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On the torsion theoretic support of a module

By John A. BEACHY
(Received January 12, 1976)

Goldman in [8] studied modules RX for which the localization X_{\sigma} has
finite length in the quotient category determined by a torsion radical \sigma .
He showed that for this to occur a necessary requirement is that the set
of prime torsion radicals \pi such that X_{\pi}\neq 0 has only finitely many maximal
elements; it is an open question whether this condition holds for a finitely
generated module over any Noetherian ring. It was shown in [2] that
the condition holds for the module RR if R is a ring with Krull dimension.
This result will be used in section 1 below to show that any finitely
generated module over a fully bounded, Noetherian ring has only finitely
many maximal elements in its support. It will also be used to show that
if R is a ring with Krull dimension, then R is Artinian if and only if
every prime torsion radical is maximal, extending Theorem 5. 10 of [8].

For a finitely generated module X over a commutative, Noetherian
ring R, it is well-known that the following conditions hold: (i) a prime
ideal belongs to the support of X if and only if it contains an associated
prime ideal of X;(ii) for any multiplicative set S of R, the associated
prime ideals of the localization X_{S} correspond to the associated prime
ideals of X which do not meet S;(iii) for any multiplicative set S, if X
is S-torsion, then so is the injective envelope E(X) of X. Fully bounded
modules are defined in section 2, and then in section 3 it is shown that
any finitely generated, fully bounded, Artin-Rees module over a Noetherian
ring satisfies the above conditions, with multiplicative sets replaced by
torsion radicals and prime ideals replaced by prime torsion radicals. Cahen
has shown in [4] that every module over a Noetherian ring satisfies the
torsion theoretic form of condition (iii) if and only if every finitely gen-
erated module satisfies condition (i) . This can be generalized to show
that (with appropriate formulations) conditions ( i), (ii) and (iii) are equivalent
for any fixed module over a ring with Krull dimension. As Golan has
observed in [7], any finite dimensional module which satisfies condition (i)
must have only finitely many maximal elements in its support, since it has
only finitely many associated primes.

Throughout the paper, R will denote an associative ring with identity,
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and R-Mod will denote the category of unital left R-modules. The reader
is referred to Stenstr\"om [10] for any undefined terms. A left exact
subfunctor \sigma of the identity on R-Mod will be called a torsion radical if
\sigma(X/\sigma X)=0 for all modules RX. If \sigma is a torsion radical, then RX is called
\sigma torsion if \sigma X=X and \sigma-torsionfree if \sigma X=0 , and these two classes of
modules define the torsion theory associated with \sigma . A submodule Y\subseteq X

is called \sigma-dense if X/Y is \sigma torsion and \sigma-closed if X/Y is a-torsionfree;
the \sigma-closure of Y in X is the intersection of all \sigma-closed submodules of
X which contain Y.

For a torsion radical \sigma and a module RX, the module of quotients
Q_{\sigma}(X)=X_{\sigma} is define as the \sigma-closure of X/\sigma X in its injective envelope.
This defines the quotient functor Q_{\sigma} from R-Mod into the quotient category
R- Mod/\sigma determined by \sigma, where R- Mod/\sigma is the full subcategory of R-Mod
defined by all modules X which are \sigma-torsionfree and \sigma-closed in their
injective envelope. There is a one-t0-0ne correspondence between the \sigma-

closed submodules of X and the subobjects of X_{\sigma} in R- Mod/\sigma.
A torsion radical \sigma is larger than a torsion radical \tau , denoted \sigma\geq\tau ,

if \sigma X\supseteq\tau X for all modules RX. A torsion radical \mu is said to be maximal
if \mu\neq 1 (the identity functor) and for any torsion radical \sigma, \sigma\geq\mu implies
\sigma=\mu or \sigma=1 . The largest torsion radical \sigma for which RM is \sigma-torsionfree
is given by \sigma X=rad_{E(M)}X , where E(M) is the injective envelope of M
and rad_{E(M)}X is the intersection of all kernels of R-homomorphisms from
X to E(M). Note that rad_{E(M)}\geq\sigma if and only if M is \sigma-torsionfree.

