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A commutativity theorem for left s-unital rings

By Yasuyuki Hirano
(Received April 2, 1978)

Throughout R will represent a ring, and N the set of all nilpotents of
R. Following [5], R is called a left s-unital ring if for each &R there
exists an element e such that ex=x. As was shown in [5, Theorem 1],
if Fis a finite subset of a left s-unital ring R then there exists e€R such
that ex=x for all z&F.

In this note, we consider the following conditions :

1) For each z&R there exists a positive integer n such that z—z""'<

N.

') For each z&R there exist positive integers m and n such that
" — ™" e N.

1”) For each &R there exist a positive integer 7 and an element &/
in the subring [z] generated by z such that a"=a"*1x'.

1"") For each x&R there exists an element 2’ &[z] such that R vl o
&N.

2) xz—y€E€N and y—=z&N imply that 2?=2* or axy=yz.

2¢) x—yEN implies that 2?=y? or both x and ¥ are contained in
the centralizer Vz(N) of N in R.

2*%) x—ye&N implies that 2*=9* or xy=yz.

In general, 24)=>2)=2%), and 1)=1)>1")&1"). Moreover, 1=>1").
In fact, for any ' €[z] we have (z— 22 )"=(a"—a*"1&)—(2"— 2" &) 2"
with some 2’ €[z].

Recently, in [1, Theorem 2], we proved that if a left s-unital ring R
satisfies 1) and 2) then R is commutative. More recently, in [3, Theorem
2], D. L. Outcalt and A. Yaqub have proved that if a ring R with a left
identity satisfies 1”) and 24) then R is commutative. It is the purpose of
this note to present the following theorem which includes [1, Theorem 2]
as well as [3, Theorem 2].

TueoreEM. Let R be a left s-unital ring satisfying 2). Then each of
1), 1), 1), 1"") implies others and that R is commutative.

The next easy lemma is included in [1, Lemma 1].

LEMMA 1. Assume that R satisfies 2%).

(1) at€Ve(N) for each xER, especially every idempotent is central.
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(2) N is an ideal.

CoroLLARY 1. (1) If R contains 1 and satisfies 2) then N is a com-
mutative ideal.

(2) Let f be a ring homomorphism of R onto R*. If R satisfies 1)
and 2), then so does R*.

ProoF. (1) is evident from the proof of [1, Lemma 3].

(2) To our end, it suffices to prove that f(N) coincides with the set
N* of all nilpotents in R*. Let x* be an element of R* with z*"=0. Choose
an element xr&R with f(x)=x%, and an element 2’ &[x] with x—x*2'&N.
Then x— 212" =(x — 222 )tz (x— 222 )+ -+ +(z2d ) H{x—x2?2) €N by
Lemma 1 (2). Hence, 2*&f(N), proving N*=f(N).

LEMMA 2. Assume that a left s-unital ring R satisfies 1”). Then
every finite subset F of R is contained in a finitely generated subring with
a left identity.

Proor. There exists an element ¢ such that cx=ux for all x&F. Choose
an element d&[c] such that ¢"=c""'d for some positive integer n. Then
e=c"d" is an idempotent and ec®=c". Hence, ex=ec* x=c"x=x for all z&
F, whence it follows that e is a left identity of the subring [e, F].

CoroLLARY 2 (cf. [4, Corollary 3.5]). If R satisfies 2%), then 1""") im-
plies 1).

PrROOF. Since N is an ideal (Lemma 1 (2)), it suffices to prove the
assertion for the case N=0. Then R is evidently s-unital, and we may
assume further that R contains 1 (Lemmas 2 and 1 (1)). By 1), there
exists an integer k such that 2=4k (in R). As is well known, R is a sub-
direct sum of subdirectly irreducible rings R,(A=4). Noting that R, contains
no non-trivial idempotents, we can easily see that each non-zero element of
R, is a unit. Hence, each R, is a division ring. Evidently, the characteristic
of each R, is a divisor of 4k—2, so that one can easily see that for each
&R there exists a positive integer n such that x—a"*1=0.

Now, we are ready to complete the proof of our theorem.

ProorF oF THEOREM. Since 1), 1’), 1”) and 1"’) are equivalent by Co-
rollary 2, it suffices to prove that 1) implies the commutativity of R, which
is [1, Theorem 2] itself. However, for the sake of completeness, we shall
give here a somewhat elementary proof. By Lemmas 2 and 1 (1), an ar-
bitrary finite subset of R is contained in some finitely generated subring with
identity. Henceforth, in virtue of (2), we may restrict our atten-
tion to the case R is a finitely generated subdirectly irreducible ring with
1. Then, noting that R contains no non-trivial idempotents, we see that
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each element of R is either a nilpotent or a unit. By Jacobson’s theorem
(to which an elementary proof is given in [2]), R/N is a finite field of char-
acteristic p. By (1), the ideal N is commutative. Now, we shall
show that N is contained in the center of R. Suppose there exist &R
and sEN such that rs#sr. Since 2r=(14+7r2—1—1r2c Vz(N) by Lemma
1, there holds 2(rs—7s)=0. If p+2 then p(rs—sr)=(pr)s—s(pr)=0 and
2(rs—sr)=0 yield a contradiction rs—sr=0. If p=2 then r**—r&N for
some positive integer k. This together with 72s—s?=0 gives a contradic-
tion 0:(r2k~—r)s——s(rzk—r)———sr—rs. Hence, N is contained in the center of
R. Combining this with the fact that the multiplicative group of the finite
field R/N is cyclic, we readily see that R is commutative.
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