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Throughout K will represent an algebraically closed field of characteristic
p>0 , and G a group. We denote by G’ , Z(G) and P the commutator
subgroup, the center and a Sylow p-subgroup of G respectively. For x\in G,
C_{x} is the conjugacy class of G containing x. Given a finite subset S of G,
we denote by \hat{S} the element \sum_{x\in S}x of the group algebra KG. If R is a
ring (with identity), then Z(R) and J(R) denote the center and the (Jacobson)
radical of R respectively, and N(R) is the sum of all the nilpotent ideals of R.

In case G is a finite p-solvable group, R. J. Clarke [1] gave a necessary
and sufficient condition for J(Z(KG)) to be an ideal of KG. Recently, S.
Koshitani [2] proved that if G is finite and J(Z(KG)) is an ideal of KG
then G is p-solvable. Hence, in case G is finite, the problem to find a
necessary and sufficient condition for J(Z(KG)) to be an ideal of KG has
been solved completely. In this paper, we consider this problem for infinite
groups, and give an answer for poly- p’ } groups.

At first we recall the following
THEOREM 1 (Passman [5, Lemma 4. 1. 11]). J(KG)\cap Z(KG)=J(Z(KG)) .
Now, by making use of the same argument as in the proof of [1,

Lemma 4], we shall prove the next

Lemma 1. Suppose that J(Z(KG)) is an ideal of KG. Then the fol-

lowing statements hold:
(1) If G’ is an infifinite group, then J(Z(KG))=0.
(2) If G’ is a fifinite group with p\parallel|G’| , then J(Z(KG))=G’J(KG) .
(3) If G’ is a fifinite group with p||G’| , then J(Z(KG))=\hat{G}’KG .
PROOF. Since J(Z(KG)) is an ideal of KG, for x, y\in G and a\in

J(Z(KG)) we have

(x^{-1}y^{-1}xy)a=x^{-1}y^{-1}(ya)x=x^{-1}ax=a1

Hence ga=a for all g\in G’ . Therefore it is easily seen that if G’ is infinite



On the Jacobson radical of the center of an infifinite group algebra 255

then J(Z(KG))=0, and that if G’ is finite then J(Z(KG))\subset G’KG . Now,
we assume that G’ is finite. If p \int|G’| , then e=|G’|^{-1}\hat{G}’ is a central idem-
potent of KG and we have J(Z(KG))\subset eJ(KG) . Since eKGaZ(KG), by
Theorem 1 we have eJ(KG)=J(eKG)\subset J(Z(KG)) . Hence it holds that
J(Z(KG))=eJ(KG)=G’J(KG) . Next, if p||G’| , then \hat{G}’ is a central nilpotent
element of KG, and so G’\in J(Z(KG)) . Thus, we have J(Z(KG))=G’KG.

We call a group H a p’ -group if H has no elements of order p. Now,
we put

\Delta(G)= {x\in G|[G:C_{G}(x)] is finite}.
\Delta^{+}(G)= {x\in\Delta(G)|x is of finite order}.
\Delta^{p}(G)=\langlex\in\Delta(G)|x is of order a power of p\rangle .

These are characteristic subgroups of G, and have the following properties
([5, Lemma 8. 1. 6]).

(i) \Delta(G)/\Delta^{+}(G) is torsion free abelian.
(ii) \Delta^{+}(G)/\Delta^{p}(G) is a locally finite p’-group.

A group G is said to be an FC (finite conjugate) group if G=\Delta(G) . The
following theorem plays an important role in our subsequent study.

THEOREM 2 (Passman [5, Theorem 4. 2. 13]). The following statements
are equivalent :

(1) KG is semi-prime.
(2) Z(KG) is semi-prime.
(3) Z(KG) is semi-simple.
(4) G has no fifinite normal subgroups H with p||H| .
(5) \Delta(G) is a p’ -group.
Combining Theorem 2 with Lemma 1, we can now obtain the following
COROLLARY 1. Let G be a non-abelian group with G’ infifinite. Then

the following statements are equivalent:
(1) J(Z(KG)) is an ideal of KG.
(2) J(Z(KG))=0 .
(3) G has no fifinite normal subgroups H with p||H| .
Henceforth, we may therefore restrict our attention to the case that

G’ is finite. Note that if G’ is finite then G is an FC group. Theorem
2 together with Theorem 1 and [5, Lemma 8. 1. 8] deduces the following

COROLLARY 2. Let G be an FC group. Then KG is semi-simple if
and only if Z(KG) is semi-simple.

