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Conformally flat Riemannian manifolds
of constant scalar curvature

By Sh\^ukichi TANNO
(Received July 9, 1979)

Introduction

N. Ejiri [3] showed the existence of compact Riemannian manifolds of
constant scalar curvature which admit non-homothetic conformal transforma-
tions. This is related to solutions of a non-linear differential equation (^{*})

and he did not give any concrete solutions.
Here we give explicit solutions of (^{*}) for the case of n=3 (Lemma 4).

This problem is also related to examples of compact or complete conformally
flat Riemannian manifolds of constant scalar curvature S. In \S 2 we show
concrete examples of such Riemannian manifolds (Theorems 6 and 7). These
show that S= constant (as one condition of weaker type of local hom0-
geneity) on a conformally flat Riemannian manifold does not imply local
homogeneity.

A K\"ahlerian analogue of conformal flatness is the vanishing of the
Bochner curvature tensor. In \S 3 we study some conditions weaker than
local homogeneity. Contrary to the conformally flat case, Theorems 8 and
11 show that S= constant or constancy of length of the Ricci curvature
tensor on a K\"ahlerian manifold with vanishing Bochner curvature tensor
imph.es local homogeneity.

The author is grateful to Professor J. Kato who gave a reduction of
(^{*}) to (^{**}) in Remark 3.

\S 1. Warped products.

Let (F, h) be an n-dimensional Riemannian manifold and f be a positive
function on an open interval I of a real line R. Consider the product I\cross

F with the projections \pi : I\cross F– I, and \eta:I\cross F- F. The space I\cross F with
the Riemannian metric

\langle X, Y\rangle_{(l,x)}=(\pi X, \pi Y)_{t}+f^{2}(\pi x)h_{x}(\eta X, \eta Y)

is called the warped product and is denoted by I\cross_{f}F, where X, Y are tangent
vectors at (t, x)\in I\cross F, and \pi , \eta denote also their differentials (cf. R. L.
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Bishop and B. O’Neill [2] ) . Let d/dt be a canonical unit vector field on
R and on I\cross_{f}F. Let R and R^{*} denote the Riemannian curvature tensors
of (F, h) and I\cross_{f}F, respectively, and let (d/dt, e_{1}, \cdots, e_{n}) be an orthonormal
basis of the tangent space (I \cross_{f}F)_{(t,x)} at (t, x) . The function f on I is na-
turally lifted to a function on I\cross F and we denote it by the same letter f.
The following Lemma 1 is verified by using relations between R and R^{*}

given in [2].

Lemma 1. We put f’=df/dt and f’=d^{2}f/dt^{2} .

\langle R^{*}(e_{a}, e_{b})e_{c}, e_{\iota l}\rangle=(1/f)^{2}h(R (\eta fe_{a} yfeb) \eta fe_{c} , \eta fe_{a})

-(f’/f)^{2}(\delta_{ac}\delta_{bd}-\delta_{ad}\delta_{bc}) ,

\langle R^{*}(e_{a}, e_{b})e_{c}, d/dt\rangle=0,\cdot

\langle R^{*}(d/dt, e_{a})d/dt, e_{b}\rangle=-(f’/f)\delta_{ab(}

Lemma 2. (Y. Ogawa [8], N. Ejiri [3]). Let S and S^{*} be the scalar
curvatures of (F, h) and I\cross_{f}F, respectively. Then

(*) S^{*}=-2n(f’/f)-n(n-1)(f’/f)^{2}+S(1/f)^{2} .

The theorem of N. Ejiri [3] is stated as follows: Let (F, h) be a com-
pact n-dimensional Riemannian manifold. Assume that the scalar curvature
S is constant and positive. Then for any positive real number S^{*} , there
exists a non-constant periodic and positive solution f of (^{*}) for I=R with
period t_{0} , and (M, \langle, \rangle)=(R/(t_{0}Z))\cross_{f}F is a compact Riemannian manifold
whose scalar curvature is S^{*} . Furthermore, the vector field X=fd/dt is an
infinitesimal non-homothetic conformal transformation on (M, \langle, \rangle) . Since M
is compact, X generates a 1-parameter group of conformal transformations
of (M, \langle, \rangle) . So it admits a non-homothetic conformal transformation.

