On the construction of p-adic L-functions

By Hideo IMAI

(Received August 14, 1980; Revised September 29, 1980)

Let Q be the rational number field, \bar{Q} the algebraic closure of Q, C the complex number field, p a prime number, q the p-adic rational number field, q the integer ring of q the completion of the algebraic closure of q and let q be the maximal ideal of the integer ring of q. We fix an imbedding of q into q and also fix an imbedding of q into q into q and also fix an imbedding of q into q into q. Let q be linear forms of q variables, where q ranges from 1 to q, q and q are natural numbers. We suppose that the coefficients q are algebraic numbers and satisfy the following conditions: q are real positive when considered as complex numbers, and q and q when considered as q-adic numbers. Let q the q the q to q to q the linear forms with above coefficients q, where q ranges from 1 to q.

In the following, let us agree that the suffix i ranges from 1 to n and the suffix j ranges from 1 to r. We also agree that an algebraic number may be considered both as a complex number and as a p-adic number by the above fixed imbeddings.

Let $\chi_j: (\mathbf{Z}/d_j\mathbf{Z})^{\times} \to \bar{\mathbf{Q}}^{\times}$ be Dirichlet characters defined modulo d_j , which may be not necessarily primitive (here R^{\times} denotes the multiplicative group of invertible elements of a ring R and \mathbf{Z} denotes the ring of rational integers). Let $\xi_j \in \bar{\mathbf{Q}}^{\times}$ be such that $\xi_j^{aj} \equiv 1 \pmod{\mathfrak{m}}$ and $|\xi_j| \leq 1$ where $|\xi_j|$ is the absolute value of ξ_j considered as a complex number. Let x_j be real algebraic number such that $0 \leq x_j < 1$ and $L_i(x) \equiv 1 \pmod{\mathfrak{m}}$ for $i = 1, \dots, n$, where we have put $x = (x_1, \dots, x_r)$.

Now we define a function $Z(s) = Z(s_1, \dots, s_n)$ of n complex variables $s = (s_1, \dots, s_n)$ by

$$Z(s) = \sum_{m_1, \dots, m_r=0}^{\infty} \frac{\chi_1(m_1) \cdots \chi_r(m_r) \, \xi_1^{m_1} \cdots \xi_r^{m_r}}{L_1(x+m)^{s_1} \cdots L_n(x+m)^{s_n}}$$

where $x+m=(x_1+m_1, \dots, x_r+m_r)$.

It is easy to see that this series is absolutely convergent when the real parts of s_1, \dots, s_n are sufficiently large to give there a complex analytic function.

Next we define a mermorphic (i. e., meromorphic in each variable) function $G(t) = G(t_1, \dots, t_n)$ of n complex variables $t = (t_1, \dots, t_n)$ by

250 H. Imai

$$G(t) = \prod_{1 \leq j \leq r} \frac{\sum\limits_{0 \leq m < d_j} \exp\left(\left(x_j + m\right) L_j^*(t)\right) \chi_j(m) \, \xi_j^m}{1 - \exp\left(d_j L_j^*(t)\right) \, \xi_j^{d_j}}$$

In this note we shall prove the following two theorems.

Theorem 1. Under the above assumptions, the function Z(s) has an analytic continuation to a meromorphic (i. e., meromorphic in each variable) function to the whole space C^n . Moreover, its value at non-positive integers, i. e., the value at $s_1 = -a_1, \dots, s_n = -a_n$ with non-negative integers a_1, \dots, a_n , is evaluated as the coefficient of $\frac{t_1^{a_1}}{a_1!} \cdots \frac{t_n^{a_n}}{a_n!}$ in the Laurent expansion at the origin of the function G(t).

Theorem 2. Under the same assumptions as in Theorem 1, there exists a p-adic analytic function $Z_p(s) = Z_p(s_1, \dots, s_n)$ of n variables such that $Z_p(-a) = Z(-a)$ for $a = (a_1, \dots, a_n)$ with non-negative integers a_1, \dots, a_n (this function $Z_p(s)$ is also an analogue of Iwasawa function of n variables).

The method of proof is essentially due to N. Koblitz [6] which gives a simple proof of the existence of p-adic Dirichlet L-functions.