Now, by making use of the same argument as in the proof of [5,
Lemma 8. 1. 8], we shall prove the following lemma, which implies the if
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part in the above corollary for a twisted group algebra (see Corollary 3
below).

Lemma 2. Let G be an FC group, and K^{t}G a twisted group algebra

of G. Then J(K^{t} G)=N(K^{t} G) .
PROOF. Since G/\Delta^{+}(G) is a torsion free abelian group, by [3, Corollary

1. 11] we have J(K^{t}G)\subset J(K^{t}\Delta^{+}(G))K^{t}G . Let a\in J(K^{t}\Delta^{+}(G)) , and put L=
\langle \Delta^{p}(G) , Supp a\rangle . Since \Delta^{+}(G)/\Delta^{p}(G) is a locally finite p’ group, L/\Delta^{p}(G) is
a finite p’ -group. Hence, by [3, Proposition 1. 5] we see that a\in J(K^{t}\Delta^{+}(G))

\cap K^{t}L\subset J(K^{t}L)=J(K^{t}\Delta^{p}(G))K^{t}L . Therefore, by [3, Theorem 3. 7], we
have J(K^{t}G)\subset J(K^{t}\Delta^{+}(G))K^{t}G\subset J(K^{t}\Delta^{p}(G))K^{t}G=N(K^{t}G) , namely, J(K^{t}G)

=N(K^{t}G) .
COROLLARY 3. Let G be an FC group, and K^{t}G a twisted group

algebra of G. If Z(K^{t}G) is semi-simple, then K^{t}G is semi-simple.

PROOF. Suppose J(Z(K^{t}G))=0 . Then K^{t}G is semi-prime by [4, TheO-
rem 2. 2]. Hence N(K^{t}G)=0 , and so J(K^{t}G)=0 by Lemma 2.

Now, we shall prove the following

Lemma 3. Let G be an FC group, and Na fifinite normal p’ -subgroup

of G. If (1-e) J(Z(KG))=0, then (1-e) J(KG)=0, where e=|N|^{-1}\hat{N}.
PROOF. Evidently, f=1-e is a central idempotent of KG. Let f=f_{1}+

f_{2}+\cdots+f_{n} be the decomposition of f into the sum of orthogonal central
primitive idempotents in KN, and let f_{*} be an arbitrary one of \{f_{i}|1\leqq i\leqq n\} .
Suppose Suppf_{*}=\{x_{1}, x_{2^{ }},\cdots, x_{k}\} and set W= \bigcap_{i=1}^{k}C_{G}(x_{i}) . Since G is an
FC group, [G:W] is finite. We put H=\{g\in G|gf_{*}g^{-1}=f_{*}\} . Then H
contains W, and so [G:H] is finite. Now, let G=a_{1}H\cup a_{2}H\cup\cdots\cup a_{s}H be
the decomposition of G into right cosets with respect to H. Then a_{j}f_{*}a_{j}^{-1}

(1\leqq j\leqq s) is some one of \{f_{i}|1\leqq i\leqq n\} . We put \tilde{f}_{*}=\sum_{j=1}^{s}a_{f}f_{*}a_{j}^{-1} . Then
\tilde{f}_{*} is a central idempotent of KG, and by [5, Themrem 6. 1. 9], \tilde{f}_{*}KG is
isomorphic to the matrix ring (K^{t}H/N)_{m} for some m, where K^{t}H/N is a
suitable twisted group algebra of H/N. Since fJ(Z(KG))=0, we see that
J(Z(\tilde{f}_{*}KG))=\tilde{f}_{*}J(Z(KG))=0 , and so J(Z(K^{t}H/N))=0 . Thus, by Corollary
3 we have J(K^{t}H/N)=0 , and so \tilde{f}_{*}J(KG)=0 . Hence fJ(KG)=0.

The proof of the next lemma is quite similar to that of [1, Lemma 5].