By Lemma 4 in \S 2 we get an explicit example:

(M, \langle, \rangle)=(R/(2\pi Z))\cross_{f}F ,

f^{2}=\alpha sin t+S/3 ,

where (F, h) is a compact 3-dimensional Riemannian manifold of positive
constant scalar curvature S (for example, a Euclidean unit 3-sphere S^{3}(1) ,
where S=6) and \alpha is a constant such that 0<\alpha<S/3 .

\S 2. Conformally flat Riemannian manifolds.

REMARK 3. (J. Kato) If S and S^{*} are constant, (^{*}) is reducible to
the first order differential equation
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(^{**}) (f’)^{2}=Af^{1-n}-(S^{*}/n(n+1))f^{2}+(1/n(n-1))S ,

where A is a constant.
To prove this we put z=f^{n-1}(f’)^{2}. Since d(f’)^{2}/df=(d(f’)^{2}/dt)(dt/

df)=2f’\wedge,(^{*}) implies

dz/df=-(S^{*}/n)f^{n}+(S/n)f^{n-2}

Integrating the last equation we get

z=-(S^{*}/n(n+1))f^{n+1}+(S/n(n-1))f^{n-1}+A .

and hence we get (^{**}) .
Looking at (^{**}) we see that (^{*}) is explicitly solved if n=3 .
Lemma 3. For n=3, if S and S^{*} are constant, positive solutions of

(^{*}) are of the following forms:
f=[\alpha sin \theta(t+\beta)+S/S^{*}]^{1/2} for S^{*}>0 ,

f=[(S/6)t^{2}+\alpha t+\beta]^{1/2} for S^{*}=0 ,

f=[\alpha e^{\theta t}+\beta e^{-\theta t}+S/S^{*}]^{1/2} for S^{*}<0 ,

where \theta=(|S^{*}|/3)^{1/2} and \alpha, \beta are constant.
Furthermore, f is periodic and non-constant on I=R, if and only if

S>0 , S^{*}>0 , and 0<|\alpha|<S/S^{*} .
PROOF. We put w=f^{2} . Then (^{*}) is

3w’+S^{*}w=S .

This is a linear differential equation and we get solutions. Q. E. D.
Let (M, g) be a conformally flat m-dimensional Riemannian manifold.

Then the following results are known:
[i] If (M, g) is reducible, then (M, g) is locally one of the following

spaces :
E^{m}\tau E^{1}\cross S^{m-1}(c) , E^{1}\cross H^{m-1}(-c) ,

S^{p}(c)\cross H^{m-p}(-c) ; 2\leq p\leq m-2 ,

where E^{m}, S^{m}(c) and H^{n}(-c) denote simply connected space forms of con-
stant curvature 0, c>0 , and - c, respectively (M. Kurita [5]).

[ii] If M is compact, the fundamental group of M is finite and the
scalar curvature S is constant, then S is positive and (M, g) is of constant
curvature (S. Tanno [13]).

[iii] If M is compact, S is constant, and the Ricci curvature tensor is
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positive semi-definite, then (M, g) is covered by one of the following spaces;

E^{m}i E^{1}\cross S^{m-1}(c) , S^{m}(c)

Here, compactness of M is replaced by constancy of length of the Ricci
curvature tensor (P. J. Ryan [9]).

Lemma 5. Let I\cross_{f}F be a warped product of an open interval I of
R and a 3-dimensional Riemannian manifold (F, h) . If it is conformally
flat and has constant scalar curvature S^{*} , then (F, h) is of constant curvature
S/6 and f is one of the functions in Lemma 4.

PROOF. Since I is 1-dimensional, I\cross_{f}F is conformal to I x_{1}F . Thus,
I\cross_{1}F is conformally flat and (F, h) is of constant curvature by [i] . By Lemma
2, f satisfies (^{*}) , and so f is one of the functions in Lemma 4.

Q. E. D.
THEOREM 6. For positive real numbers S, S^{*} , and \alpha<S/S^{*} , we have

a compact conformally flat Riemannian manifold
S^{1}\cross_{f}(S^{3}(S/6)/\Gamma)

of constant scalar curvature S^{*} , where S^{1} is a circle of length 2 (3/S^{*})^{1/2}\pi ,
f^{2}=\alpha sin (S^{*}/3)^{1/2}t+S/S^{*} , and S^{3}(S/6)/\Gamma is a space form of positive curvature
S/6 .