A nonzero module RM is called monoform if for each submodule N\subseteq M,
every homomorphism f:Narrow M is either zero or a monomorphism. This
is equivalent to the condition that every nonzero submodule of M is \sigma-

dense in M, for \sigma=rad_{E(M)} , which shows that M is monoform if and only
if M_{\sigma} is a simple object in R- Mod/\sigma . A torsion radical \pi is said by
Goldman to be prime if \pi=rad_{E(M)} for a monoform module M ; this occurs
if and only if R- Mod/\pi has an injective cogenerator which is the injective
envelope of a simple object, and so if \pi is prime, then R- Mod/\pi has only
one isomorphism class of simple objects. In particular, if M is simple in
R-Mod, then rad_{E(M)} is prime, and in fact rad_{E(M)} is minimal in the set of
prime torsion radicals. (If N is monoform and rad_{E(N)}\leq rad_{E(M)} , then N
must contain a submodule isomorphic to M, so E(N)\simeq E(M) since any
monoform module is uniform.)

For a module RX, ass (X) will denote the set of prime torsion radicals
which are defined by a monoform submodule of X, and supp (X) will
denote the set of prime torsion radicals \pi for which X_{\pi}\neq 0 . For a torsion
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radical \sigma , \sigma supp (X)=\{\pi\in supp(X)|\pi\geq\sigma\} . If \pi is a prime torsion radical
defined by a monoform module M and \pi\in\sigma-supp (X), then X_{\pi}\neq 0 implies
\pi X\neq X, and so there exists a nonzero homomorphis m f:Xarrow E(M), which
shows that X/ker(f) contains a submodule isomorphic to a nonzero sub-
module of M, and thus \pi\in ass(X/Y) for a \sigma-closed submodule Y\subseteq X. Note
that if Y is an essential submodule of X, then ass (Y)=ass(X), since any
nonzero submodule of a monoform module is again monoform. A nonzero
module M is called prime if Ann (N)=Ann(M) for each nonzero submodule
N\subseteq M ; in this case Ann (M) must be a prime ideal. The set of prime
ideals P such that P=Ann(M) for a prime submodule M of X will be
denoted by ASS (X); the set of prime ideals P such that P\in ASS(X/Y)

for some submodule Y\subseteq X will be denoted by SUPP (X).

The Krull dimension of a module RX (see [9]) will be denoted by
K-dim (X), and is defined by transfinite recursion, as follows: if X is
Artinian, then K-dim (X)=0 ; if \alpha is an ordinal and K-dim (X)\{\alpha, then
K-dim (X)=\alpha if there is no infinite descending chain X=X_{0}\supset X_{1}\supset\cdots of
submodules X_{i} such that for i=1,2, \cdots K-dim (X_{i-1}/X_{i})\{\alpha . The Krull
dimension of the ring R is defined to be K-dim (_{R}R) . Any left Noetherian
ring has Krull dimension, and many of the properties of Noetherian rings
hold more generally for rings with Krull dimension. In particular, if N
denotes the prime radical of R, then N is nilpotent and R/N is semiprime
Goldie. This can be used to show that if R has Krull dimension, then
every proper torsion radical of R-Mod is contained in a maximal torsion
radical, and the maximal torsion radicals are precisely those defined by
the minimal prime ideals of R[2] . (Any semiprime Goldie ring satisfies
the condition [3], and the lattice of torsion radicals for R is isomorphic
to that of R/N, since N is nilpotent.) If RX has Krull dimension, then
every nonzero submodule of X contains a monoform submodule [9, TheO-
rem 2. 1 and Corollary 2. 5], and if R has Krull dimension, then every
nonzero submodule of X contains a prime submodule [9, Theorem 8. 3].
Thus any indecomposable injective module over a ring with Krull dimension
defines a prime torsion radical, and both ass (X) and ASS (X) are nonempty
for any nonzero module over a ring with Krull dimension.

If R is left Noetherian, it is said to be left fully bounded if for each
prime ideal P of R, every essential left ideal of the ring R/P contains
a nonzero tw0-sided ideal. It is well-known that this condition holds if
and only if the map which assigns to each indecomposable injective left
R-module its associated prime ideal is a bijection between the set of
isomorphism classes of indecomposable injective modules and the set of
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prime ideals of R. In this case, if RM is monoform, then rad_{E(M)}=rad_{E(R/P)}

for \{P\}-- ASS (M), so that prime torsion radicals just correspond to prime
ideals. It is also well-known that a left Noetherian ring R is left fully
bounded if for each finitely generated module RX there exist elements
x_{1} , x_{2}, \cdots , x_{n}\in X such that Ann (X)=Ann(X_{1}, X_{2}^{ },\cdots, X_{n}) . Recently Cauchon
[5] has shown that the converse holds (his result will be generalized in
section 2).