Lemma 4. Let N be a fifinite normal p’ -subgroup of G. If J(Z(KG))

is an ideal of KG, then J(Z(KG/N)) is an ideal of KG/N.
Now, we shall consider the case that G has a non-trivial normal P-sub-

g_{I}oup . In case G is a p-group, it is known that Z(G)=\{1\} if and only if G has
no non-trivial finite normal subgroups ([6, Theorem 6. 3. 1]). In fact, there
does exist an infinite p group Q with Z(Q)=\{1\} (see [6, Example 5, p. 216]).
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LEMMA 5. Let G be a non-abelian group with G’ fifinite. Suppose
that G has a non-trivial normal p-subgroup Q. If J(Z(KG)) is an ideal
of KG, then the following statements hold:

(1) G’\subset Q , and so P is normal in G and G’\subset Z(P) .
(2) Let P=G’ \cup(\bigcup_{i\in I}G’s_{i}) be the decomposition of P into left cosets

with respect to G’ . Then the conjugacy classes of the elements of P in G
are {1}, G’-\{1\} and \{G’s_{i}|i\in I\} .

PROOF. Let s\in Q-\{1\} . Since Q’ is finite, Q is locally finite, and so
C_{s}-|C_{s}|\in J(KQ)\cap Z(KG) . Hence C_{s}-|C_{s}| is a central nilpotent element of
KG, so that it is contained in J(Z(KG)) . Thus, by Lemma 1 we see that
C_{s}-|C_{s}|\in G’KG, whence it follows that C_{s}-|C_{s}|=\sum_{x\in S}k_{x}G’x, where S is
a suitable finite subset of G and k_{x}\in K. Since C_{s}\subset G’s , the above equation
yields

(a) C_{s}-|C_{s}|=\hat{G}’st

Hence we have \hat{G}’=C_{s}s^{-1}-|C_{s}|s^{-1} , which implies that G’\subset Q . In partiqular,
P is normal in G. Since G’ is a finite normal subgroup of P, as was
claimed just before Lemma 5, Z(P) is a non-trivial normal subgroup of G,
and so G’\subset Z(P) , proving (1). Now, since P is normal in G, (a) holds for
any element s of P-\{1\} . Then (2) readily follows from the last.

REMARK 1. In the above lemma, if G is finite then G’=Z(P) (see
[1, Lemma 8] ) . In fact, if s\in Z(P) then p\parallel|C_{s}| , and hence we have s\in G’

from the equation C_{s}-|C_{s}|=G’s .
Now, we consider the case that G’ is a finite p-solvable group. By

making use of Lemmas 4 and 5, we shall prove the following
Lemma 6. Let G be a non-abelian group. Assume that G’ is a fifinite

p-solvable group. If J(Z(KG)) is an ideal of KG, then G’ is p-nilpotent.
PROOF. Suppose that |G’| is divisible by p. We put N=O_{p’}(G’) and

\overline{G}=G/N. Then J(Z(K\overline{G})) is an ideal of K\overline{G} by Lemma 4. Since O_{p}(\overline{G}
’ )

is a nontrivial normal p-subgroup of \overline{G} , by Lemma 5 (1) we see that \overline{G}’ is
a p group. Hence G’ is p-nilpotent.

PROPOSITION 1. Let G be a non-abelian group with a non-trivial
Sylow p-subgroup P. Assume that G’ is a fifinite p-solvable group with
O_{p’}(G’)\neq\{1\} . Then J(Z(KG)) is an ideal of KG if and only if the follow-
ing hold:

(1) P is fifinite.
(2) G’P is a Frobenius group with kernel O_{p’}(G’) and complement P.
(3) J(Z(KG/O_{p’}(G’))) is an ideal of KG/O_{p’}(G’) .
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PROOF. We put N=O_{p’}(G’) and e=|N|^{-1}\hat{N}.
Suppose that J(Z(KG)) is an ideal of KG. Then by Lemma 6, G’ is

a p-nilpotent group. Now, let T be a finite subgroup of G containing G’

