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Classification of cubic forms with three variables

By Tadayuki ABIKO
(Received November 22, 1978 ; Revised March 29, 1980)

Introduction

A degree 3 homogeneous polynomial, y= . a;;x;x;x is called a cubie
15,7, ksn

form. OQur objective is to classify the set of cubic forms by linear transla-
tions. Generally, let f be a singular germ with an isolated critical point
at origin and corank n. Form the Thom’s splitting lemma (D. Gromoll and
W. Meyer [3]), f is right equivalent to g+ Q where ¢ (z;, x,, -*+, x,) Em® and
Q (Zns1s Tnszs ***> Tuax) is a nondegenerate quadratic form. Therefore it is
fundamental to give the information of canonical form of 3-jet of ¢, when
we classify the finitely determined singular germ. Indeed, D. Siersma
classifies the singularities with the right codimension =<8. In his paper, one
of the difficulties of the classification is the canonical form of 3-jet g, though
results of algebraic geometry and the work of Mather (G. Wassermann
[7]) are widely used.

In this paper, we will try to classify cubic forms with 3-variables. Our
conclusion coincides with the work of van der Waerden concerning with
the surfaces represented by cubic forms that is the curves represented by
cubic forms in the projective plane. The main result is theorem 4.1. We
shall prove the theorem 4.1 in terms of the concepts of homology and
intersection theory in manifolds. We give a proof in § 4, in which theorem
3.2 is crucial. It is very likely that the theorem also holds for n>3. At
the end, I would like to thank Professor H. Suzuki and Professor Fukuda
for their helpful advices.

§ 1. Preparation

Let S(n) be the set of all (nXn)-symmetric matrices and SL(n) the
special linear group. We define an SL(n)-action on S(n) by setting Fp A=
PAP for AeS(n), P=SL(n), where P' is the transposed matrix of P.
Denote by Gi(S(n)) the set of k-dimensional linear subspaces of S(n) when
we view S(n) as a vector space. We define the SL(n)-action on G(S(n))
by setting Fpy={FpA|Acy} for PESL(n), y&Gy(S(n)). This is well de-
fined, for Fp is a linear automorphism of S(n) for each P&SL(n). Let 7
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be a n-subspace of S(n). If there exist symmetric matrices A;, 1=1,2, -+, n
which span 7 such that A;e;=Aje; (1=i<j<n), then the set of A/s is
called a cubic basis of y. Here e, 1=1,2,--,n is the standard basis of
the n-dimensional euclidian space R". Let CF, be the subset of G,(S(n))
each element of which has a cubic basis. From the observation in the
following proof, we see that the classification of CF, is equivalent to the
classification non-degenerate cubic forms with n-variables.

LeMMA 1.1. The subset CF, in G,(S(n)) is an invariant under the
SL(n)-action.

Proor. It is the problem that n-subspace Fpy has a cubic basis, where
reCF,. We will give one observation. For a cubic basis A; of 7, we have
a cubic form y(z) by taking 7(x) =2/ (£ Az, 2 Asz, ---, & Apxf for zER"
(column vector). Conversely, given a cubic form y(x), we have symmetric
matrices 4; (1=1,2, -, n) as follows:

1 0
3 Bz, TR

where A; is naturally determined by quadratic form. Let 7 be the subspace
spanned by A;s. be the subspace spanned by A;s. When the dimension
of 7 is equal to n, we shall call the cubic form y(x) a nondegenerate cubic
form. Then A; is a cubic basis of n-subspace y, because it is assured by
symmetric properties of 2nd order derivatives of y(z). Under the observa-
tion, we can see that the cubic form 7(P'z) determines a cubic basis of
Fpy by straightformard calculations. g.e.d.

By the definition, Fp is a linear automorphism of S(n) for each P SL(n).
The subset {Fp: PESL(n)} is a Lie-subgroup in Aut(S(n)). Let 8l(n) be
the set of matrices with zero trace in gl(n). For each a=8l(n), an endo-
morphism of S(n) is defined by f,bA=aA+Ad, AES(n). The subset {fs:
ac8l(n)} of End(S(n)) is a Lie-algebra of the above Lie-group.