\S 1. On the maximal elements of supp (X)

Goldman has shown that the localization X_{\sigma} of a finitely generated
module RX over a left Noetherian ring has a composition series in R-
Mod/\sigma if and only if \sigma-supp (X) is finite and every element in \sigma supp (X)
is maximal in \sigma-supp (X). This raises the following question [8, p. 329]:

when does supp (X) have finitely many maximal elements, for a finitely
generated module X? Using the fact that supp (R) has finitely many
maximal elements when R is left Noetherian, Goldman has shown that
a left Noetherian ring is left Artinian if and only if every prime torsion
radical of R-Mod is maximal. Theorem 1. 1 extends this result to rings
with Krull dimension, giving an easy proof which does not depend on the
machinery of Goldman’s paper.
THEOLEM (1. 1) If R has Krull dimension on the left, then R is left
Artinian if and only if every prime torsion radical of R-Mod is maximal.
PROOF. If R is left Artinian, then each prime torsion radical of R-Mod
is defined by a simple module, so it is minimal in the set of prime torsion
radicals.

Conversely, assume that every prime torsion radical of R-Mod is
maximal. Since R-Mod has only finitely many maximal torsion radicals,
by assumption it must have only finitely many prime torsion radicals. In
particular, there must be only finitely many isomorphism classes of simple
modules, defining torsion radicals \{\mu_{i}\}_{i=1}^{n} . If RM is monoform, then \bigcap_{\dot{t}=1}^{n}

\mu_{i}(M)=0 since the direct sum of the injective envelopes of simple modules
from each isomorphism class is a cogenerator for R-Mod. Thus \mu_{i}(M)=0

for some i, since M is uniform and \mu_{i}(M)\neq 0 for all i implies \bigcap_{i=1}^{n}\mu_{i}(M)

\neq 0 . Thus rad_{E(M)}\geq\mu_{i} , which implies by assumption that rad_{E(M)}=\mu_{i} , so
M contains a minimal submodule. This shows that every nonzero left
R-module contains a minimal submodule, and for a ring with Krull dimen-
sion this implies that R is left Artinian. In fact, if A_{1}\supseteq A_{2}\supseteq\cdots is a de-
scending chain of left ideals of R, let A= \bigcap_{i=1}^{\infty}A_{i} . Then R/A has an
essential socle which must be finitely generated, since any module with
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Krull dimension has finite uniform dimension, and it is easy to check that
A=A_{n} for some n.
Lemma (1. 2) If RX can be embedded in a fifinite direct sum of copies of
RY, then \sigma-supp (X)\subseteq\sigma-supp (Y), for any torsion radical \sigma .
PROOF. Assume that there exists an embedding f:Xarrow Y^{n} for some n. If
Y is \pi-torsion for a prime torsion radical \pi, then Y^{n} is \pi torsion and so
is X, since the class of \pi-torsion modules is closed under direct sums and
submodules. Thus if \pi\in\sigma-supp (X), then \pi\geq\sigma and \pi X\neq X, so \pi Y\neq Y and
\pi\in\sigma-supp (Y),

THEOREM (1. 3) Let RX be a module with Krull dimension for which
there exist elements x_{1} , x_{2} , \cdots , x_{n}\in X such that Ann(X)=Ann(x_{1}, \cdots, x_{n}) .
Then supp (X) has only fifinitely many maximal elements, which are defifined
by the prime ideals minimal over Ann(X).
PROOF. If Ann (X)=Ann(x_{1^{ }},\cdots, x_{n}), then there exists an “embedding” f :
R/Ann(X)arrow X^{n} defined by f(r)=(rx_{1}, rx_{2}, \cdots, rx_{n}) for r\in R/Ann(X) . By the
preceding lemma, supp (R/Ann(X))\subseteq supp(X) . Since X is an
R/Ann(X)-module, the reverse inclusion also holds. Since RX has Krull
dimension, the existence of the embedding implies that R/Ann(X) has Krull
dimension, so supp (X)=supp(R/Ann(X)) has only finitely many maximal
elements, which are defined by the minimal prime ideals of R/Ann(X).
COROLLARY (1. 4) Let RX be fifinitely generated. Then supp(X) has only
finitely many maximal elments in any one of the following cases.

