of \overline{S} . Then thre exist idmpomts e_{\lambda}(\lambda\in\Lambda) of S such that \overline{S}\overline{x}_{\lambda}=\overline{S}e_{\lambda}

for each \lambda\in\Lambda, and it follows that \{_{R}Me_{\lambda}|\lambda\in\Lambda\} is a coindependmt set of direct
summands of M.

The next statement gives a kind of uniqueness of codirect covers.

PROPOSITION 7. 9. Assume that M is codirect with Condition (II). Let
A be a submodule ofM. Then codirect covers of M/A in M are isomorphic
to one another.

PROOF. Let Me and Mf(e=e^{2}, f=f^{2}\in S) be both codirect covers of
M/A in M. Then

M(1-e)\subset\prime A\subset M , M(1-f)\subset\prime A\subset M

and hence Me+M(1-f)=M. By Condition (II) for M, there exists an
idempotent g of S such that Me\cap M(1-f)=Mg . But Mg=0 since
Mg=Mge is included in Ae which is small in M. This means that the
contraction mapping f’ of f to Me is an isomorphism: Me\cong Mef=Mf.
Since Me(l-f)\subset A , we have the following commutative diagram:

Now assume that M is codirect with Condition (I) and let e be a nonzero
idempotent of S. Then, by Proposition 6.8, M is deduced to be completely
cocomplemented, and Propositions 4.2 and 7.3 imply that the following
conditions are equivalent :

(1) Me is a minimal cocomplement in M.
(2) M(1-e) is a couniform submodule of M.
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(3) Me is sum-irreducible.
(4) Me is indecomposable ( i. e. , e is a primitive idempotent).
(5) e is a local idempotent (i. e. , eSe is a local ring)^{7)} .
Thus the preparations have been complete to prove the next:

THEOREM 7. 10. Assume that M is codirect with Condition (I). Then
the following are equivalmt :

(1) M is cofifinite-dimmsional.
(2) M is a direct sum of a fifinite number of indecomposable submodules.
(3) S is a semiperfect ring.

PROOF. (1) implies (2): By assumption, there exists a maximal coin-
dependent set \{C_{1}, C_{2^{ }},\cdots, C_{n}\} of couniform direct summands of M, where
n=co\dim M. If n=1 , then C_{1}=0 and so M is an indecomposable module.
Let n>1 . Then C_{i}+\cap C_{f}=M implies that there exist cocomplements

f\neq i

C_{i}^{c}, \subset\bigcap_{f\neq i}C_{f} of C_{i} in M(1\leqq i\leqq n) . Each direct summand C_{i}^{c} is a minimal
cocomplement in M (by Proposition 4.2) and so it is an indecomposable
submodule of M. Next, it follows that M= \sum_{i=1}^{n}C_{i}^{c}, as in the proof of
Theorem 4.13. Actually this is a direct sum. Because, C_{i}^{c} \cap\sum_{f\neq i}C_{f}^{c} is in-

eluded in C_{i}^{c}\cap C_{i} , a small direct summand of M by Condition (II), which
is zero. Therefore (2) is implied.

Obviously (2) implies (1) by Theorem 4. 13.
The statement (2) says that S has a finite orthogonal set of local

idempotents whose sum is 1. As is well-known, this is equivalent to the
condition that S is a semiperfect ring. Thus the proof is complete.

By Corollaries 3.7, 6.9 and Proposition 4.10, our theorem deduces the
following :

COROLLARY 7. 11. If M is linearly compact and quasi-projective, thm
S is a semiperfect ring.

COROLLARY 7. 12. For a ring R, if RR is linearly compact then R
is a semiperfect ring.

Evidently, a semisimple module RN is quasi-projective, completely c0-

complemented and codirect. Hence by the above theorem, N is cofinite-
dimensional if and only if N is a direct sum of a finite number of inde-

7) Thus, we can deduce that every primitive idempotent in a semiperfect ring is local.
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composable (i . e. , simple) submodules. Namely, N is cofinite-dimensional
if and only if N is finitely generated.

