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compact abelian groups
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\S 1. Introduction

In this note G is a locally compact Abelian group with ordered dual
\Gamma- This means that there exists a closed semigroup P such that P\cap(-P)

=\{0\} and P\cup(-P)=\Gamma

Let M(G) denote the usual Banach algebra of all complex measures
on G and \hat{\mu}(\gamma) the Fourier-Stieltjes transform of measure \mu\in M(G) . L^{1}(G)

is the set of all functions integrable on G. H. Helson and D. Lowdenslager
proved the following generalized F. and M. Riesz theorem.

THEOREM 0. Suppose G is compact, \mu belongs to M(G) and \mu is of
analytic type. If d\mu=d\mu_{s}+f(x)dx, where \mu_{s} is singular zvith respect to
Haar measure dx of G and f belongs to L^{1}(G) .

Then, (1) both \mu_{s} and f are of analytic type,
(2) \hat{\mu}_{s}(0)=0

In general, however, the conclusion of theorem 0 cannot be strength-
ened to “

\mu_{s}=0”- Indeed, we can see such an example in Rudin’s book (1).
In theorem 1 and 2 below we shall show that the necessary and

sufficient condition that \mu\in L^{1}(G) if \mu is of analytic type is G=T or R.

\S 2. Compact case

THEOREM 1. Suppose G is compact. Then, the following statements
(A) and (B) are equivalent.

(A) Let \mu\in M(G) be of analytic type, then \mu\in L^{1}(G) .
(B) G=T

We shall show some lemmas before we prove theorem 1.
Lemma 1. [(1)] . Suppose G is compact. If there exists a non-zero

singular measure \mu_{s}\in M(G) which is of analytic type, E_{\mu}=\{\gamma\in\Gamma;\hat{\mu}(\gamma)\neq 0,
\gamma>0\} has no minimum elememt.

Lemma 2. Suppose G is compact, then the following statemets (A)’
and (B)’ are equivalent.
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(A)’ there exists a measure \mu\in M(G) such that \mu\leq L^{1}(G) and \mu is
of analytic type.

(B)’ there exists a positive element \gamma_{0}\in\Gamma such that \{\gamma\in\Gamma;0<\gamma<\gamma_{0}\}

is an infinite set.

[proof of lemma 2]

(B)’\Rightarrow(A) ’

(case 1) We suppose that \Gamma is an Archimedean ordered group. Then,
we may assume that \Gamma is a discrete subgroup of R. [(1):8.1.2.] . We
define a function f(x) be max (|2\gamma_{0}|-x, 0) . Then, f(x) is a positive definite
function on R. If \phi is the restriction function of f to \Gamma,\cdot it follows that
\phi is positive definite on \Gamma

Hence, by Bochner’s theorem, there exists a measure \mu\in M(G) such
that \hat{\mu}(\gamma)=\phi(\gamma) on \Gamma We define a measure \mu\in M(G) by \hat{\mu}(\gamma)=.\hat{u}(\gamma-2\gamma_{0}) .
Clearly, \mu is of analytic type.

By the hypothesis, \{\gamma\in\Gamma;\hat{\mu}(\gamma)>\delta\} is an infinite set for some positive
number \delta . Hence, by Riemann-Lebesgue’s lemma, \mu is not absolutely
continuous with respect to the Haar measure on G.

(case 2) We suppose that \Gamma is not an Archimedean ordered group.
Then, there exists some positive elements \gamma_{1} , \gamma_{2}\in\Gamma such that n\gamma_{1}<\gamma_{2} for
any n\in Z.

We put \Lambda=\{n\mathcal{T}_{1} ; n\in Z\} . Since \Lambda is a subgroup of \Gamma, there existe
a measure \mu\in M(G) such that \hat{\mu}(\gamma)=\chi_{\gamma_{2}-\Lambda}(\gamma) .