We remark that a variant of an abelian L-function of a totally real algebraic number field may be expressed as a finite linear combination of certain special types of functions we are considering (c. f., T. Shintani [10] and P. Cassou-Noguès [1], especially [1] Théorème 4). Hence we obtain another (somewhat simplified) proof of the following theorem (c. f., Théorème 26 of P. Cassou-Noguès [1]) which states the existence of the p-adic L-function for a totally real algebriac number field.

Theorem. Let K be a totally real algebraic number field of finite degree, M a totally real finite abelian extension of K with Galois group G(M/K). Let $\chi: G(M/K) \to \overline{Q}^{\times}$ be a character with trivial kernel. Let $\omega: \mathbb{Z}_p^{\times} \to \mathbb{Z}_p^{\times}$ be the homomorphism defined by $\omega(x) = \lim_{n \to \infty} x^{p^n}$. Let θ be the character of the ideal group of K defined by $\theta(\mathfrak{a}) = \omega(N(\mathfrak{a}))$ for an ideal \mathfrak{a} of K, where $N(\mathfrak{a})$ is the absolute norm of \mathfrak{a} . Then there exists a function $L_p(\chi, s)$ defined over $s \in \mathbb{Z}_p$ such that $L_p(\chi, 1-m) = L(\chi\theta^{-m}, 1-m)$ for any positive integer m.

PROOF OF THEOREM 1. When the real parts of s_1, \dots, s_n are sufficiently large, we have

$$\prod_{i} L_{i}(x+m)^{-s_{i}} = \prod_{i} \Gamma(s_{i})^{-1} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \exp\left(-t_{1} L_{1}(x+m)\right) t_{1}^{s_{1}-1} \cdots \exp\left(-t_{n} L_{n}(x+m)\right) t_{n}^{s_{n}-1} dt_{1} \cdots dt_{n}$$

$$=\prod\limits_i arGamma(s_i)^{-1}\!\int_{f 0}^\infty\!\cdots\!\int_0^\infty\!\exp\left(-\sum\limits_j (x_j\!+\!m_j)\;L_j^*(t)
ight)t_1^{s_1-1}\!\cdots\!t_n^{s_n-1}dt_1\!\cdots\!dt_n$$
 ,

where $x+m=(x_1+m_1, \dots, x_r+m_r)$ and $t=(t_1, \dots, t_n)$.

After multiplying $\prod_{j} (\chi_j(m_j) \, \xi_j^{m_j})$ both sides, we sum up over m_1, \dots, m_r . We remark that

$$\begin{split} &\sum_{m_1, \dots, m_r = 0}^{\infty} \left(\exp\left(-\sum_j \left(x_j + m_j \right) L_j^*(t) \right) \prod_j \left(\chi_j(m_j) \, \xi_j^{m_j} \right) \right) \\ &= \exp\left(-\sum_j x_j \, L_j^*(t) \right) \prod_j \frac{\sum\limits_{0 \le m < d_j} \exp\left(-m L_j^*(t) \right) \, \chi_j(m) \, \xi_j^m}{1 - \exp\left(-d_j \, L_j^*(t) \right) \, \xi_j^{d_j}} \end{split}$$

because χ_j is a character defined modulo d_j . Let g(t) denote the right hand side of the above equality. Then we have

$$Z(s) = \prod_i \Gamma(s_i)^{-1} \int_0^\infty \cdots \int_0^\infty g(t) \ t_1^{s_1-1} \cdots t_n^{s_n-1} dt_1 \cdots dt_n.$$

For a positive number $\varepsilon < 1$, C_{ε} denotes the integral path in C consisting of the interval $(+\infty, \varepsilon]$, counterclockwise circle of radius ε around the origin and the interval $[\varepsilon, +\infty)$.