Now assume that M is semiperfect. Then, because J(M) is small in
M (Proposition 6.12) and M/J(M) is semisimple (Proposition 3.8), the fol-
lowing conditions are equivalent:

(1) M is cofinite-dimensional.
(2) M/J(M) is cofinite-dimensional. (Propositions 4.8 and 4.9)
(3) M/J(M) is finitely generated.
(4) M is finitely generated. (Proposition 2.3)

Thus we reach the following (cf. [8; Theorem 6.1]):

COROLLARY 7. 13. Assume that M is quasi-projective and semiperfect.
Then M is fifinitely generated if and only if S is a semiperfect ring.

8. Uniquely codirect modules

In this section we shall obtain some results on uniquely codirect modules
in view of their automorphisms which induce the isomorphisms between
codirect covers.

Lemma 8. 1. Assume that M is uniquely codirect. Let A_{i}(i=1,2) be
submodules of M, and let Me_{i}(e_{i}=e_{i}^{2}\in S) be codirect covers of M/A_{i} in
M(i=1,2). Thm A_{1} is cosimilar to A_{2} if and only if Me_{1} is isomorphic
to Me_{2} .

PROOF. Suppose A_{1}\sim A_{2} . Then there exist coessential extensions
A_{i}\subset,A_{i}’\subset M(i=1,2) such that M/A_{1}’\cong M/A_{2}’ . Since M(1-e_{i})\subset,A_{i}’\subset M,
each Me_{i} is a codirect cover of M/A_{i}’ in M. Thus we have Me_{1}\cong Me_{2},
because M is uniquely codirect.

Conversely, suppose Me_{1}\cong Me_{2} . Then, trivially, 0\sim 0 (Me_{1}, Me_{2}) . On
the other hand, since each A_{i}e_{i} is small in Me_{i} , Me_{i}/A_{i}e_{i}\cong M/A_{i} implies
0\sim A_{i} Me2,M). Thus A_{1}\sim A_{2}, as required.

Lemma 8. 2. Let \{A_{\lambda}|\lambda\in\Lambda\} and \{B_{\gamma}|\gamma\in\Gamma\} be maximal coindependent
sets of couniform submodules of M, and C a proper submodule of M. Thm
\{A_{\lambda}|\lambda\in\Lambda\}\cup\{C\} is coind\varphi endmt if and only if \{B_{r}|\gamma\in\Gamma\}\cup\{C\} is coindependent.

PROOF. Suppose that \{A_{\lambda}|\lambda\in\Lambda\}\cup\{C\} is not coindependent. Then
\bigcap_{i=1}^{n}A_{\lambda_{i}}+C is proper in M for some \lambda_{1} , \lambda_{2}, \cdots , \lambda_{n}\in\Lambda . We may assume here

the positive integer n minimal. Then we shall show that C_{0}= \bigcap_{i=1}^{n}A_{\lambda_{i}}+C
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is a couniform submodule of M. If n=1, C_{0} is couniform by A_{1}\subset C_{0} .
Let n>1 . Noting that \bigcap_{i=2}^{n}A_{\lambda_{i}}+A_{\lambda_{1}}=M and \bigcap_{i=2}^{n}A,i+C=M, we have an
epimorphism

\phi:M/A_{\lambda_{1}}arrow M/C_{0}

defifined by (m+A_{\lambda_{1}}) \phi=m+C_{0}(m\in\bigcap_{i=2}^{n}A_{z_{i}}) . Let C_{0}\subset D be a proper sub-
module of M. Then (D/C_{0})\phi^{-1} is proper in M/A_{\lambda_{1}} , and hence small in
M/A_{\lambda_{1}} , since A_{\lambda_{1}} is couniform in M. Therefore (D/C_{0})\phi^{-1}\phi=D/C_{0} is small
in M/C_{0} . This implies that C_{0} is couniform in M.