(a) R is commutative and has Krull dimension.
(b) R is left fully bounded and left Noetherian.
(c) R is left and right Noetherian and X is torsionless.

PROOF. (c) Recall that a module X is called torsionless if for each 0\neq x

\in X there exists f\in Hom_{R}(X, R) such that f(x)\neq 0 . If X is torsionless, let
A be the sum in R of all homomorphic images of X. Then if R is right
Noetherian it must satisfy the descending chain condition for left annihi-
lators, so there must exist elements a_{1} , \cdots , a_{n}\in A with Ann (A)=Ann(a_{1}, \cdots ,
a_{n}) . By the definition of A, a_{i}= \sum_{f=1}^{k}f_{if}(x_{if}) for x_{ij}\in X and f_{ij}\in Hom_{R}(X,
R). If rx_{if}=0 for all i, j, then ra_{i}=0 for all i, and thus rA=0, so if rx
\neq 0 for some 0\neq x\in X, then since X is torsionless there exists f:Xarrow R
with rf(x)=f(rx)\neq 0, a contradiction. Thus X satisfies the condition of
Theorem 1. 3, with Ann (X)=Ann(\{x_{ij}\}).

\S 2. Fully bounded modules

PROPOSITION (2. 1) Assume that R has Krull dimension on the left. The
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following conditions are equivalent for a module RX and a torsion radical \sigma.
(1) Every prime torsion radical in \sigma-supp (X) is defifined by its assO-

ciated prime i&al.
(2) If Y is a \sigma-closed submodule of X and M\subseteq X/Y is monoform

and prime, then there exist elements m_{1}, \cdots , m_{n}\in M such that Ann(M)=
Ann(m_{1^{ }},\cdots, m_{n}) .

(3) If Y is a \sigma-closed submodule of X, then every nonzero fifinite
dimensional submodule of X/Y contains an essential submodule W with
Ann ( W)=Ann(w_{1^{ }},\cdots, w_{n}) for some elements w_{1} , \cdots , w_{n}\in W.
PROOF. If \pi is a prime torsion radical defined by a monoform module M,
then ASS (M)=\{P\rangle for some prime ideal P, since R has Krull dimension,
and P is uniquely determined by \pi.

(1)\Rightarrow(2) . Let Y\subseteq X be \sigma-closed, and let M\subseteq X/Y be monoform and
prime, with Ann (M)=P. Then M defines a prime torsion radical \pi\geq\sigma,
so by assumption \pi is defined by E(R/P). Therefore M_{\pi} must be isomor-
phic to U_{\pi} for some uniform left ideal U of R/P, and we may assume
that U is isomorphic to a submodule of M. Since R/P is a prime Goldie
ring, it satisfies the descending chain condition for left annihilators, so
there must exist u_{1} , \cdots , u_{n}\in U with P=Ann(u_{1}, \cdots, u_{n}) . If m_{1} , \cdots , m_{n} are
the images of u_{1} , \cdots , u_{n} under the monomorphism from U to M, then
Ann (M)=Ann(m_{1^{ }},\cdots, m_{n}) since M is prime.

(2)\Rightarrow(3) . If Y\subseteq X is \sigma-closed, then each nonzero finite dimensional
submodule of X/Y contains an essential direct sum M_{1}\oplus\cdots\oplus M_{n} of mon0-
form, prime submodules, since R has Krull dimension. We can apply
condition (2) to each submodule M_{i} .