Since L_1^*, \dots, L_r^* are linear forms with positive coefficients and $\xi_j^d \neq 1$, for sufficiently small $\varepsilon < 1$, we have

$$Z(s) = \prod_{i} \left(\Gamma(s_i) \left(\exp\left(2\pi\sqrt{-1} s_i\right) - 1 \right) \right)^{-1} \cdots \int_{(G_s)^n} g(t) \ t_1^{s_1-1} \cdots t_n^{s_n-1} dt_1 \cdots dt_n \ .$$

It is easy to see that, as a function of $s=(s_1, \dots, s_n)$, the above integral is meromorphic (i. e., meromorphic in each variable) in the whole space \mathbb{C}^n . Moreover, since

$$\prod_{1 \leq i \leq n} \left(\Gamma(s_i) \left(\exp\left(2\pi\sqrt{-1} s_i\right) - 1 \right) \right)^{-1}$$

$$= \left(2\pi\sqrt{-1}\right)^{-n} \prod_{1 \leq i \leq n} \left(\Gamma(1 - s_i) \exp\left(-\pi\sqrt{-1} s_i\right) \right),$$

the value of the integral at $s_1 = -a_1, \dots, s_n = -a_n$ is equal to $(-1)^{\sum a_i} \prod_i (a_i!)$ times the coefficient of $t_1^{a_1} \cdots t_n^{a_n}$ in the Laurent expansion at the origin of the function g(t). As G(t) = g(-t), theorem 1 is now proved.

PROOF OF THEOREM 2. First, we review the results of Koblitz [6]. For a positive rational integer d, let $X_0 = \lim_{N \to \infty} (\mathbf{Z}/dp^N \mathbf{Z})$. Let $m + dp^N \mathbf{Z}_p$, $0 \le m < dp^N$, denote the set of $x \in X_0$ which map to m under the natural map $X_0 \to \mathbf{Z}/dp^N \mathbf{Z}$. A character defined modulo d can be pulled back to X_0 via the map $X_0 \to \mathbf{Z}/d\mathbf{Z}$. We also have a projection $\pi: X_0 \to \mathbf{Z}_p$ which

252 H. Imai

"forgets the mod d information". If f is a function on \mathbb{Z}_p , we also use f to denote the function $f \circ \pi$ on X_0 . For example, for fixed small $t \in \mathbb{C}_p$ (namely, for ord pt > 1/(p-1)), the sum $\sum_{n=0}^{\infty} (tx)^n/n! \ x \in \mathbb{Z}_p$, converges to give a function $\exp(tx)$ on \mathbb{Z}_p , which we also consider as a function $\exp(tx)$ on X_0 .

For each p-adic number $\xi \in C_p$ such that $\xi^{a_p N} \neq 1$ for all N, we define a C_p -valued finitely additive set function μ_{ξ} (i. e., μ_{ξ} is a map from the set of open-compact subsets of X_0 to C_p , which is finitely additive) by the following formula:

$$\mu_{\xi}(m+dp^{N}Z_{p}) = \frac{\xi^{m}}{1-\xi^{dp^{N}}}, \quad 0 \leq m < dp^{N}.$$
(2.1)

The results of Koblitz [6] state that μ_{ℓ} is always finitely additive (i. e., μ_{ℓ} can be extended to all open-compact subsets of X_0 , which is finitely additive), and μ_{ℓ} is bounded (i. e., the *p*-adic absolute values of $\mu_{\ell}(U)$, U open-compact subsets of X_0 , are bounded) if and only if $\xi^a \equiv 1 \mod \mathfrak{m}$. If μ_{ℓ} is bounded, we can integrate a C_p -valued continuous function f on X_0 by the "measure" μ_{ℓ} :

$$\int_{X_{\epsilon}} f d\mu_{\xi} = \lim_{N \to \infty} \sum_{0 \le m < dp^N} f(m) \, \mu_{\xi}(m + dp^N \mathbf{Z}_p) \,. \tag{2.2}$$

Now we return to our previous notations. With the same notations at the beginning of this note, let $X_j = \varprojlim_N (\mathbf{Z}/d_j p^N \mathbf{Z})$ and let $\mu_{\ell_j}(m + d_j p^N \mathbf{Z}_p) = \varprojlim_N (\mathbf{Z}/d_j p^N \mathbf{Z}_p)$