such that T/N is a p-group. Since T is normal in G, J(KT)\subset J(KG) .
Moreover, since J(Z(_{\backslash }KG))\subset G’KG\subset\hat{N}KG, by Lemma 3 we have (1-e) J(KT)
\subset(1-e)J(KG)=0 . This implies that J(KT)=eJ(KT)\cong J(KT/N)\cong J(KQ) ,

where Q is a Sylow p subgroup of T Then by [7, Theorem 2], T is a
Frobenius group with kernel N. Hence, we have |N|=1+k|Q| for some
positive integer k, which implies that |T/G’|\leqq|T/N|=|Q|<|N| . Thus, the
order of any finite subgroup of the abelian p group PN/G’ is not greater

than |N| . This is only possible if P itself is finite. We see therefore that
G’P is a finite Frobenius group with kernel N. Furthermore, (3) follows
from Lemma 4.

Conversely, suppose that the conditions (1), (2) and (3) hold. Since G/GrP

is abelian and has no elements of order p, we have J(KG)=J(KG’P)KG
([5, Theorem 7. 3. 1]). Moreover, since G’P is a finite Frobenius group with
kernel N, we have J(KG’P)=eJ(KP) ([7, Theorem 2]). Hence, J(KG)=
eJ(KP)KG=eJ(KG) J(eKG) . This implies that J(Z(KG))=eJ(Z(KG))=
J(Z(eKG)) , because J(Z(KG))\subset J(KG) (Theorem 1). Since eKG\cong KG/N,

it holds that J(Z(eKG))\cong J(Z(KG/N)) , and hence by the condition (3), we
see that J(Z(KG)) is an ideal of KG.

D. A. R. Wallace [8] gave a necessary and sufficient condition for J(KG)

to be contained in Z(KG) . The condition (3) in the next corollary is the
condition (2) in [8, Theorem 1. 2].

COROLLARY 4. Let G be a non-abelian group with a non-trivial Sylow
p-subgroup P. Assume that G’ is a fifinite p’ -group. Then the following
are equivalent :

(1) J(Z(KG)) is an ideal of KG.
(2) J(KG)=J(Z(KG)) .
(3) P is fifinite and G’P is a Frobenius group with kernel G’ and

complement P.
PROOF. (2)\Rightarrow(1)\Rightarrow(3) by Proposition 1. If (3) is satisfied, then J(KG)=

J(KG’P)KG=\hat{G}’J(KP)KG=G’J(KG)\subset J(Z(KG)) . Hence, by Theorem 1
we have (2).

Now, we consider the case that G has a non-trivial normal p subgroup
and establish a necessary and sufficient condition for J(Z(KG)) to be an
ideal of KG. At first, we shall deal with the case that Z(G) has a p-element.

PROPOSITION 2. Let G be a non-abelian group with G’ fifinite. Assume
that Z(G) has a p-element. Then the following are equivalent:
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(1) J(Z(KG)) is an ideal of KG.
(2) p=2, |G’|=2 and Z(G)\cap P=G’ .

PROOF. (1)\Rightarrow(2) : Let s be an arbitrary p element of Z(G) . Then
s-1\in J(Z(KG)) . Since G’ is a p-group (Lemma 5), by Lemma 1 we have
s-1\in\hat{G}’KG . This implies that the order of s is 2 and G’=\langle s\rangle . Hence,

we have p=2 and Z(G)\cap P=G’ .
(2)\Rightarrow(1) : Hg\in G-Z(G) , then [G:C_{G}(g)]=2 by |G’|=2 , and it is easy

to see that G has conjugacy classes \{z\}_{z\in Z(G)} and \{G’x\}_{x\in S}, where S is a
suitable subset of G. Since each \hat{G}’x(x\in S) is a central nilpotent element
of KG, it is contained in J(Z(KG)) . Now, suppose that a= \sum_{z\in Z(G)}k_{z}z

(k_{z}\in K) is in J(Z(KG)) . Then, by Theorem 1 we have a\in KZ(G)\cap J(KG)

\subset J(KZ(G))=J(KG’)KZ(G)=\hat{G}’KZ(G) . This implies that J(Z(KG))=G’KG,

which is an ideal of KG.
REMARK 2. Since Z(G)\cap P\subset Z(P) , Remark 1 enables us to see that,

in the above proposition, if G is finite then the condition (2) may be replaced
by the following:

(2)’ p=2, |G’|=2 and Z(P)=G’ (see [1, Lemma 8]).