If C_{0}\in\{B_{\gamma}|\gamma\in\Gamma\} , say C_{0}=B_{\gamma_{0}}(\gamma_{0}\in\Gamma), then C+B_{\gamma_{0}}=B_{\gamma_{0}} is proper in M,
so that \{B_{\gamma}|\gamma\in\Gamma\}\cup\{C\} is not coindependent. If C_{0}\not\in\{B_{\gamma}|\gamma\in\Gamma\} , then
\{B_{\gamma}|\gamma\in\Gamma\}\cup\{C_{0}\} is not coindependent by the maximality of \{B_{\gamma}|\gamma\in\Gamma\} , so
that \{B_{\gamma}|\gamma\in\Gamma\}\cup\langle C } is not coindependent. Thus the proof completes.

PROPOSITION 8. 3. Assume that M is uniquely codirect. Let \{A_{i}|i=1 ,
2, \cdots , n}, \{B_{f}|j=1,2, \cdots, n\} be maximal coindependent sets of couniform sub-
modules of M, and let Me_{i} , Mf_{J}(e_{i}=e_{i}^{2}, f_{f}=f_{f}^{2}\in S) be codirect covers of
M/A_{i} , M/B_{f} in M respectively (1\leqq i,j\leqq n) . Then there exist a permutation
\chi of the numbers 1, 2, \cdots , n and isomorphisms \phi_{i} of Me_{i} to Mf_{f}, where j=\chi(i)

for any i, 1\leqq i\leqq n . Furthermore, there exists an automorphism x\in S such
that x induces each isomorphism \phi_{i} , i. e. , the diagram

e_{j}

\cong|\chi Af\Lambda\sqrt

f_{j}

arrow Me_{j}Mf_{j}---\{\emptyset,

is commutative zvith j=\chi(i) , 1\leqq i\leqq n .

PROOF. We have already known that there exists a permutation \chi of
1, 2, \cdots , n such that A_{i}\sim B_{j} with j=\chi(i) , 1\leqq i\leqq n . By Lemma 8.1, then, we
have isomorphisms \phi_{i} : Me_{i}\cong Mf_{f}, where j=\chi(i), 1\leqq i\leqq n . The coessential
extensions

M(1-e_{i})\subset,A_{i}\subset M , M(1-f_{f})\subset,B_{j}\subset M

assert that \{M(1-e_{i})|i=1,2, \cdots, n\} , \{M(1-f_{f})|j=1,2, \cdots, n\} are maximal
coindependent sets of couniform direct summands of M. Accordingly there
exist idempotents e, f\in S such that
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\bigcap_{i=1}^{n}M(1-e_{i})=M(1-e) , \bigcap_{f=1}^{n}M(1-f_{f})=M(1-f) ,

by Condition (II). Then M(1-f)+Mf=M implies M(1-e)+Mf=M by
Lemma 8.2. Actually Mf is a cocomplement of M(1-e) in M, which is
shown by using Lemma 8.2 again, and thus we have M(1-e)\oplus Mf=M.
Therefore, the contraction mapping of 1-f to M(1-e) induces an isomor-
phism \phi’ : M(1-e)\cong M(1-e) (1-f)=M(1-f).

On the other hand, the compositions of the canonical isomorphisms

Me \cong M/M(1-e)\cong\prod_{i=1}^{n}M/M(1-e_{i})\cong\prod_{i=1}^{n}Me_{i} ,

Mf \cong M/M(1-f)\cong\prod_{f=1}^{n}M/M(1-f_{f})\cong\prod_{f=1}^{n}Mf_{j}’.

and the isomorphisms \phi_{i} : Me_{i}\cong Mf_{j}(j=\chi(i)) give an isomorphism \phi :
Me\cong Mf. Namely, \phi is induced as e_{i}\phi_{i} =\^e fj, j=\chi(i) , for any i, 1\leqq i\leqq n

(by noting e_{i}=ee_{i} , f_{f}=ff_{f}).
Consequently, the pair (\phi, \phi’) of isomorphisms yields an automorphism

x of M, and the commutativity of the diagram

\equiv|xM

hl

e_{j}

\mathcal{M}e hf_{\theta_{j}}

\equiv|\emptyset\wedge\prime\prime f

f_{j}

hlf_{j}---1^{\Phi_{j}}

(where j=\chi(i), 1\leqq i\leqq n), is now obvious. This completes the proof.