(3)\Rightarrow(1) . If \pi\in\sigma-supp (X) then \pi is defined by a monoform, prime
module M\subseteq X/Y for some Y\subseteq X. Since \pi\geq\sigma, we have \sigma M=0, and then
since M\cap\sigma(X/Y)=0 we can assume that Y is \sigma-closed. By assumption
M contains a nonzero submodule W with Ann (W)=Ann(w_{1^{ }},\cdots, w_{n}) for
some w_{1}, \cdots , w_{n}\in W. Since M is prime, P=Ann(W)=Ann(M) is prime,
and the induced embedding of R/P into M^{n} implies that E(R/P) must be
isomorphic to a direct summand of E(M)^{n} . Applying the Krull-Remak-
Schmidt-Azumaya theorem shows that E(M) is isomorphic to a direct
summand of E(R/P), and so \pi is defined by E(R/P).
PROPOSITION (2. 2) The class of modules which satisfy the conditions of
Proposition 2. 1 is closed under formation of submodules, factor modules,
direct sums and {group) extensions.
PROOF. If Oarrow Yarrow X- Warrow 0 is an exact sequence of R modules, then
\sigma-supp (X)=\sigma-supp ( Y)\cup\sigma-supp ( W) . Furthermore, \sigma-supp ( \oplus_{\alpha\in A}X_{\alpha})=\bigcup_{\alpha\in A}
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\sigma supp (X_{a}) for any direct sum \oplus_{\alpha\in A}X_{\alpha} .
DEFINITION (2. 3) The module RX is said to be fully bounded if for each
prime ideal PeSUPP (X), every essential left ideal of the ring R/P contains
a nonzero tw0-sided ideal.
THEOREM (2. 4) Assume that R is left Noetherian. The following condi-
tions are equivalent for any fifinitely generated module RX.

(1) X is fully bounded.
(2) X satisfifies the conditions of Proposition 2. 1. for every torsion

radical \sigma .
(3) For each prime ideal PeSUPP(X), R/P is left fully bounded.

PROOF. (1)\Rightarrow(2) . If M\subseteq X/Y is monoform and prime, with Ann (M)=P,
then by assumption M is finitely generated and R/P is left bounded. If
Hom_{R}(N, R/P)=0 for all N\subseteq M, then M is a singular R/P module and so
\bigcap_{i=1}^{n}Ann(m_{i})/P is essential in R/P, for the generators m_{1} , \cdots , m_{n} of M.
This contradicts the fact that Ann (M)=P, since by assumption there
exists an ideal I such that P_{\neq} \subset I\subseteq\bigcap_{i=1}^{n}Ann(m_{i}), and Ann (M) must contain
I. We must therefore have Hom_{R}(N, R/P)\neq 0 for some N\subseteq M. As in
the proof of Corollary 1. 4 (c), there exist elements x_{1} , \cdots , x_{n}\in N such that
Ann (X_{1}^{ },\cdots, x_{n})=P, so condition (2) of Proposition 2. 1 is satisfied.

(2)\Rightarrow(3) . Let P\in SUPP(X) , with P=Ann(W) for some monoform,
prime module WQX/Y. By condition (2) of Proposition 2. 1, we can
assume that there exist elements w_{1} , \cdots , w_{n}\in W such that P=Ann(w_{1} , \cdots ,
w_{n}), so that there is an embedding R/Parrow W^{n} . Let E be an indecomposable,
injective R/P-module, and let \pi be the prime torsion radical of P-Mod
which is defined by E. Then by Lemma 1. 2, supp (R/P)\subseteq supp(W)\subseteq

supp (X), so \pi is defined by its associated prime ideal since X satisfies
condition (1) of Proposition 2. 1, and the associated prime ideal contains
P. This establishes the necessary bijection between isomorphism classes
of indecomposable injective R/P-modules and prime ideals containing P, so
R/P must be left fully bounded.

(3)\Rightarrow(1) . This follows immediately from the definition.
COROLLARY (2. 5) If R is left Noetherian, then the following conditions
are equivalent for any fifinitely generated module RX.

(1) R/Ann(X) is fully bounded.
(2) For each sub-factor module W\subseteq X/Y there exist elemmts w_{1} , \cdots ,

w_{n}\in W such that Ann(W)=Ann(w_{1^{ }},\cdots, w_{n}) .
(3) X is fully bounded and there exist elements x_{1}, \cdots , x_{n}\in X such that

Ann(X)=Ann(X_{1}^{ },\cdots, X_{n}) .
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COROLLARY (2. 6) Let R be left Noetherian and let RX be a fifinitely gen-
erated module which is \sigma-torsion for the torsion radical \sigma . If X is fully
bounded, then every prime ideal in SUPP(X) is \sigma-dense in R.
PROOF. If PeSUPP(X), then R/P can be embedded in a \sigma-torsion module,
so P must be a-dense.