Conversely, among warped products S^{1}\cross_{f}F {with non-constant f, con-
stant S, dim F=3), any compact conformally flat Riemannian manifold of
constant scalar curvature S^{*} is of the above form or its finite covering
manifold.

PROOF. This follows from Lemmas 4 and 5.

REMARK 7. The Ricci curvature of the space in Theorem 6 satisfies
the following:

R_{1}^{*}(e_{a}, e_{a})>0 (1 \leq a\leq 3) ,

R_{1}^{*}(e_{a}, e_{b})=0 (a\neq b) .
R_{1}^{*}(e_{a}, d/dt)=0 ,

and R_{1}^{*}(d/dt, d/dt) takes positive and negative values depending on t . The
sectional curvature K^{*}(e_{a}, e_{b}) is positive and K^{*}(e_{a}, d/dt) takes positive and
negative values depending on t . These are verified by Lemma 1 and the
explicity form of f.

THEOREM 7. Let (F, h) be a complete 3-dimensional Riemannian mani-
fold of constant scalar curvature S. Then R\cross_{f}F is a complete conformally
flat Riemannian manifold of constant scalar curvature S^{*} , if and only if
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(F, h) is of constant curvature S/6 and, putting \theta=(|S^{*}|/3)^{1/2} ,

(i) for the case of S^{*}>0 ;

f^{2}=\alpha sin \theta t+S/S^{*}-
,

S>0,0\leq\alpha<S/S^{*}j

(ii) for the case of S^{*}=0 ;

f^{2}=(S/6)t^{2}+\alpha t+\beta ,

\alpha, \beta satisfying one of (ii-l), (ii-2) :

(ii-l) 3\alpha^{2}<2\beta S , S>0 ,

(ii-2) \alpha=0 , \beta>0 , S=0 ,

(iii) for the case of S^{*}<0 ;

f^{2}=ae^{\theta l}+be^{-\theta l}+S/S^{*} .
a, b satisfying one of (iii-l), (iii-2), (iii-3), (iii-4):

(iii-l) a>0 , b=0 ?
S\leq 0 .

(iii-2) a=0 , b>0 , S\leq 0r

(iii-3) a>0 , b>0 , 2\sqrt{ab}>-S/S^{*}

(iii-4) a=0, b=0 , S<0t
PROOF. Completeness of R\cross_{f}F follows from completeness of R and

(F, h) . The remainder of proof follows from Lemmas 4 and 5.
Q. E. D.

By Theorems 6 and 7 we see that the condition of weaker type of
local homogeneity; constant, on a complete Riemannian manifold does
not imply local homogeneity.

So a question which is still open is: Is a complete conformally flat
Riemannian manifold with constant scalar curvature and constant length of
the Ricci curvature tensor locally homogeneous p.

P. J. Ryan’s result [iii] gives a partial answer for the case where the
Ricci curvature tensor is positive semi-definite.

U. Simon [10] gives also a partial answer.
If M is compact and the fundamental group of M is finite, constancy

of S implies local homogeneity as [ii] shows.
Locally homogeneous conformally flat Riemannian manifolds are locally

classified (cf. H. Takagi [11], D. V. Alekseevskii and B. N. Kimel’fel’d [1]).
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\S 3. K\"ahlerian manifolds with vanishing Bochner curvature tensor.

THEOREM 8. Let (M, J, g) be a complete and simply connected K\"a-

hlerian manifold with vanishing Bochner curvature tensor. If one of S,
(R_{1}, R_{1}) , and (R, R) is constant, then (M, J, g) is one of the following spaces:

Let (M, J, g) be a K\"ahlerian manifold of real dimension m=2n with
almost complex structure tensor J and K\"ahlerian metric tensor g. By R,
R_{1} and S we denote the Riemannian curvature tensor, the Ricci curvature
tensor and the scalar curvature of (M, g) , respectively. The Bochner cur-
vature tensor B has properties similar to those of the Weyl conformal cur-
vature tensor of a Riemannian manifold.