COROLLARY 5 (cf. [1, Corollary]). Let P be a non-abelian p-group.
Then J(Z(KP)) is an ideal of KP if and only if one of the following
conditions holds:

(1) Z(P)=\{1\} .
(2) p=2, |P’|=2 and P’=Z(P) .
PROOF. Suppose that J(Z(KP)) is an ideal of KP. If J(Z(KP))=0,

then (1) holds by Theorem 2 and the remark stated just before Lemma 5.
On the other hand, if J(Z(KP))\neq 0 , then P’ is finite (Lemma 1), and so
Z(P)\neq\{1\} . Hence (2) holds by Proposition 2. The converse implication is
clear by Theorem 2 and Proposition 2.

Next, we consider the case that Z(G) has no elements of order p.

PROPOSITION 3. Let G be a non-abelian group with G’ fifinite. Assume
that G has a non-trivial normal p-subgroup and that Z(G) has no elements

of order p. Then the following conditions are equivalent:

(1) J(Z(KG)) is an ideal of KG.
(2) P=G’ , P is an elementary abelian group of order greater than 2,

and it has a complement H\supset Z(G) in G such that \overline{G}=G/Z(G)=\overline{P}\overline{H} is a

fifinite Frobenius group with kernel \overline{P} and complement \overline{H} and |\overline{H}|=|P|-1 .
In advance of proving the proposition, we state the following

Lemma 7. Suppose that G satisfifies the assumptions in Proposition 3.
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If J(Z(KG)) is an ideal of KG, then the following statements hold:
(1) P is an abelian group containing at least three elements, G’\subset P

and G’ has a complement H\supset Z(G) in G.
(2) If h\in H and C_{G}(h)\cap G’\neq\{1\} , then h\in Z(G) .
PROOF. (1) Since G has a non-trivial normal p-subgroup, G’\subset Z(P)

by Lemma 5 (1), and hence we have G’\cap Z(G)=\{1\} , because Z(G) has no
elements of order p. Let s\in G’-\{1\} . Then by the above, there exists some
x\in G with xsx^{-1}\neq s . Now, by Lemma 5 (2), for any t\in G’-\{1\} there exists
some g\in G with gsg^{-1}=t , and hence we have

xtx^{-1}=xgsg^{-1}x^{-1}=gx(x^{-1}g^{-1}xg)s(g^{-1}x^{-1}gx)x^{-1}g^{-1}

Since x^{-1}g^{-1}xg\in G’\subset Z(P) , the last implies that

xtx^{-1}=gxsx^{-1}g^{-1}\neq gsg^{-1}=t

Thus, we have G’\cap C_{G}(x)=\{1\} . This together with [G:C_{G}(x)]\leqq|G’| shows
that H=C_{G}(x) is a complement of G’ in G and H\supset Z(G) . Again by
G’\subset Z(P) , we see that P is the direct product of G’ and P\cap H, and hence
P is abelian. Finally, if |P|=2 , then P is contained in Z(G) . But this is
a contradiction.

(2) Let h\in H-\{1\} , and suppose that C_{G}(h)\cap G’\neq\{1\} . Let s\in(C_{G}(h)

\cap G’)-\{1\} . Then, by Lemma 5 (2), for any t\in G’-\{1\} , there exists g\in G

with gsg^{-1}=t . Since hth^{-1}=hgsg^{-1}h^{-1}=gh(h^{-1}g^{-1}hg)s(g^{-1}h^{-1}gh)h^{-1}g^{-1}=

ghsh^{-1}g^{-1}=gsg^{-1}=t , we see that h\in C_{G}(G’) . This together with the fact
that H is abelian implies that h\in Z(G) .