\S 3. On the relationship between supp (\bm{X}) and ass (\bm{X})

Throughout this section it will be assumed that each nonzero left R-
module contains a monoform submodule, so that ass (X)\neq\phi if X\neq 0 .

A submodule Y\subseteq X is said to be essentially closed in X if Y has no
proper essential extension in X. Note that in this case, if W is maximal
in the set of submodules of X which intersect Y trivially, then the image
of W in X/Y is an essential submodule. A torsion radical \sigma is called
stable if the class of \sigma-torsion modules is closed under injective envelopes.
This happens if and only if for each module RX, the \sigma-torsion submodule
\sigma X is essentially closed in X [10, Chapter VI, Proposition 7. 1].

PROPOSITION (3. 1) For a module RX and torsion radical \sigma , the following
conditions are equivalent.

(1) For each submodule Y\subseteq X, ass(Y_{\sigma})=\{\pi\in ass(Y)|\pi\geq\sigma\} .
(2) \sigma X is essentially closed in X.

PROOF. (1)\Rightarrow(2) . If \sigma X is essential in Y\subseteq X, then ass (Y)=ass(\sigma X), so
by assumption ass (Y_{\sigma})=\{\pi\in ass(\sigma X)|\pi\geq\sigma\}=\phi . This implies that Y_{\sigma}=0, so
Y=\sigma Y=\sigma X.

(2)\Rightarrow(1) . Let Y\subseteq X, and let W\subseteq Y be maximal in the set of sub-
modules whose intersection with \sigma Y is trivial. Then the image of W in
Y/\sigma Y is essential, so ass (Y_{\sigma})=ass(Y/\sigma Y)=ass(W)\subseteq ass(Y) . If \pi\in ass(Y_{\sigma}) is
defined by a monoform submodule M\subseteq W, then \sigma M=0 implies \pi\geq\sigma .
Conversely, if \pi\in ass(Y) and \pi\geq\sigma , then \pi is defined by a monoform
submodule M\subseteq Y with M\cap\sigma Y=0 . Thus mapping both M and W into
Y/\sigma Y shows that M contains a submodule isomorphic to a submodule of
W, so \pi\in ass(W)=ass(Y_{\sigma}) .
COROLLARY (3. 2) The torsion radical \sigma is stable if and only if ass(X_{\sigma})=

\{\pi\in ass(X)|\pi\geq\sigma\} for every module RX.
PROPOSITION (3. 3) The following conditions are equivalent for any module
RX and any torsion radical \sigma .

(1) For each submodule Y\subseteq X, \pi\in\sigma supp (Y)\mapsto-\cdot\sigma\leq\pi\leq\tau for some \tau\in

ass(Y).
(2) \rho X is essentially closed in X for all torsion radicals \rho\geq\sigma .
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(3) \pi X is essentially closed in X for all \pi\in\sigma-supp (X).
(4) For each submodule Y\subseteq X and each \pi\in\sigma-supp (X), ass(Y_{\pi})=\{\tau\in

ass(Y)|\tau\geq\pi\} .
PROOF. (1)\Rightarrow(2) . Suppose that \rho\geq\sigma and \rho X is an essential submodule of
Y\subseteq X. Then \rho X\subset Y\neq implies that there exists \pi\in ass(Y/\rho X)\subseteq\rho-supp (Y)\subseteq

\sigma-supp (Y). By assumption, \pi\leq\tau for some \tau\in ass(Y)=ass(\rho X) . This is
a contradiction since \tau\geq\pi\geq\rho .

(2)\Rightarrow(3) . This follows immediately from the definition of \sigma-supp (X).
(3)\Rightarrow(4) . This follows from Proposition 3. 1.
(4)\Rightarrow(1) . If \pi\in\sigma-supp (Y), then Y_{\pi}\neq 0, so there exists \pi\in ass(Y_{\pi}), with

\tau\geq\pi since Y_{\pi} is \pi-torsionfree. Then by assumption \tau\in ass(Y) . The con-
verse is obvious.

Several results can be deduced immediately from Proposition 3. 3.
The torsion radical \sigma is stable if every prime torsion radical \pi\geq\sigma is stable.
Every torsion radical of R- Mod/\sigma is stable if every \sigma-torsionfree module
satisfies the conditions of Proposition 3. 3. The conditions of Proposition
3. 3 hold for every finite dimensional module and every torsion radical if
and only if for any indecomposable injective module RE and any prime
torsion radical \pi, either \pi E=0 or \pi E=E.

