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Introduction

Let xM be a left R-module over a ring RY and C be the biendomo-
rphism ring of M. Then there exists a canonical ring homomorphism 4
of R into C which is defined by o(r)(m)=rm, reR, meM. rM is called
balanced if 6 is an epimorphism. It is shown that Morita-Suzuki’s crite-
rion? for 6 to be an isomorphism is easily generalized for modules from
the view point of reflexivity. Thus we have the following

THEOREM (THEOREM 1). Let R, S be two rings. Let zX be a left
R-module and rZg be a two-sided R-S-module. Then the following state-
ments are equivalent :

(1) X is Z-reflexive.

(2) (1) The Z-dual of rX is Z-reflexive

(i) There exists an exact sequence of left R-modules
0-X—-1IZ-1IZ,

where II1Z’s denote the direct products of copies of Z, though
the index sets are generally different®.

Let P be a finitely generated projective module and »Q be an injec-
tive module with essential socle such that each simple homomorphic image
of P is isomorphic to a submodule of zQ and each simple submodule of
#Q is a homomorphic image of zP. Let S-and 7T be the endomorphism
ring of P and xQ, respectively. Then the left S-module sHompg (P, Q) is
an injective cogenerator with the endomorphism ring 7, and the Homg
(P, Q)-dual of ¢P*=Hompg(P, R) is isomorphic to Q’. It is shown that

1) In what follows we assume that all rings have an identity element and all modules
are unital.

2) Cf.[5}

3) That is, Z-dominant dimension of X=2 in the terminology of

4) See Lemma 3 and [Theorem 1| [8] There one can easily replace cofinitely generatéd
injectiveness for Q by injectiveness with essential socle, as T. Kato pointed out to
the author. ‘
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sP* is Homg (P, Q)-reflexive if and - only if rQ satisfies the F,-condition®,
that is, Hom,(C, Q) is canonically isomorphic to Q, C being the biendomo-
rphism ring of rQ(Theorem 2). Thus, in this case, the endomorphism
rings of ¢P* and Qy are isomorphic (Corollary] to [Theorem 2).

Let R be a left linearly compact ring. Then it is shown that every
injective left R-module with essential socle satisfies the F,-condition
(Theorem 3).

As an application of our considerations, we obtain the following the-
orem which generalizes the results in [3]. -

THEOREM (THEOREM 4). Let R be a left linearly compact ring.
Then the following statements are equivalent :

(1) Ewvery (faithful) finitely generated projective right R-module is
balanced.

(2) Every (faithful) projective right R-module with small radical is
balanced. .

(3) Ewery (faithful) cofinitely generated injective left R-module is
balanced.

(4) Every (faithful) injective left R-module with essential socle is
balanced.

§ 1. Regular pairing of modules and endomorphism rings

Let R, S be rings and X, zZs Y be left R-, two-sided R-S-, right
S-modules, respectively. Suppose that there is a bilinear mapping X x Y—>
(,)eZ which satisfies the following condition :

(x, ¥)=0 for all x€X implies y=0, and (z, ¥)=0 for all y€Y implies

x=0.

We call such a pairing a regular pairing. In this case there is a ca-
nonical monomorphism ¢(¢) of X(Y) into Homg(Y, Z)(Homg (X, Z)) which
is defined by ¢(z)(y)=(z, v) (¢(y) (x)=(z, y)) for z€X, yeY.

LeEmMA 1. If both ¢ and ¢ are isomorphisms, then the endomorphism
rings of rX and Yg are isomorphic.

Proor. 1. Let ¢ be an endomorphism of zX. Then, by assumption,
¢t defines an (unique) endomorphism # of Yy by

(x, ty)=(xt, y), xeX, yeY.

Similarly each endomorphism # of Y, defines an (unique) endomorphism ¢
of RX by the above relation. This proves our lemma.

5) Cf. [5}
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§2. A reflexivity condition for modules

Let zX be a left R-module and ,Zg; be a two-sided R-S-module. We
denote the Z-dual ofzX by X*:=Homgz(X, Z), which is considered as a
right S-module. Further by X** X*** we denote the Z-dual of X%, The
Z-dual of LX** respectively: X**=Homg(X*, Z), X***=Homg(X**, Z).
Then there exists a natural homomorphism 6y of X into X** which is
defined by

0x(x) (f)=f(m) for zeX, feX*.

When 0y is an isomorphism (a monomorphism), X is called Z-reflexive (Z-
torsionless).

THEOREM 1. The following statements are equivalent :
(1) =X is Z-reflexive
(2) (1) X§ is Z-reflexive
(i) There exists an exact sequence of left R-modules
0-X->1IZ-11Z,

where I1Z’s denote the direct products of copies of Z, though
the index sets are generally different.

PrOOF. (1)>(2). As is easily verified we have 0% dx=15, where %=
Hom (x, 1,) : X***— X*  Since 0y is an isomorphism, 6% whence 0y is
an isomorphism. Thus X* is Z-reflexive. Let F,—F,—X*—0 be an exact
sequence of right S-modules, where F;, F, are free right S-modules. Then
we have the exact sequence of left R-modules 0—> X**—Homg(F, Z)—
Homg(F}, Z). Since X is Z-reflexive and Homg(F;, Z), i=1, 2, are isomor-
phic to direct products of copies of Z, this proves the assertion (ii).