PROOF OF PROPOSITION 3. (1)\Rightarrow(2) : Suppose that J(Z(KG)) is an
ideal of KG. Then, by Lemma 7, P is abelian and has at least three ele-
ments, and G’(\subset P) has a complement H\supset Z(G) in G. We put \overline{G}=G/Z(G) .
Let \overline{s}\in\overline{G}’-\{\overline{1}\} , and \overline{\overline{h}}\in C_{\overline{H}}(\overline{s}) . Then shs^{-1}h^{-1}\in G’\cap Z(G)=\{1\} , and hence
s\in C_{G}(h) . Thus, we have \overline{h}=\overline{1} by Lemma 7 (2). Since \overline{G}=\overline{G}’\overline{H}, this implies
that C_{\overline{G}}(\overline{s})=\overline{G}’, and hence |\overline{H}|=[\overline{G} : \overline{G}’]=[\overline{G} : C_{\overline{\sigma}}(\overline{s})]<\infty . We conclude
therefore that \overline{G} is a finite Frobenius group with kernel \overline{G}’ and complement
\overline{H}, which implies also G’=P. Now, let s\in P-\{1\} . Since \overline{P}-\{\overline{1}\} is a
conjugacy class in \overline{G} (Lemma 5 (2)), we have \{\overline{h}\overline{s}\overline{h}^{-1}|\overline{h}\in\overline{H}\}=\overline{P}-\{\overline{1}\} . Fur-
theremore, since \overline{G} is a Frobenius group, we have |\overline{H}|=|\{\overline{h}\overline{s}\overline{h}^{-1}|\overline{h}\in\overline{H}\}|=

|\overline{P}|-1=|P_{I}^{1}-1 . Finally, it is clear that P is elementary abelian, because
P-\{1\} is a conjugacy class in G.

(2)\Rightarrow(1) : let g be an arbitary element of G– Z(G) . Firstly, assume
that g\in Z(G)P, and put g=zs with z\in Z(G) and s\in P-\{1\} . Since \overline{G} is
a Frobenius group and \overline{P} is abelian, there holds that \overline{P}\subset\overline{C_{G}(s)}\subset C_{\overline{G}}(\overline{s})=\overline{P}.
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Hence C_{G}(s)=Z(G)P, and so [G:C_{G}(s)]=[\overline{G} : \overline{P}]=|\overline{H}|=|P|-1 . Noting that
C_{G}(zs)=C_{G}(s) , we have C_{g}=(P-\{1\})z . Secondly, assume g\not\in Z(G)P. Then
g=zas with some z\in Z(G) , a\in H-Z(G) and s\in P. Since \overline{G} is a Frobenius
group and \overline{H} is abelian, \overline{as} is contained in \overline{H^{u}} for some \overline{u}\in\overline{G} and there
holds that \overline{H^{u}}\subset\overline{C_{G}(as)}\subset C_{\overline{G}} (\overline{as)}=\overline{H^{u}} . Hence CG\{as) Hu, which implies that
[G:C_{G}(as)]=|P| . Noting that CG\{zs) CG{ s) , we have C_{g}=Pg . Thus, we
have seen that G has conjugacy classes \{z\}_{z\in Z(G)} , \{(P-\{1\})z\}_{z\in Z(G)} and \{Px\}_{x\in S},

where S is a suitable subset of G. Since each \hat{P}x(x\in S) is a central nil-
potent element of KG, it is contained in J(Z(KG)) . Now, suppose that
a= \sum_{z\in Z(G)}k_{z}z+\sum_{z\in Z(G)}l_{z}(\hat{P}-1)z(k_{z}, l_{z}\in K) is in J(Z(KG)) . Since a= \sum_{z\in Z(G)}

(k_{z}-l_{z})z+ \sum_{z\in Z(G)}l_{z}Pz and Pz\in J(Z(KG)) for all z\in Z(G) , by Theorem 1
we have \sum_{z\in Z(G)}(k_{z}-l_{z})z\in KZ(G)\cap J(KG)\subset J(KZ(G))=0 , which implies
J(Z(KG))\subset\hat{P}KG . Hence J(Z(KG))=PKG=G’KG, which is an ideal of
KG.