Let R be left Noetherian. Then a tw0-sided ideal I of R is said to
have the AR-property with respect to a finitely generated module RX if
for each submodule Y\subseteq X and each integer n>0 , there is an integer
h(n)>0 such that I^{h(n)}X\cap Y\subseteq I^{n}Y. If I has the AR-property with respect
to RR, it is simply said to have the AR-property. A finitely generated
module RX is called an Artin-Rees module if every ideal of R has the
AR-property with respect to X. Note that if I has the AR property with
respect to X, then it also has the property with respect to any submodule
or factor module of X. The first assertion is easily verified; to check the
second, suppose that Y/W\subseteq X/W. For each n there exists h(n) with
I^{h(n)}X\cap Y\subseteq I^{n}Y, and so I^{h(n)}(X/W)\cap(Y/W)=(I^{h(n)}X+W)/W\cap(Y/W)\subseteq

((I^{h(n)}X\cap Y)+W)/W\subseteq(I^{n}Y+W)/W=I^{n}(Y/W) .
PROPOSITION (3. 4) Let R be left Noetherian, let I be any ideal of R, and
let \sigma be the torsion radical defifined by the powers of I. Then I has the
ARproperty with respect to a fifinitely generated module RX if and only
if \sigma(X/Y) is essentially closed in X/Y, for every factor X/Y of X.
PROOF. Since R is left Noetherian, \sigma X= {x\in X|I^{n}x=0 for some n } defines
a torsion radical of R-Mod. If \sigma(X/Y) is essentially closed in X/Y for
every factor of a fixed module X, then suppose that n>0 and Y\subseteq X are
given. Since I^{n}Y\cap Y=I^{n} Y, the set of submodules W of X such that
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W\cap Y=I^{n}Y is nonempty, and the set must have a maximal element since
we assume that X is finitely generated and therefore Noetherian. If W is
maximal in this set, then X/W must be an essential extension of Y+W/
W_{-}^{\sim}Y/I^{n} Y, which is \sigma-torsion. By assu mption X/W must be a-torsion,
and then since X is finitely generated we must have I^{m}(X/W)=0 for some
m>0, that is, I^{m}X\subseteq W, so that ImXnY\subseteq W\cap Y=I^{ll} Y.

Conversely, suppose that I has the AR-property with respect to X.
Then since I has the same property with respect to every factor module
of X, it is sufficient to show that \sigma X is essentially closed in X. If \sigma X is
essential in Y\subseteq X, then I^{n}(\sigma X)=0 since \sigma X is finitely generated, so for
some m, I^{m}Y\cap\sigma X\subseteq I^{n}(\sigma X)=0 . Thus I^{m}Y=0 and Y is \sigma-torsion, so we
may conclude that Y=\sigma X.

It follows from Proposition 3. 4 that an ideal I has the AR-property
if and only if the associated torsion radical \sigma is stable. (If I has the
AR-property, \sigma X=X, and y\in E(X), then Ry is essential over \sigma Ry=Ry\cap

\sigma X, so \sigma Ry=Ry and thus \sigma E(X)=E(X).) From this it follows, since R
is left Noetherian, that I has the AR-property if and only if for any
indecomposable injective module RE, either \sigma E=0 or \sigma E=E.
PROPOSITION (3. 5) If R is left N_{1}oetherian , then the following conditions
are equivalent for a fifinitely generated module RX.

(1 ) X is an Artin-Rees module.
(2) For each submodule Y\subseteq X, \sigma(X/Y) is essentially closed in X/Y

