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Reduction modulo $\mathfrak{P}$ of Shimura curves

By Yasuo MORITA
(Received May 21, 1980)

0-1. Let $F$ be a totally real algebraic number field of finite degree $g$,
and let $B$ be a division quaternion algebra over $F$ such that $B\otimes_{Q}R$ is
isomorphic to the product of $M_{2}(R)$ and $g-1$ copies of the division quaternion
algebra $H$ over $R$ . Let $G$ be the algebraic $F$-group satisfying $G_{F}=B^{\cross}$ ,
let $G_{A}$ be the adelization of $G$, and let $G_{A+}$ be the subgroup of $G_{A}$ con-
sisting of all elements whose projections to $M_{2}(R)$ have positive determinants.
Let $G_{\infty+}$ and $G_{0}$ be the archimedean part and the finite part of $G_{A+}$ , let
$G_{Q+}=G_{A+}\cap G_{F}$, and let $Z$ be the family consisting of all subgroups $S$ of
$G_{A+}$ such that $S$ has the form $S=G_{\infty+}\cdot S_{0}$ with an open compact subgroup
$S_{0}$ of $G_{0}$ .

For each $S\in Z$ , let $\Gamma_{S}=S\cap G_{Q+}$ , and we regard $\Gamma_{S}$ as a subgroup of
$GL(2, R)$ . Then $\Gamma_{S}$ acts on the complex upper half plane $\mathfrak{H}$ in the usual
way, and $\Gamma_{S}\backslash \mathfrak{H}$ is a complete non-singular curve. Let $\nu$ be the reduced
norm of $B$, and let $k_{S}$ be the abelian extension of $F$ corresponding to the
subgroup $\nu(S)\cdot F^{\cross}$ of $F_{A}^{\cross}$ by class field theory. Then Shimura constructed
an algebraic curve $V_{S}$ defined over $k_{S}$ and a holomorphic map $\varphi_{S}$ of $\mathfrak{H}$

onto $V_{S}$ inducing $\Gamma_{S}\backslash \mathfrak{H}\cong V_{S}$, satisfying certain algebraic and arithmetic con-
ditions (cf. 1-1).

Let $p$ be a prime number, and let $\mathfrak{P}$ be an extension of $p$ to a place
of $\overline{Q}$ . Then we shall show that $V_{S}$ has good reduction at $\mathfrak{P}$ if (i) $\mathfrak{P}$

does not divide the discriminant $D(B/F)$ of $B$ and (ii) the “level” of $S$ is
prime to $p$ . (For the exact statement, see Main Theorem 1 in 1-2.) Fur-
thermore, as was conjectured in Shimura [24], 2. 9, we shall construct $a$

system of curves over fifinite fifields satisfying several conditions (see Main
Theorem 3).

0-2. The exact statements of our main results are in \S 1. The proof
starts in \S 2 and ends in \S 3.

In 1-1, we quote the result of Shimura [24] in our case. In 1-2, the
main results are stated. In 1-3, a summary of the proof of Shimura’s
result is given. In 2-1, we quote from Mumford [14] the existence of the
fine moduli scheme for polarized abelian schemes with level structures. In
2-2 and 2-3, we construct moduli spaces for families of PEL-sturctures by
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making use of Mumford’s moduli (cf. Theorem 1 in 2-3).
Let $S\in Z$ , $\mathfrak{P}$ and $p$ be as in 0-1. Then we can construct a discrete

subgroup $\Gamma_{S\mathfrak{p}}(\mathfrak{p}=\mathfrak{P}\cap F)$ of $PSL(2, R)\cross PGL(2, F_{p})$ as in Ihara [8]. Hence,
by the result of Ihara [8], we have the zeta function $Z(\Gamma_{S\mathfrak{p}} ; u)$ for the
group $\Gamma_{S\mathfrak{p}}$ . In 3-1, we calculate $Z(\Gamma_{S\mathfrak{p}} ; u)$ in the terminology of isolated
fixed points (cf. Proposition 1).