LEmMMA 1.2. The following properties hold for f, and Fp. (1) expfa
:Fexp as (2) fPaP“‘:FPfaFP"-

The proof is assured directly.

From Lemma 1,2, Fezp: is @ 1-parameter group for any real number
¢t and it acts naturally on the Grassmanian manifold G(S(n)). Hence its
derivative f, induces a vector field on Gi(S(n)). We denote it by *f,. Let
eq (*f,) be the set of Gi(S(n)) consisting of all equilibria of *f, for each
ac8l(n). For acG(S(n)), define iso (@)C8l(n) in such a way that each
element a<iso (@) satisfies that *f, has a as an equilibrium point. The iso (a)

is a Lie-algebra of Lie-group I(a)={P=SL(n): Fpa=a}. We call the dimen-
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sion of iso(a) the codimenstion of w. In §2, when n=3, k=2, we will
classify such a with codimension no less than 1 and this will be used in
§4. The following propotion will be used in § 2.

ProposiTION 1.3. Let C(a)={P&SL(n): PaP'=a}. If acSeq(*f,)
and P=C(a), then we have FpaSeq(*f,).

This proposition follows from lemma 1.2, easily. Later, we must cal-
culate I(e) for given a, however the computation of iso (@) is easier than
that of I(a).

In order to represent a subspace or a vector in S(n), we shall define
a canonical basis of S(n). Let u; (i=1,2,---,n) be a basis of R” (as column
vector). Put Py=w;u}, Qij=u;u;+u,;u; (1<i<j<n), then the set of these
symmetric matrices becomes a basis of S(n). We call this basis the canonical
basis of .S(n) Induced by the basis u; of R™.

§ 2. Classification of the orbit of G,(S(3)) with codimension no
less than 1.

If the orbit of a=G,(S(3)) has codimension no less than 1, then there
exists a non zero matrix a<iso (@) such that « is equilibirum point of vector
field *f,. It follows from lemma 1.2 that we may consider *f, where the
matrix a is a real Jordan normal form. The following matrices are all the
possible cases :

(1)/—2t 0 0\ (2)/—2¢t 0 O\ (3)/t, 0 O\ (4/0 1 0
0 ¢ 1 0 ¢ 1 0 £ O 00 1
0 -1 ¢ 0 0 ¢ 0 0 # 0 0 0

here #,+#,+1,=0, t;<t,<t; in (3).
We will represent the equilibrium point by using the canonical basis P;,
Qs induced by the standard basis e¢; of R™

LemmMma 2.1. For each above matriz a, the element of eq (*f,) is trans-
Jormed into one of following by using the group C(a)={P&SL(3)|PaP'=a}
without alternating the index of canonical basis

(1) [Py, Py+Py], [Py— P, Qu] or [Qus Qus]
(2) ) %0, [P, P, [Py, Q] or [Qrz Qusl
i) £,=0, the other of i): [Qu, Qu+Pal, [FP2 Qs+ Pl
r [Pi— Py, Qi
(3) 1) #¥6x0, [P, Qul, [P, P, [P, Qus] or [Qrs, Qs
) #3=1£,%0, the other of 1): [Qis PoteBs), [Py, Py+ePy]
or [Py— P, Qu]
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iii) 2,=0 the other of t,50: [P+ Qs P or [Pe4Qu, Qul
(4) [P, Qu—Py).
Here e==+1.

Proor. The proof is a direct calculation. We only show the case (3),
ii). The other cases are shown similarly. We note that an element of C(a)
has the following form,

Vot 0 0
0 Xog Xog ESL(3) .

0 Xgo Tss

From the definition of f,, we have f,P,=—4P, f,A=—2A for A€[Q,
Qul, fuA=A for A€[P,, Qu, Pi]. eq(*f,) consists of :

a) Gy([Py Qs Fs]),

b) [Qi Qul,

c) [x1Q12+x2Q13, 23 Pyt 24 Qus+ 25 Py

d) [Py, 2Pt xQus+ x5 P

e) [P, 21Qnpt+2:05],
where (zy, 22) (0, 0), (25, x4 25)(0, 0, 0). We have only to show that c) is
transformed into [Qy, Py+ePs], [Qus Ps], [Qus, Ps] or [Qgs, Q] and the rest
follows earily. (we remark that [Qy, Py, [Quz Qusl, [Qi Ps] are equivalent to
[P,— Py, Ps], [Qus Qusl, [Py, Quol respectively.)