PROPOSITION 8. 4. Assume that M is uniquely codirect and cofifinite-
dimensional. Let A, B be submodules of M such that there exists an
isomorphism \phi of M/A to M/B. Then \phi is induced by an automorphism
x\in S, i. e. , the diagram

\cong|hl\mathcal{M}\chi

\pi\pi

,

M1\cong M/\downarrow

A

\phi

B

(zvith the natural epimorphisms \pi, \pi’ ) is commutative.

PROOF. First, \phi extends to an isomorphism \phi’ between codirect covers
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Me and Mf(e=e^{2}, f=f^{2}\in S) of M/A and M/B in M respectively, or the
diagram

\Lambda re/\nu;/A\underline{J\tau_{0}}

\underline{\simeq}\downarrow hf

’\phi’

f\pi_{\acute{i}}

M/\cong|

\phi

B

is commutative. Let codim Me=co\dim Mf=n . Then there exist idem-
potents e_{i}=ee_{i}e=e_{i}^{2}\in S(1\leqq i\leqq n) such that \{M(e-e_{i})|i=1,2, \cdots, n\} is a
maximal coindependent set of couniform direct summands of Me. The
contraction mapping \phi_{i} of the isomorphism \phi’ to Me_{i} gives a direct summand
Mf_{i} , f_{i}=ff_{i}f=f_{i}^{2}\in S, of Mf for each i, 1\leqq i\leqq n . Namely we have \phi_{i} :
Me_{i}\cong Mf_{i} and M(e-e_{i})\phi’=M(f-f_{i}) for each i, 1\leqq i\leqq n . Therefore
\{M(f-f_{i})|i=1,2, \cdots, n\} is a maximal coindependent set of couniform direct
summands of Mf. Hence from the contraction mappings d_{i} of e_{i} to Me
and f_{i}’ of f_{i} to Mf, the following commutative diagram follows:

e_{j}’

\underline{\simeq}|\Phi’\cong|\underline{r_{j}’}\phi hlfMeMe_{j}hf\gamma_{j}.’.

Hence the diagram

(e_{j}’)

\underline{\simeq k}feMf\downarrow\phi’

(f_{j}^{r})

j=I1^{n}TMe_{j}\equiv[(\phi_{j})

j\cdot 1T^{n}TMf_{j}

is commutative. However, the kernel of (d_{i}) is \bigcap_{i=1}^{n}M(e-e_{i})=0 (being a small
direct summand of Me), and (e_{i}’) is surjective since \{M(e-e_{i})|i=1,2, \cdots, n\}

is a coindependent set. Therefore (e_{i}’) and similarly (f_{i}’) are isomorphisms.
By Proposition 4. 1, \{M(e-e_{i})\oplus M(1-e)|i=1,2, \cdots, n\} and \{M(f-f_{i})

\oplus M(1-f)|i=1,2, \cdots,n\} are coindependent sets of couniform direct summands
of M. But these can be extended to maximal coindependent sets of couni-
form direct summands of M, since M is (of course, completely cocomple-
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mented and) cofinite-dimensional. Then by the above proposition, there
exists an automorphism x\in S such that the diagram

\cong\downarrow MMMe_{j}\underline{e_{j}}
\chi

\underline{\simeq}\downarrow M

f_{j}

\phi_{j}

f_{j}

is commuative for any i, 1\leqq i\leqq n , because each Me_{i} is trivially a codirect
cover of M/(M(e-e_{i})\oplus M(1-e)) in M. Accordingly, the diagram