Now we assume that $S$ is a congruence subgroup of the form $S(b, c)$

(cf. 1-3) such that $c$ is prime to $p$ . Then, as in Shimura [24], we can
construct families of PEL-structures parametrized by $V_{T(x)}(x\in G_{A+}, T(x)=$

$x^{-1}S(b, c)x)$ . We choose $a$ fifinite number of families $\Sigma(\Omega_{i})(i\in I\rangle$ parame-
$f$ ixed by $V_{i}=V_{T(x_{i})}$ so that we have a classification of the set consisting
of the isomorphism classes of $\overline{\mathscr{Q}}=\mathscr{Q}$ modulo $\mathfrak{P}$ of elements $\mathscr{Q}$ of $\bigcup_{i}\Sigma(\Omega_{i})$

such that $\overline{\mathscr{Q}}$ can be defined over $\overline{F}_{p}$ (cf. [13] and 3-2). Let $(S_{i}, \psi_{i})$ be the
moduli for the PEL-type $\Omega_{i}$ constructed in \S 2. Then $S_{i}$ is an irreducible
quasi-projective scheme over the integer ring $x_{c}$ of a finite extension $K_{c}$ of
$k_{T(x_{i})}$ (cf. 3-2), $\mathfrak{P}$ is unramifified in $K_{c}/F$, and there exists a one-t0-0ne bira-
tional morphism of $V_{i}$ to the generic fibre of $S_{i}$ .

Let $K_{c}^{*}$ be a quadratic extension of $K_{c}$ such that $K_{c}^{*}$ is normal over
$F$ and $\mathfrak{P}|K_{c}$ remains prime in $K_{c}^{*}/K_{c}$ . Let $K_{c}^{*}$ be the residue field of
$\mathfrak{P}|K_{c}^{*}$ . Then we calculate in 3-2 the congruence zeta function $Z(u)$ of
$\bigcup_{i}S_{i}x_{Spec(\tau_{C})}Spec(\tilde{K}_{c}^{*})$ by making use of the result of [13] and the result of

3-1, and show that $Z(u)$ is $\prod_{i}Z_{i}(u)$ , where each $Z_{i}(u)$ has the form of the

congruence zeta function of a complete non-singular curve defifined over
$K_{c}^{*}$ whose genus is equal to the genus of $V_{i}$ (cf. Proposition 2).

Let $x_{c\mathfrak{P}}^{*}$ be the valuation ring of $\psi|K_{c}^{*}$ , and let $S_{i}’=S_{i}x_{Spec(r_{C})}Spec(x_{c\mathfrak{P}}^{*})$ .
Let $\varphi_{i}$ : $S_{i}’arrow S_{i}’$ be the normalization of $S_{i}’$ in the function field at the generic
point of $S_{i}’$ . Then, by making use of Proposition 2, we prove in 3-3 that
$S_{i}’$ is smooth projective, there exists an isomorphism $j_{i}’$ of $V_{i}$ to the general

fifibre of $S_{i}’$ , and these $S_{i}’$ and $j_{i}’$ satisfy the conditions (ii) and (iii) of Main
Theorem 1 (cf. Proposition 3).

In 3-4, we prove Main Theorem 1 by making use of Proposition 3.
In 3-5, we show that Main Theorem 2 follows from Main Theorem 1. In
3-6, by modifying these arguments, we prove Main Theorem 3.

0-3. (1) In 1972, the author proved these results for the case of
$F=Q$ . In 1974, by a recomendation of G. Shimura, he generalized the
results to the present case. But he once gave up the publication of this
paper, because he changed his field in 1974. It is due to a strong recom-
mendation of Y. Ihara that he finished writing this paper. So the author
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would like to thank to Professors G. Shimura and Y. Ihara. He would
like to apologize for the delay of the publication.

(2) It seems that there are several methods to prove our main results.
For example, it is likely that we can prove the smoothness directly by
studying PEL-structures over Artinian rings. But we present here the origi $\cdot$

nal proof, because it is one proof and it is an interesting proof, though it
is a little complicated.

Notation and terminology

Since we quote often the results of Shimura [24], we use his notation
and terminology. Further we use the standard notation and terminology of
EGA.

We denote by $Z$, $Q$ , $R$, $C$, $F_{q}$ , respectively, the ring of rational integers,

the rational number field, the real number field, the complex number field,

the finite field with $q$ elements. If $F$ is an algebraic number field of finite
degree, we denote by $\prime r_{F}$ the ring of algebraic integers in $F$, and by $F_{A}^{\cross}$ the
group of ideles of $F$. Further $F_{\infty}^{\cross}$ denotes the archimedean part of $F_{A}^{\cross}$ ,
$F_{\infty+}^{\cross}$ the identity component of $F_{\infty}^{\cross}$ , $F_{+}^{\cross}$ the subset of $F^{\cross}$ consisting of the
elements whose projections to $F_{\infty}^{\cross}$ belong to $F_{\infty+}^{\cross}$ , and $F_{ab}$ the maximal abelian
extension of $F$. For every $u\in F_{A}^{\cross}$ , we denote by $[u, F]$ the element of the
Galois group Gal $(F_{ab}/F)$ canonically associated with $u$ by class field theory.