If the matrix a3 Py+x:Qp+ x5 Ps with rank 2 is semidefinite, there exists
a matrix 7T in C(a) such that we get Fp(asPo+ 24Qu+ 25 P) =P+ Ps.  2,Qse
+2,Qys is transformed into the matrix ¥ Q12 +%. Qs for some y; by Fr. We
choose a rotation matrix U with the vector e, as axis such that Fy(y, Q.
+9201)=%:Q.. Then we have Fyra=[P;+Ps, Q). We notice that the
matrix UT'eC(a).

Next if the matrix z3Py+ 2:Qqs+ x5 P with rank 2 is semi-indefinite, there
exists a matrix T in C(a) such that Fp(xs P+ x,Qu+x5P)=0Q:. We can
put Fr(x Qu+2:Qis) =¥ Qe +%: Qs where %,0. If y,=0, we have Fra=
[Qu, Qusl.  If 9,20, there exists a diagonal matrix D such that Fp(y,Qp+
¥:01) =01+ Q5. Let U be the z/4-rotation matrix with the vector e, as
axis, then we have Fy(Qu+Quw=+2Q,, and FyQu=PFP,—P;. Therefore
Fupra=[Qie, Py— Ps], where UDT &C(a).

Finally if the matrix a3 P+ z, Qs+ 25 P5 has rank 1, there exists a matrix
T in C(a) such that Fp(xsPoi+x,Qu+xsPs)=PF;. We can put Fp(x; Qe+
22Q1) =1 Qua+¥:Qss.  If =0, we get Fra=[Qy, Ps]. If 4,50, we choose

a matrix U such that Ue =e¢,, Uezzez—%&es, Ue;—=e;. Then we get
1
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FuQut9:Q15) =%,Qys. Therefore we obtain Fyra=[Qy,, Ps] where UT &
C(a). q.e. d.

In view of lemma 2.1 and by direct computation of f, for each a, we
obtain :

THEOREM 2.2. The following table is a classification of G,(S(3))
with codimension no less than 1.

Table 1.
codimension subspace 150
1 [Qma P2+5P3] —2ay 0 0

2 [Pn P2+8P3] ('—2022 0 0

0 Qe dgg
0 —eay ap
[Qi2, Qus+ Po] a; O 0
0 0 dag
i O O - an
3 [Pl’ Q13 + P2] ag ae a13‘
0 0 - a12
O O - an

4 [Q12 Q13] —ay —dag 0 0

0 dsg s

0 dsg dss

[Pyt+ebs, st] <""2022 0 0

5 | 1Py Qul
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§ 3. Homological properties of the stratified set.

In this section, we consider homology groups of certain stratified set.
Homology coefficients are assumed to be Z, (=Z/2Z). Let M={[Q,, P+
Qul}- We denote the closure of M in G,(S(3)) by cl M.

THEOREM 3.1. Hy(clM; Z,)=2Z,.

Let [cl M] be the generator of Hg(cl M). It’s image is a generator in
Hg(G,(S(3))) (=Z,+ Z,) by the inclusion 7 : ¢l MC G,(S(3)). A linear inclusion
map R3—.S(3) induces a map G, (R)—G,(S(3)). Its image of the fundamental
class [G2(R?®)] is viewed as a generator of H,(G,(S(3))). We denote also by
[c] M], [G3(R?®)] their images of the inclusions in G,(S(3)). Then, the inter-
section pairing.: Hg(G,y(S(3))) X Hy(G,(S(3)))—Z, is defined.

THEOREM 3.2. We have the intersection number [cl M]+[G4(R?)]
(mod 2).

Theorem 3. 2 is proved in the last section.