By (R, R) , (R_{1}, R_{1}) we denote the local inner products of R, R_{1} , respec-
tively. By (CP^{n}, H) , (CE^{n}, 0) and (CD^{n}, - H) we denote simply connected
complex space forms with constant holomorphic sectional curvature H>0 ,
0, and - H.

(CP^{n}, H) , (CE^{n}, 0) . (CD^{n}, - H) ,

(CP^{p}, H)\cross(CD^{n-p}, - H);1\leq p\leq n-1

If m=2n=2 Theorem 8 is trivial. So we assume that (M’, J, g) is a
K\"ahlerian manifold with B=0 and m\geq 4 . It is known that the condition
B=0 implies the following (cf. M. Matsumoto [6], p. 26)

(1) 2 (m+2)(\nabla_{Z}R_{1})(X, Y)=\nabla_{X}S\cdot g(Y, Z)+\nabla_{Y}S\cdot g(X, Z)

-\nabla_{JX}S\cdot g(Y, JZ)-\nabla_{JY}S\cdot g(X, JZ)+2\nabla_{Z}S\cdot g(X, Y)-
,

where X, Y, and Z are vector fields on M. Calculating (\nabla_{Z}R_{1}, R_{1}) we get

(2) (m+2)\nabla_{Z}(R_{1}, R_{1})=4R_{1} (Z, grad S) +2S\nabla_{Z}S,

where we have used R_{1}(JX, JY)=R_{1}(X, Y)

On the other hand, B=0 implies (cf. S. Tanno [14], p. 260)

(3) (R, R)-16 (m+4)^{-1}(R_{1}, R_{1})+8(m+2)^{-1}(m+4)^{-1}S^{2}=0

Lemma 9. Let q be a real number such that q\neq 2(m+6)/(m+2) . If
(4) 2 (m+2)(R_{1}, R_{1})-qS^{2}=constant ,

then S is constant.

PROOF. Operating \nabla_{Z} to (4) and applying (2) we get

(5) 4R_{1} (Z, grad S) =(q-2)S\nabla_{Z}S

Operating \nabla_{f} to (5) and applying (1) we obtain
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2 (m+2)^{-1}[(\nabla S, \nabla S)g(Y, Z)+3\nabla_{Y}S\nabla_{Z}S-\nabla_{JY}S\nabla_{JZ}S]

+4R_{1} (Z, \nabla_{Y} grad S) =(q-2)[Sg ( \nabla_{Y} grad S, Z) +\nabla_{Y}S\nabla_{Z}S]

Putting Y=Z=gradS and applying (5) we obtain

8 (\nabla S, \nabla S)^{2}=(q-2)(m+2)(\nabla S, \nabla S)^{2} .
Thus, q\neq 2(m+6)/(m+2) implies \nabla S=0 . Q. E. D.

Lemma 10. The following are equivalent:

(i) constant,

(ii) (R_{1}, R_{1}) constant,

(iii) (R, R) constant.

PROOF. Assume (i). Then (ii) follows from (2). Assume (ii). Then
(i) follows from Lemma 9 and q=0. (i) and (ii) imply (iii) by (3). Finally
assume (iii). Then (3) implies (4) for q=1 , and (i) follows from Lemma 9.

Q. E. D.
THEOREM 11. Let (M, J, g) be a K\"ahlerian manifold with B=0. As-

sume one of the conditions (i), (ii) and (iii) of Lemma 10. Then (M, J, g)
is either

(a) of constant holomorphic sectional curvature, or

(b) locally a product (CP^{p}, H)\cross(CD^{n-p}, - H) .

PROOF. If S is constant, this is a Theorem of M. Matsumoto and S.
Tanno [7]. Thus, the remainder of proof follows from Lemma 10.

Q. E. D.
Proof of Theorem 8 is completed by Theorem 11.
REMARK 12. Theorem of K. Yano and S. Ishihara [15] follows from

our Theorem 8 under the weaker assumptions. Their method of proof is
based on Ryan’s one and so they assume compactness of M and positive
semi-definiteness of the Ricci curvature tensor.

Theorem 1 and Theorem 2 of Y. Kubo [4] follows from our Theorem
8, because the assumption (R_{1}, R_{1})<S^{2}/(m-1) is stronger than the assumption
that the Ricci curvature tensor is definite (cf. S. Tanno [12], p. 42).
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