We call G a poly-{p, p’ } group, if G has a finite normal series
G=G_{n}\supset\cdots\supset G_{1}\supset G_{0}=\{1\}

such that each quotient G_{i+1}/G_{i} is a p group or a p’ -group. Now, we can
state our principal theorem as follows:

THEOREM 3. Let G be a non-abelian poly-{p,p’ } group. Then J(Z(KG))

is an ideal of KG if and only if one of the following statements holds:

(1) G has no fifinite normal subgroups H with p||H| .
(2) p=2, |G’|=2 and Z(G)\cap P=G’ .
(3) P=G’,\cdot P is a fifinite elementary abelian group of order greater

than 2, and it has a complement H\supset Z(G) in G such that \overline{G}=G/Z(G) is
a fifinite Frobenius group with kernel \overline{P}(\cong P) and complement \overline{H} and |\overline{H}|

=|P|-1 .
(4) G’ is a fifinite p’ group, P is fifinite, and G’P is a Frobenius group

with kernel G’ and complement P.
(5) p=2, G’ is a fifinite group of order 2m (m is odd), P is fifinite,

and G’P is a Frobenius group with kernel G’ and complement P such that
Z(\overline{G})\cap\overline{P}=\overline{G}’, where \overline{G}=G/G’-

(6) p is odd, |P|=p and G’ is a Frobenius group of order pn(n is
prime to p) with kernel G’ and complement P such that \overline{G}’ has a comple-
ment \overline{H}\supset Z(\overline{G}) in \overline{G}=G/G’ . Further, G=\overline{G}/Z(\overline{G}) is a fifinite Frobenius
group with kernel \tilde{P}(\cong P) and complement \tilde{H} and |\tilde{H}|=p-1 .

PROOF. Assume that J(Z(KG)) is an ideal of KG. If J(Z(KG))=0,

then (1) holds by Theorem 2. From now on, we restrict our attention to

the case that J(Z(KG))\neq 0 . Then G’ is finite by Lemma 1. If G has a
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normal p-subgroup, then (2) (resp. (3)) follows from Proposition 2 (resp.
Proposition 3). Accordingly, henceforth we may assume that G’ is finite
and G has no normal p-subgroups. Firstly, if G’ is a p’ -group, then (4)
holds by Corollary 4. Secondly, assume that |G’| is divisible by p. Since
G is a poly-{p, p’ } group, G’ is a finite p-solvable group. We have O_{p’}(G’)

\neq\{1\} , because O_{p’}(G’)=\{1\} implies a contradiction that O_{p}(G’) is a non-
trivial normal p-subgroup of G. We put N=O_{p’}(G’) and \overline{G}=G/N. Then
\overline{G} has a non-trivial normal p-subgroup. By Proposition 1, it holds that
G’P is a finite Frobenius group with kernel N and complement P, and
J(Z(K\overline{G})) is an ideal of K\overline{G} . Now, we shall distinguish between two cases.

Case 1. Z(\overline{G}) has a p-element. By Proposition 2, p=2 and Z(\overline{G})\cap

\overline{P}=\overline{G}’ is of order 2. Since G’P is a Frobenius group, G’ is also a Frobenius
group with kernel N, and hence N\subset G’ Noting that G’/N is abelian, we
have N=G’ , and therefore (5).

Case 2. Z(\overline{G}) has no elements of order p. By Proposition 3, \overline{G}’=\overline{P}

is an elementary abelian group of order greater than 2, \overline{P} has a complement
\overline{H}\supset Z(\overline{G}) in \overline{G}, and \tilde{G}=\overline{G}/Z(\overline{G}) is a finite Frobenius group with kernel \tilde{P}

(\cong P) and complement \tilde{H} of order |P|-1 . Since G’(=G’P) is a Frobenius
group with complement P elementary abelian, we see that P is a cyclic
group of order p>2 . Furtheremore, as in Case 1, we have N=G’ , and
therefore (6).

The converse implication follows from Theorem 2, Propositions 1, 2
and 3, and Corollary 4.

COROLLARY 6. Let G be a non-abelian poly-{p, p’ } group. If J(Z(KG))
is a non-trivial ideal of KG, then P is one of the following groups:

(1) a fifinite elementary abelian group.
(2) a fifinite cyclic group.
(3) a fifinite generalized quaternion group.
(4) a 2-group whose commutator subgroup is of order 2.
REMARK 3. If G satisfies the condition (2) or (5) in Theorem 3 and

|P|=2 , then G is a group cited in [8, Theorem 1. 2 (1)].
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