A Proor of THEOREM 3.1. We investigate the structure of cl M.
The subset {[x; P;+ Qus, 23 Pi+ 25 Py +Qus] : 23250} of G,5(S(3)) is contained in
M. This is shown as follows: we take the basis #; of R® such that u,=e,
uy =1y (ee+ x1/2€), us=1/y(es+(x,/2+ 2P x4/8) €,), where y=x3, then we have
Frlx P+ Qi 22 P4 23 Py+ Q] =[Qpe, Py+ Q] where TEGL(3) and Tu;=e;,
1=1,2,3. When we give the basis P;, Q;; an order like P,, Q;, P,, Qy, -+,
the subset K= {[x,P;+ Q13, x,P,+ x3P5+ Qys]} is regarded as a Schubert variety.
It is easily checked that cl K— K contains every 2-subspace with codimension
no less than 3.

1

Il

Let T'(3) be the upper triangular matrix with positive diagonal element.
We have diffeomorphism ¢: SO(3)x T'(3)>GL(3) such that ¢(P, T)=PT
for PeSO@3), TeT(3), T(3)-orbit of cl K is cl K itself and therefore, we
have ¢l M={Fpa: accl K, PESO(3)}. From this structure of cl M, it is
sufficient to prove the theorem 3.1 that we consider only the manifold
structure of cl M at [P, Qis+P.

Let D? be the 3-disc {[P,+x, Qi+ 2:Qu+x5Ps, Po+Qys] : xR} with
the center ay=[P,, P,+ Q] in G,(S(3)). D? intersects transversally with
{[Py, P,4Qyl} at [Py, P,+Qys). This is shown by the following considerations
and some computations. We can identify the tangent space T, G,(S(3))
with hom (@), ). Then we define the local homeomorphism ¢ of hom

We obtain D3N clM:{[Pl—I— —32-1,‘2Q13+t3Q23—%P3, P2+Q13]: tER} by

the computation of iso (8), f&D? This intersection is homeomorphic (not
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diffeomorphic) to a 1-disc and is denoted by D!
Let a, a point of D' for t&R. T, M is identified with iso (@) by the

h
following correspondence ; iso (a,)-=3l (3)/iso (a;)—End (S(3))/{A: Aa;Ca;} =
hom (a;, ), where h([a])=[f.], a=8l(3). Under this identificantion, we
obtain lim (7", D")* N iso (a;)-=iso (ag)*, in G5(8[(3). Therefore the orthogonal
t—0

projection of 8[(3) to iso (a)* induces the linear isomorphism ¢;: (T, D)*+N
i50 (at)+<—iso (ap)*, for |¢| <e and sufficiently small e >0. We define a map ¢:
Dt xiso (ag)t—cl M by ¢(a;, a):Fexp,,t(a) a;. From the definition, lim T,,tDl—l—

t—0

lim Im dgl%xiso(ao,Lzlim T, M. We notice that lim Im dg| ., x1sotap 18 T, {[Py
t—0

t—0 t—0

P;+Qul}. This propertry implies that 7, D'+Im dgl. xisotep+="Te, M, for
|t|<e, and sufficiently small ¢>0, then a local homeomorphism of g at a
is assured. q.e.d.

§ 4. The classification of CF,
THEOREM 4.1. The classification of CF; by SL (3) action is as follows.

Table 2.
codimension subspace 150
0 [€P1+P3, Q233 P2+ Q13+tP3] 0 matrizx
(et?+1x0)
[Qas, Q13+P 2 Q12+P o]
1 [P e Pot+ Py, & le’ Ql3] [0 0 0
0 0 dag
0 €9 dag 0
2 | [P2—€P3, le, _5Q13] (_26122 0 0
[P i st, Py+-¢P, 3] 0 dga Qg
! 0 eapy ax
3 [P s> Pay Q13] [ —a —ag O 0
0 (227 O
| ds 0 dsg
4 [P 3 st, Q13+P 2] [ayy 0 0
dgy 0 0
as; dg —dan
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Proor. For any y&CF;, we denote by G,(y+) the Grassmanian mani-
fold which consists of all the 2-subspaces in y'. From theorem 3.2, we
have [Gy(yh)]+[cl M]=1 (mod 2). Then there exists accl MN Gy(yL). We
may assume that « is one of the elements in Table 1 of theorem 2.2. Then
we show that for each a, y can be transformed into one of the above table.
To do so, we start with the following assertion.

Assertion. If aCyt and A< (a), then we have aC(F, 7). The proof
is easy, so we will omit it.