(e,\cdot)

\equiv\downarrow x---M1\Gamma Mr_{j}hf\eta_{\rho}^{n}\Lambda/e_{j}|j\cdot|(\phi,\cdot)\underline{(f_{j)}}j=1

is commutative, where (e_{i}) and (f_{i}) are surjective since \{M(e-e_{i})\oplus M(1-e)|

i=1,2, \cdots , n\} and \{M(f-f_{i})\oplus M(1-f)|i=1,2, \cdots, n\} are coindependent.
Consequently, attending to (e_{i})(d_{i})^{-1}=e and (f_{i})(f_{i}’)^{-1}=f, we obtain the
following commutative diagram :

\cong\downarrow\chi Mhl

i

\cong|_{f}^{e}\phi’AfM

.

Thus x is a desired automorphism, completing the proof.

The following is a well-known characterization of quasi-projective
modules (see Miyashita [10; Theorem 2.7] or Wu and Jans [16]):

Let P be a projective left R-module and K a small submodule of P.
If T is the endomorphism ring of RP, then the following are equivalent:

(1) P/K is quasi-projective.
(2) K=KT
(3) K is the sum of all submodules N such that P/N is quasi-projective.
As an analogous statement we can obtain the following last result:

PROPOSITION 8. 5. Let P be a fifinitely generated^{8)} projective semiperfect
left R-module and K a small submodule of P. Moreover let T be the

8) See the remark preceding to Corollary 7.13.
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endomorphism ring of RP, acting on the right, and T’ the set of all surjective
endomorphisms in T. Then the following conditions are equivalent:

(1) P/K is pseudO-projective.
(2) K=KT’.
(3) K is the sum of all submodules N such that P/N is psmdO-projective.

PROOF. (1) implies (3) obviously.
(3) implies (2): Suppose x\in T’ and let N\subset K be a submodule of P

such that P/N is pseud0-projective. Then we shall show NxdN, which yields
(2). We consider the natural epimorphisms \pi:Parrow\neq P/N and \pi’ : P/Narrow

P/(Nx+N). Since x induces an epimorphism
\overline{x} : P/Narrow P/(Nx+N)

by

(p+N)\overline{x}=px+(Nx+N) (p\in P) ,

the pseud0-projectivity of P/N implies the existence of an endomorphism
\overline{J\iota} of P/N with \overline{x}=\overline{/\iota}\pi’ .

Since P is projective, we have an endomorphism y\in T such that \pi\overline{y}=y\pi .
Hence Ny\subset N and P(y-x)\subset Nx+N. Let N’\subset P be the inverse image of
N under y –x. Then N+N’=P, where N is small in P, so that we obtain
N’=P. Therefore, P(y-x)\subset N and so N(y-x)\subset N. Thus Nx\subset N follows
from NydN, as required.

(2) implies (1): Suppose that M is a left R-module such that there
exist epimorphisms \phi, \psi:P/Karrow M with Ker \phi=A/K and Ker \psi=B/K,
where K\subset A , B are submodules of P. We consider the natural epimorphisms
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and the isomorphisms
\overline{\phi}: P/\^A M , \overline{\psi}:P/B\cong M

by
(p+A)\overline{\phi}=(p+K)\phi , (p+B)\overline{\psi}=(p+K)\psi (p\in P) ,

so that \pi’\overline{\phi}=\phi and \pi’\overline{\psi}=\psi . Then by Proposition 8.4, the isomorphism
\overline{\phi}\overline{\psi}^{-1} is induced by an automorphism x\in T’, i . e. , the diagram

\pi\pi’

\cong\downarrow x--\rho\rho/A\rho\rho/B-\underline{\pi\pi’}1^{\overline{\phi}\overline{\psi}^{-\mathfrak{l}}}

is commutative. By assumption, Kx\subset K and thus x can induce an end0-
morphism xarrow of P/K such that \phi=x\psiarrow . This shows that P/K is pseud0-
projective.
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Supplementary notes (June 30, 1975).