Where \chi_{\gamma_{2}-A} is a characteristic function of \gamma_{2}-\Lambda .
It is easy to verify that \mu is of analytic type. Since \Lambda is an infinite

subgroup, by Riemann-Lebesgue’s lemma, \mu is not absolutely continuous
with respect to the Haar measure on G.
(A)’\subset\Rightarrow(B)’ . Suppose that there exists a measure \mu\in M(G) such that \mu is
of analytic type, but does not belong to L^{1}(G) .

By theorem 0, we may assume that \mu is singular with respect to the
Haar measure on G . Since \mu\neq 0 , there exists a positive element \gamma_{0}\in\Gamma

such htat \hat{\mu}(\gamma_{0})\neq 0 . Hence, by lemma 1, \{\gamma\in\Gamma;0<\gamma<\gamma_{0}\} is an infinite
set. q. e. d.

[proof of theorem 1]

(B) arrow(A) trivial
(A)arrow(B) By lemma 2, \{\gamma\in\Gamma;0<\gamma<\gamma_{0}\} is a finite set for any posi-

tive element \gamma_{0}\in\Gamma- Hence, \Gamma is an Archimedean ordered group. So, \Gamma

is a subgroup of R and \{\gamma\in\Gamma;\gamma>0\} has a minimal element \gamma_{0}\in\Gamma- Hence,
G=T because of \Gamma=\{n\mathcal{T}_{0} ; n\in Z\} . q. e . d .
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\S 3. Non-compact case

THEOREM 2. We suppose that G is not compact.
If any measure \mu\in M(G) which is of analytic type belongs to L^{1}(G),

then G=R.
[proof of theorem 2]

\Gamma=G is a non-discrete ordered group. Hence, by (1) 8. 1. 5, \Gamma=R\oplus D.
Where D is a discrete group.

We suppose D\neq\{0\} . Let P denote the closed semi-group which in-
duces the order into \Gamma

claim 1. There exists a non-zero element d_{0}\in D suth that (R+d_{0})\cap

P\neq\phi .
Because, we assume (R+d)\cap P=\phi for any d\in D\backslash \langle 0\}=C.
Then (, \bigcup_{z\epsilon c}(R+d))\cap P=\phi .
Since P \cup(-P)=\Gamma,\bigcup_{d\in C}(R+d)\subset-P. We fixe a non-zero element -d_{0}

\in D. Then, R-d_{0}\subset-P. Hence R+d_{0}\subset P.
We have a contradiction.
claim 2. R+d_{0}\subset P for d_{0} of claim 1.
Because, by claim 1, (R+d_{0})\cap P\neq\phi . Since 0\leq R+d_{0} , R+d_{0}=(R+d_{0})\cap

(P\backslash \{0\}))\cup((R+d_{0})\cap P^{e}) .
Since (R+d_{0})\cap(P\backslash \{0\})\neq^{-}\phi and R+d_{0} is connected, We have (R+d_{0})\cap

P^{e}=\phi. Hence, R+d_{0}\subset P. Now, let denote \delta_{0} a dirac measure at 0 in R
and m a Haar measure on \hat{D} . We define a measure \mu\in M(G) by

d\mu(s, x)=d\delta_{0}(s)\cross d\lambda(x)

Where d\lambda(x)=(x, d_{0})dm(x) . (s\in R, x\in\hat{D}) .

Since \hat{\mu}(q, d)=\int_{R\cross\hat{D}}(–s, q) (-x, d)d\delta_{0}(s)\cross d\lambda(x)

=\hat{m}(d-d_{0})

=\chi_{R\cross\{d_{0}\}(q,d)} (q\in R, d\in D)

Hence, supp (\hat{\mu})\subset R+d_{0}\subset P. Therefore, \mu is of analytic type. But,
by Riemann-Lebesgue’s lemma, \mu does not belong to L^{1}(G) . This is con-
trary to the hypothesis. q. e. d.

REMARK. Let P be a closed semi-group of R such that (i) P\cup-(P)

=R and (ii) P\cap(-P)=\{0\} . Then, P is [0, \infty) or (-\infty, 0] . Hence, the
converse of theorem 2 is the F. and M. Riesz theorem on R.
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