If a=[Qy, P;+Qys), then the cubic basis representation (we write c. b. r.
for convenience.) of 7 is [x, P+ 22 Ps, — 22, Qo+ 2Py, 22(Q1s— 2Py) + 23 Qps +
a2, Pg]. I x50, we can choose a matrix A’ &€I(a) such that Ae,—e, Ae,=
es+ xs/4x,65, Aes—=e;. In this case, we may assume x,=1. Now, since we
get Fu(—2Qu+tx3P) = —1/2Q0, Fa(Quz— 2P+ 23 Qo+ 2, Ps) = Qi —2P,+ x,/
2Qy+(32%/8+ x,) P, then the c.b.r. of Fur is [y Py+ Py, —2Qus, Qi—2P,+
Yo Ps] for some y;. Using a diagonal matrix B in SL(3), we can find the
more simplified form [eP,+ Py, Qs Qi+ Po+1tPs] as the c.b.r. of Fg,y,
other than [eP,+ Py, —2Q0, Qis—2P,+tP;]. If 2,=0, 7 includes a 2-subspace
with codimension larger than 2. So, we deal with this case later.

If a=[P,, P,+Ql, the c.b.r. of 7 is [2,Qss+ 2P, 2,(Qis—2P5) — 22, Qys
+ 25 Py, 21 Qua+ 22(Q1s—2P5) + 23 Qg5+ 2, Ps].  If 2,30, we choose A’ €I(a) such
that Ae,=e,+x:/2x10,, Aes=e,— x3/22x,05, Aes;=e;. Similarly as above, we
assume x;=1. Since we have that F,(Qu+ 2, Ps) =Qbs, F4(Qis—2P,—22,Qys
+ 23 Ps) = Q13 — 2P, — 2/ 2Q03 +(325/ 2+ ) P, F4(Qua+ 22(Qus— 2P5) + 23 Qs+ 4 Py
= Qi+ 22/2(Q1s — 2Py) +(5a3/4 + x5) Qs +(— 23/2 — 25+ 25) Py, then the c.b.r.
of Far is [Qas Qus—2P;+y, Ps, Q1o+ Y: Qos+y; Ps] for some y,. If we choose
B &I(a) such that Be, =e,—,/2¢;, Be,—e,, Bes—e,, then we have that
Fp(Qu—2Py+y, P) = Qis—2P,, Fp(Quat¥2Qu+YsPs) = Quat(—41/2+Y2) Qus+
Ys P, The c.b.r. of Fpyr is [Qys, Q15— 2P, Qo+ys P5]. Finally we use a
diagonal matrix C in SL(3) to yield that Fepsy=[Qu, Qi+ P, Q1+ Pl

If a=[Py, Qy), the c. b. r. of 7 is [Ps, 2, Po+ 2, Qs+ 25 Psy Qs+ 25 Po+ 23 Qss
+xP). If %0, we can choose A'&I(a) such theat Ae,=e, Ae,=e,—
Zo/ X105, Aes=e;. Since we have: F,(x; Py+ 22 Qo5+ 23 Py) = 2, Po+(— 23/ 2, + 23)
P, FA(Q13+CC2P2+~T3Q23+$4P3):Q13+x2P2+(—xg/xﬂ"xs)Qza‘i‘(_xg/xrf“zxzxs/
21+ xs) Py, it follows that the c. b.r. of Fyr is [Ps, Po4¥; Py, Qus+Y; Qos +Y2 Ps)
for some y;,. We choose B &I(a) such that Be,=e,—¥,e,—Y,/2e;, Be,=e,,
Be;=e¢;, and then we have Fp(Qu+v, Qu+y:Ps)=Q. Hence the c.b.r. of
Fpay is [Py, Po, Q). If 2,=0, (we may assume x,%0, for a cubic basis
must exist on y) we can choose A’ &I(a) such that Ae,=e;,, Ae,=e,—x3/22;¢5,