 $\frac{\xi_j^m}{1-\xi_j^d j^{pN}}$ be the measure on X_j . Let $X=\prod\limits_{1\leq j\leq r}X_j$ be the product space and let $\mu_{\xi}=\prod\limits_{1\leq j\leq r}\mu_{\xi_j}$ be the product measure on X. Fix p-adic variables $t=(t_1,\cdots,t_n)$ such that $\exp\left(\sum\limits_j(x_j+y_j)\ L_j^*(t)\right)$ is convergent for any $y=(y_1,\cdots,y_r)\in X$. A simple calculation using (2.1) and (2.2) shows that

$$\begin{split} &\int_{\mathcal{X}} \exp\left(\sum_{j} (x_j + y_j) \ L_j^*(t)\right) \prod_{j} \chi_j(y_j) \ d\mu_{\xi}(y) \\ &= \prod_{j} \frac{\sum\limits_{0 \leq m < d_j} \exp\left((x_j + m) \ L_j^*(t)\right) \chi_j(m) \ \xi_j^m}{1 - \exp\left(d_j \ L_j^*(t)\right) \xi_j^{d_j}} = G(t) \ . \end{split}$$

Expanding $\exp\left(\sum_{1\leq j\leq r}(x_j+y_j)L_j^*(t)\right)=\exp\left(\sum_{1\leq i\leq n}t_iL_i(x+y)\right)$, equating the coefficient of $\frac{t_1^{a_1}}{a_1!}\cdots\frac{t_n^{a_n}}{a_n!}$, we have

$$Z(-a) = Z(-a_1, \dots, -a_n) = \int_{X_1 \leq i \leq n} \prod_{1 \leq j \leq n} \chi_j(y_j) d\mu_{\xi}(y).$$

From the hypotheses that the coefficients of L_i are contained in \mathfrak{m} and $L_i(x)\equiv 1 \mod \mathfrak{m}$, we have $L_i(x+y)\equiv 1 \mod \mathfrak{m}$ for any $y\in X$. Hence the value $L_i(x+y)^{s_i}$ is well-defined for any $s_i\in \mathbb{Z}_p$. Now define

$$Z_p(s) = Z_p(s_1, \dots, s_n) = \int_{X} \prod_{1 \leq i \leq n} \left(L_i(x+y) \right)^{-s_i} \prod_{1 \leq j \leq r} \chi_j(y_j) \ d\mu_{\epsilon}(y) \ .$$

This is the function what we want; i. e., $Z_p(s)$ is a *p*-adic analytic function (also an analogue of Iwasawa function) such that $Z_p(-a) = Z(-a)$ for $a = (a_1, \dots, a_n)$ with non-negative integers a_1, \dots, a_n .

References

- [1] P. CASSOU-NOGUÈS: Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta p-adiques, Inv. math. 51 (1979) 29-59.
- [2] J. COATES: p-adic L-functions and Iwasawa's theory, Durham symposium in algebraic number fields (A. Fröhlich, ed.), New York, London, Academic Press, 1977.
- [3] P. DELIGNE and K. RIBET: Values of abelian L-functions at negative integers over totally real fields, Inv. math. 59 (1980) 227-286.
- [4] K. IWASAWA: Lectures on p-adic L-functions, Princeton Univ. Press (Annals of Math. Studies, No. 74), 1972.
- [5] N. KATZ: Formal groups and p-adic interpolation, Astérisque Soc. Math. de France 41-42 (1977) 55-65.
- [6] N. KOBLITZ: A new proof of certain formulas for p-adic L-functions, Duke Math. J. 46 (1979) 455-468.
- [7] C. QUEEN: The existence of p-adic abelian L-functions, Number Theory and Algebra, New York, London, Academic Press, 1977.
- [8] K. RIBET: Report on p-adic L-functions over totally real fields, Astérisque Soc. Math. de France 61 (1979) 177-192.
- [9] J-P. SERRE: Sur la résidu de la fonction zêta p-adiques d'un corps de nombres,
 C. R. Acad. Sc. Paris, 287 (1978) 183-188.
- [10] T. SHINTANI: On evaluation of zeta functions of totally real algebraic number fields at non-positive integers, J. Fac. Sc. Univ. of Tokyo, Sec. IA 23 (1976) 393-417.

Department of Mathematics College of General Education Tôhoku University