for any bounded torsion radical \sigma .
PROOF. (1)\Rightarrow(2) . Let \sigma be abounded torsion radical, that is, assume that
every \sigma-dense left ideal contains a \sigma-dense tw0-sided ideal. It is sufficient
to show that \sigma X is essentially closed in X, so suppose that \sigma X is essential
in Y\subseteq X. Then since X is Noetherian, there exist submodules \{Y_{i}\}_{i=1}^{n} of
Y such that Y/Y_{i} is uniform, \bigcap_{i=1}^{n}Y_{i}=0, and Y is an essential submodule
of the subdirect sum \oplus_{i=1}^{n}Y/Y_{i} . If P_{i} is the associated prime ideal of Y/
Y_{i} , with P_{i}=Ann(M_{i}) for M_{i}\subseteq Y/Yt then P_{i}^{m(i)}(Y/Y_{i})=0 for some m(i)>
0, since X is an Artin-Rees module [10, Chapter VII, Proposition 4. 3].
Now P_{i}=Ann ( W_{i}) for W_{i}=M_{i}\cap\sigma(Y/Y_{i}) , since W_{i} is nonzero (because
\oplus_{i=1}^{n}Y/Y_{i} is an essential extension of \sigma X ). Furthermore, P_{i} is the largest
ideal which annihilates the generators of W_{i} , so P_{i} must be \sigma-dense be-
cause \sigma is bounded (the intersection of finitely many left annihilators of
elements of a \sigma-torsion module is always \sigma-dense). Thus D=II_{i=1}^{n}P_{i}^{m(i)} is
a \sigma-dense ideal with DY=0, so Y is \sigma torsion and Y=\sigma X.

(2)\Rightarrow(1) . This follows from Proposition 3. 4, since for any ideal I,
the torsioh radical defined by powers of I is bounded.



26 J. A. Beachy

THEOREM (3. 6) Let R be left Noetherian. If RX is a fifinitely generated,
fully bounded, Artin-Rees module, then the following conditions hold.

(a) \pi\in supp(X)=, \pi\leq\tau for some \tau\in ass(X) .
(b) For any torsion radical \sigma, ass(X_{\sigma})=\{\pi\in ass(X)|\pi\geq\sigma\} .
(c) For any torsion radical \sigma, \sigma X is essentially closed in X.

PROOF. By Proposition 3. 3 it is sufficient to show that condition (c)
holds. The proof is exactly the same as the proof that (1)\Rightarrow(2) in pro of
sition 3. 5, with the one exception that the prime ideals P_{i} must be shown
to be \sigma-dense by using Corollary 2. 6.

Actually, Theorem 3.6 could be stated in a much stronger form. Any
submodule or homomorphic image of X must also satisfy conditions (a)-
(c), and condition (a) could be stated in terms of \sigma-supp (X) for any torsion
radical \sigma . Since X is assumed to be fully bounded, supp (X) could also
be replaced by SUPP (X).

COROLLARY (3. 7) If RX is a fifinitely generated, fully bounded, Artin-Rees
module over a left Noetherian ring, then supp(X) has only fifinitely many
maximal elements.
PROOF. The maximal elements of supp (X) must belong to ass (X), which
is finite.
COROLLARY (3. 8) If RX is a fifinitely generated, Artin-Rees module over
a fully bounded left Noetherian ring, then any prime ideal minimal over
Ann(X) is an associated prime ideal of X.
PROOF. If P is a prime ideal minimal over Ann (X), then P defines a
maximal element of supp (X), by Theorem 1. 3. By Theorem 3. 6, P must
belong to ass (X).

If R is left Noetherian and left fully bounded, then it can be shown
that every torsion radical of R-Mod is bounded. Thus Propositions 3. 5
and 3. 3 can be used to characterize Artin-Rees modules over such rings.
If RX is finitely generated, then it is an Artin-Rees module if and only if
for each module W\subseteq X/Y, \pi\in supp(W)\Leftrightarrow\pi\leq\tau\in ass(W) . As the following
example shows, it is not sufficient to only require the condition on supp
(X). Let F be a field and let R be the ring of lower triangular matrices
\{(\begin{array}{l}a0bc\end{array})\} over F. Let A=\{ (\begin{array}{l}a0b0\end{array})\} and let B=\{ (\begin{array}{l}00b0\end{array})\} . then R-Mod has two

prime torsion radicals, defined by the simple modules A/B and B, and if
X=A\oplus A/B, then supp (X) satisfies the desired condition, but X is not an
Artin-Rees module because AB=0 while A^{n}A\cap B=A\cap B=B for all n>0 .
As was shown by Goldman [8, p. 338], supp {A) does not satisfy the desired
condition, even though A is a direct summand of X.
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The conditions “fully bounded” and “Artin-Rees” are independent.
As shown above, a module may be fully bounded but not Artin-Rees. On
the other hand, any simple module S is obviously an Artin-Rees module,
but it is fully bounded if and only if R/Ann(S) is simple Artinian.
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