(2)=>(1). From the exact sequece 0—>X—IIZ->IIZ, we have the
following commutative diagram with exact rows:

0—Hompz(X**, X)— [IHompg(X** Z)— [IHomgz(X**, Z)
Hom (3, 1) l s | 15 |
0—Hompg(X, X) —IIHomy(X, Z) —IHomg(X, Z).
Since, by assumption, 6y, whence 0% is an isomorphism, I76%’s are isomo-
rphisms. It follows that Hom (0, 15) is an isomorphism. Let ¢ be an
element of Hompy(X** X) such that ¢+6x=1;. Then ¢ is an epimorphism,

and 03 ¢* =1y, where p*=Hom (¢, 1,). Since 8% is an isomorphism, together
with the relation 6% 6;»=15, we have ¢*=0d5. Let geX** such that ¢(g)=

0. Then we have f(p(g))=0 for all feX*. But {fp=¢*(f)feX*}={0x(f)]
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fEX*}=X***, because 6z is an isomorphism. Since X** is, as the Z-dual

of X*, Z-torsionless, it follows that g=0. Thus ¢ is a monomorphism,
whence an isomorphism. It follows that dy is an isomorphism, that is,
=X is Z-reflexive.

Let »M be a left R-module, S the endomorphism ring of M, and, C
be the endomorphism ring of the right S-module M, Then by setting
2X=rR, zls=rMs in we have the following

CoROLLARY (Morita-Suzuki). The following statements are equivalent :
(1) &M is faithfull and balanced
(2) (1) Homgz(C, M) is isomorphic to M under the mapping Hompg
(C, M)>f—f(1)e M.
(ii) There exists an exact sequence of left R-modules :
0—-R—->IM-IIM, that is,
M-dominant dimension of pR=2.

The condition (i) in (2) is called the Fj,-condition for M.

§ 3. Generalized RZ-pairs

Let P be a finitely generated projective module and zQ be an injec-
tive module with an essential socle. We call the pair {P, Q} forms a
generalized RZ-pair if every simple homomorphic image of P is isomorphic

to a submodule of zQ, and, every simple submodule of Q is a homomo-
rphic image of RP.

LemMmA 2. Let {P, Q} forms a generalized RZ-pair and S, T be the

endomorphism rings of zP, zQ, respectively. Then the left S-module sHomy,
(P,Q) is an injective cogenerator and the endomorphism ring of sHomy
(P, Q) is naturally isomorphic to T. Further, the Homg(P, Q)-dual of ¢P*
is isomorphic to Qr, where P* is the R-dual of Pr:P*=Homz(P, R).

ProoF. The first assertion follows from [Theorem 1, [9], while the
latter assertions follows from [9]

THEOREM 2. Under the same assumptions as in Lemma 2, the fol-
lowing statements are equivalent :

(1) P* is Homg(P, Q)-reflexive

(2) zQ satisfies the F,-condition

(3) Qr is Homg(P, Q)-reflexive.

Proor. Let C be the endomorphism ring of Q. The Homg(P, Q)-
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dual of Qr Hom,(Q, Homz (P, Q)) is isomorphic to Homg(P, Q)®, and, the
Homg (P, Q)-dual of Homz (P, C) is Homg(Homy (P, C), Homz (P, Q)), which
is isomorphic to Homz(C, Q) by [9]. Thus we see that Q is
Homp (P, Q)-reflexive if and only if rQ satisfies the F,-condition. This
proves the equivalence (2)&(3).

On the other hand, since sHomz(P, Q) is an injective cogenerator and
Q7 is the Hompg (P, Q)-dual of (P*, we see that ¢P* is Hompg (P, Q)-reflexive
if and only if Qr is Hompg(P, Q)-reflexive by Theroem 1. This implies the
equivalence (1)&(3).

CoROLLARY. If one of the equivalence conditions in Theorem 2 is
satisfied, then P is balanced if and only if zQ is balanced.

PrROOF. Since P is finitely generated projective, the endomorphism
ring of P% is isomorphic to S”. Consider the regular pairing of ¢P* and

Q7 in sHompg (P, Q) which is defined by

(L) =f(p) g, feP*, qeQ, peP.

This is a regular pairing by [9] Further, by assumption, ¢P*,
Qr are the Hompg(P, Q)-dual of each others. The corollary follows then
direct from Lemma 1.

§4. Injective modules with essential socles over
linearly compact rings.

Let xM be a left R-module. rM is called linearly compact if every
finitely solvable system of congruences

r=m,(mod %.), a€l,

is solvable, where m,’s are elements of M, %.s are submodules of M,
and [ is an index set. A ring R is called left (right) linearly compact if
#R(Rg) is linearly compact. It is known that a one-sided linearly compact
ring is a semi-perfect ring®.