Ae;=e;. Then we have Fu(x:Qa+ 23 P) = 22Qpsy Fu(Qus+ 2Pyt 25 Qos+ 24 Py) =



Classification of cubic forms with three variables 247

Q13+x2P2+x3/2Q23+(—x§/4x2+x4)P3. The c.b.r. of Furis [Ps, Qus, Qus+91 Py
4y, Ps] for some ;. Nextly, we choose B &I(a) such that Be,=e, —1,/2e;,
Be,=e,, Be;=e;, and then we have Fyy(Qu+¥:Potv:Ps)=Qu+Yy: P, The
c.b.r. of Fgur is [Ps, Qu, Qis+¥, P:]. Finally, using a diagonal matrix Ce
SL(3), we see that the c.b.r. of Fepar is [P, Qus Qus+ P2l

Let a is [Py4¢Ps, Qy]. The c.b.r. of y=[xP+ Q10+ 2Q15+ Po—ePs,
2o P4 Quo, 23 Py —eQy5].  We choose A'&I(a) as follow : Ae,=e;, Aes=e,— x5/
2e,, Aes=e;—exs/2e;, then we have F,(x; P+ x2:Q+ x3Q1s+ Po—ePs) =(x—
(325 —5exl)/4) Pi+25/2Q10+325/2Qus+ Py — ePy, Fa(aoP1+ Q) = Quay Fa(s P—
¢Qis)= —eQy. Hence the c.b.r. of F 7 is [y, P+ Po—ePs, Qp, —eQys]. By
using the diagonal B&.SL(3), we see that c.b.r. of Fpuy is [e Pi+e P+ P,
&2Qup» Qus] or [ePo+ Py, eQyp, Q5] where ¢;,=1.

Let a=[Qys, Q). The c.b.r. of v is [Py, 2y Po+ 23 Qo3+ x5 P, 22 Po+ 25Qs5
+x,P5]. This case is equivalent to the classification of two variables cubic
from (the reference of [1]). Therefore we only show the result, F,y=[P,,
Qos, Po+ePs] or [Py, Qys, Py] where A'€1(a). q. e. d.

Proor of theorem 3. 2.

Let y=[Pi+Ps Qu, Po+ Qs+ P]. We will show that Gy(y') has a
transversal intersection in M, and then count of its number. If G,(y1)N
(cl M— M)=%¢, then by the argument of theorem 4. 1, we see that iso (y) ={0}.
This is impossible by choosing y. Then Gy(y)Nc M=G,HN M. Let
aEGy(y)N M. The transeversality at « can be shown by the direct com-
putation of the tangent space like the result of [2]. Since this is not difficult,
we omit it. We need the following assertion to count the interection num-
bers.

ASSERTION. Let y&CF; and A; (i1=1,2,3) be a cubic basis of v and
let P, Qi; (1=i<j=3) be a canonical basis induced by w;. If [Q1a, Pa+ Qu]
Cyrt, then u; satisfy the following equations :

(1) 1) wi(us Avus, wyAsus, 1y Agtiy) =0

3
i) det (Z Us; Ai) =0 where u,=(uy, ta, ts3) .
i=1
(2) (i u2iAi) u;=0
t=1
3
(3) (35 m0Ad) = — (0t Avtn, o, At 1 Ay

ProoF of assertion. If Qy, P,+QiEyt then we have tr Q,A;=0
and tr (P,+ Q) A;=0 ({=1, 2, 3). Using the relations : tr u;u/; Ay =u} Ayu; or

3
u; Ayu; and A;e;=Aje;, the former equation is reduced to (Z uliAi> uy, =0,
=1
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3 3
while the latter is ( ZuliA,-> Us= — (u Ayttg, 16 gty U Agtty).  Ytis Ay is the
=1 i=1

symmetric linear map, then the kernel is orthgonal to the image. Therefore
we obtain u}(ub Ayus, uh Astty, u} Agu,) =0. Using A;e;= Aje;, the above former

3 3
equation can be reduced to (Z Ug; A,—) #;=0. Then we see that det (Z Uyg; Ai)
im1 i=1

=0. We finish the proof of assertion.

We are now in the position to prove the theorem 3.2. The number
of intersections is equal to the number of solution of equations (1) by the
assertion. For given 7, (1) is as follow:

2+3x22+ 322+ 22=0, 2?2+ x22— xy*—23=0. where we put u,=(z,¥, 2.
Except the trivial solution (0, ¥, 0), we have two solution by a simple calcula-
tion. Therefore this show theorem 3. 2.
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