1. We add the following as references:
[18]’ H. Z\"OSCHINGER: Komplementierte Moduln \"uber Dedekindringen, “J. Algebra,

29 (1974), 42-56”.
[19]’ H. Z\"OSCHINGER: Komplemente als direkte Summanden, “Arch. Math., 25 (1974),

241-253”.
[20] H. Z\"OSCHINGER: Moduln, die in jeder Erweiterung ein Komplement haben,

Math. Scand., 35 (1974), 267-287.

We remark here on terminologies; our cocomplemmt=Komplemmt in
[18]’ and completely cocomplemented = supplemented in [3]=supplemmtiert
in [19] ’.

2. On linearly compact modules, we refer to the following:
[21] B. J. M\"ULLER: Linear compactness and Morita duality, J. Algebra, 16 (1970),

60-66.
[22] T. ONODERA: Linearly compact modules and cogenerators, J. Fac. Sci. Hokkaido

Univ., 22 (1972), 116-125.
[23] T. ONODERA: Linearly compact modules and cogenerators II, Hokkaido Math.

J., 2 (1973), 243-251.

The result that every linearly compact module is cocomplemented has
been given in [11; Proposition 2.6] and also in [22; Theorem 5] (their
complemented=our cocomplemmted). See also [20].

Lemma 3.5 arouses our interest; we may say that the dual of this
lemma holds trivially without the assumption of the submodule A to be
linearly compact. As another proposition of such a form, we can recall
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[21 ; Lemma 2]. See also [23; \S 3].
3. The following is a corollary to Theorem 4.13:

COROLLARY 4. 15. Let M(\neq 0) be completely cocomplemented. Then
M is cofifinite-dimmsional if and only if there exists a coindependent set of
a fifinite number of couniform submodules of M such that the intersection
of thm is a small submodule of M.

4. Let A be a submodule of a nonzero R-module M. The (Jacobson)

radical J(A, M) of A in M is defined to be the sum of all coessential ex-
tensions of A in M. Then J(A, M) coincides with the intersection of all
maximal submodules of M that includ\’e A in case A is included in a maximal
submodule of M and J(A, M)=M otherwise. Thus, the (Jacobson) radical
J(M) of M is nothing but J(0, M). The following two conditions for M
are equivalent :

(*) Every proper submodule of M is included in a maximal submodule
of M.

(**) For every submodule A of M, J(A, M) is a coessential extension
of A in M.

Thus, if M satisfies (*), then J(M) is small in M. Conversely, if M
is cocomplemented and if J(M) is small in M, then M satisfies (*). Because,
every submodule A of M which has a cocomplement in M yields A+J(0, M)
=J(A, M). This phenomenon will be compared with the fact that every
nonzero submodule of M includes a minimal submodule if and only if the
socle of M is an essential submodule.

5. An R-module M is called cosemisimple iff M satisfies the following
equivalent statements (Fuller [24]) :

(1) Every simple R-module is M-injective.
(2) Every proper submodule of M is an intersection of maximal

submodules.
(3) Every finitely cogenerated factor module of M is semisimple.
Now we can paraphrase (2) by using our words:
(4) The radical of every factor module of M is zero, i . e. , A=J(A, M)

for every submodule A of M.
(4)’ Every submodule of M is (coessentially) coclosed in M.
We can also check the dual conditions to (2), (4)’ and the next:
(2)’ Every proper submodule of M is an intersection of coindependent

maximal submodules.
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The cosemisimple cocomplemented module is nothing but a semisimple
module.

[24] K. R. FULLER: Relative projectivity and injectivity classes determined by simple
modules, J. London Math. Soc. (2), 5 (1972), 423-431.
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