LEMMA 3. Let R be a left linearly compact ring and zQ be a quasi-
injective left R-module with an essential socle. Let S be the endomorphism
ring of xQ. For every natural number n, we define the bilinear mapping

[,] of R™ x Q(") into xQgs by [(7’1, ey 7o) (G oo qn)]":iZ::lri q:€Q, where R™,

6) Cf. p. 32, Exercise 4.
7) Cf. [6], Folgerung 2, Beweis.
8) Cf. Corolloary to Theorem 5.
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Q™ are the direct sums of n-copies of R, Q, respectively. Then for every
S-submodule % of Q™, we have Ann ¢ (Ann g (%))= %, where, as usual,
Anny(X) denotes the annihilator of X in Y.with respect to the given bilin-
ear mapping®.

Proor. Let g=(qy, -**,¢,) be an element of Ann m(Ann zm(%)).
Then we have Ann zmw(q)2Ann gz (%)= Q”Ann zoo(#).  Since. R™/Ann

=m(q) is R-isomorphic to the submodule [R™, gq] of Q, which is, as a
homomorphic image of R™, linearly compact'®, whence cofinitely gener-
ated'), there exists a finite number of elements u;, -+, %, of % such that

Ann (@20 A geo(w).  Let X={([r, w], -, [, w])|reR®) and define
the well defined R-homomorphism ¢ of X into Q™ :

Xa(lr, wl, -+ [, w))——1r, ql€Q.

Since Q is quasi-injective, ¢ is extended to an R-homomorphism of Q™
into Q. Thus there exist elements s, -, s, of S such that [7, ql=[r,

z t
3T u; 5;] for all 76 R™, and, from which we have ¢= 3] u; s;€ %.
i=1 i=1

THEOREM 3. Let zQ be an injective left R-module with an essential
socle over a left linearly compact ring R. Let S be the endomorphism ring
of Q and C the endomorphism ring of Qs Then Q is isomorphic to
Homy(C, Q) under the mapping Homz(C, Q)3f— f(1), that is, zQ satisfies
the F,-condition. Further, the left C-module (Q ts injective.

Proor. Let feHomg(C, Q). Then for each ceC, we have f(c)ecQ.
Because if f(c)&cQ then by there exists an element 7€R such
that 7¢Q=0, 7f(c)#0. But this is a contradiction. Let f(c)=cq., c€C,
g.€Q. Then again by we see that the system of congruences,

x =gq,(mod Anng(c)), c€C

is finitely solvable. Since Qg is linearly compact', there exists an element
2,€Q such that g=g.(mod Anng(c)) for all ceC. This implies that cg,=
Flo), ceC, and, from which it is easy to see that zQ satisfies the F,-condi
tion. The last assertion is also proved in a similar way.

9) Cf. Proposition 4.
10) Cf. Proposition 8.
11) Cf. Proposition 3.
12) Cf. Proposition 4.
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§5. An application

As an application of our considerations we have the following

THEOREM 4. Let R be aleft linearly compact ring. Then the follow-
ing statements are equivalent :

(1) Every (faithful) finitely generated projective right R-module is
balanced.

(2) Every (faithful) projective right R-module with small radical is
balanced.

(3) Every (faithful) cofinitely generated injective left R-module is
balanced.

(4) Every (faithful) injective left R-module with essential socle is
balanced.

Proor. It is obvious that (2) implies (1) and (4) implies (3). (1)=>(2).
Let P; be a (faithful) projective right R-module with small radical. Py is

isomorphic to @ e, R, where e,’s are primitive idempotents of R. Let
acd

., R, -+, e,, R be a complete set of representatives of non-isomorphic mod-
z

ules of {eaR; aEA}. Then Pi=@® e, R, is a (faithful) finitely generated
i=1

projective module and P=P, @ P, where P, generates and cogenerates P,.
Our assertion follows then from Lemma, [3]. (3)=>(1). Let Py be a (faithful)
finitely generated projective right R-module, and, S be the endomorphism
ring of Pr. Let zQ be a cofinitely generated injective left R-module such

that {RP*, RQ} forms an RZ-pair™. In this case, if Py is faithful, then RQ

is also faithful. Our assertion follows then from [Corollary| to [Theoreml
2, because Py is R-reflexive and Q is balanced. (1)=>(3). Let zQ be a
(faithful) injective left R-module with essential socle. Let P be a finitely

generated projective left R-module such that { =P, RQ} forms a generalized

RZ-pair. In this case, if zQ is faithful, then P} is also faithful. Further,
the endomorphism ring of P} is isomorphic to that of P because P
is finitely generated projective. Since, by =Q satisfies the F,-
condition, our assertion follows also from [Corollary| to [Theorem 2.

COROLLARY™. Let R be a left artinian ring. Then the following
statements are equivalent :

13) Cf.[8], §2.
14) Cf. [8], Lemma 3
15) Cf. 3}
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(1) Every (faithful) finitely generated projective right R-module is
balanced.

(2) Ewvery (faithful) projective right R-module is balanced.

(3) Every (faithful) cofinitely generated injective left R-module is
balanced.

(4) Ewvery (faithful) injective left R-module is balanced.

ADDENDUM :

Recently K. Morita has sent the author his unpublished manuscript
titled “Localization in category of modules IV”, where one can see that

our is also obtained independently.
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