For a positive integer $c$ , we write $u\equiv 1mod_{0}(c)$ if, for every non-archimedean
prime $v$ of $F$, the $v$ component $u_{v}$ of $u$ is a $v$ -unit, and $(u_{v}-1)/c$ is a v-
integer. For any ideal $\mathfrak{p}$ of $x_{F}$, we denote by $x_{Fp}$ the $\mathfrak{p}$ -adic completion of
$\prime c_{F}$, and by $F_{\mathfrak{p}}’\iota_{Fp}\otimes_{Z}Q$ .

Let $V$ be a vector space over $Q$ , and let $G$ be the $Q$ algebraic group
$GL(V)$ . Let nt be a $Z$-lattice in $V$, and $x\in G_{A}$ . Put $V_{p}=V\otimes_{Q}Q_{p}$ , $\mathfrak{m}_{p}=$

$\mathfrak{m}\otimes_{Z}Z_{p}$ for every rational prime $p$ . Let $x_{p}$ be the $p$-component of $x$. Then
$V/\mathfrak{m}$ is canonically isomorphic to the direct sum of all $V_{p}/\mathfrak{m}_{p}$ , and the multi-
plication by $x_{p}$ defines an isomorphism of $V_{p}/\mathfrak{m}_{p}$ to $V_{p}/\mathfrak{m}_{p}x_{p}$ . Hence $\mathfrak{m}x=$

$\bigcap_{p}(V\cap \mathfrak{m}_{p}x_{p})$ is a $Z$-lattice and $x$ defines an isomorphism of $V/\mathfrak{m}$ to $V/$ xn

Hence, for an element $u$ of $V/\mathfrak{m}$ , we denote by $ux$ the corresponding ele-
ment of $V/xnx$ . If $c$ is a positive integer, we write $x\equiv 1mod_{0}(\mathfrak{m}, c)$ if
$\mathfrak{m}x=\mathfrak{m}$ and $\mathfrak{m}_{p}(x_{p}-1)\subseteqq c\mathfrak{m}_{p}$ for all $p$ .

\S 1. The main results

1-1. Canonical models of Shimura. Let F be a totally real algebraic

number field of degree $g<\infty$ , B a division quaternion algebra over F, $\mathfrak{o}$
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a maximal order of $B$, and $D(B/F)$ the discriminant of $B$ over $F$. Let
$\tau_{01}$ , $\cdots$ , $\tau_{0g}$ be all isomorphisms of $F$ into $R$ . We assume that (i) $F$ is a
subfield of $R;(ii)\tau_{01}=id$ . on $F;(iii)B\otimes_{F}R\cong M_{2}(R);(iv)B\otimes_{F,\tau_{0y}}R$ is is0-
morphic to the division quaternion algebra $H$ over $R$ for each $\nu\geqq 2$ , where
we construct the tensor product by $\tau_{0v}$ : $Farrow R$ .

For any prime $v$ of $F$, let $B_{v}$ be the $v$ -adic completion of $B$ . Let $G$

be the $F$-group satisfying $G_{F}=B^{\cross}$ , and let $G_{A}$ be the adelization of $B^{\cross}$ .
Since $G_{A}$ is a subset of $\prod_{v}B_{v}$ , any element $x$ of $G_{A}$ can be written as $x=(x_{v})$ .
Let $v_{\infty\nu}(1\leqq\nu\leqq g)$ be the archimedean prime of $F$ corresponding to $\tau_{0v}$ , and,
for any $x\in G_{A}$ , let $x_{\infty\nu}$ be the $v_{\infty\nu}$ -component of $x$ . Similarly let $G_{v}$ be the
group of $F_{v}$ -valued points of $G$ , and let $G_{\infty\nu}=G_{v_{\infty\nu}}$ . Let $\nu(x)$ and tr (x) be
the reduced norm and the reduced trace of $x\in B$ (or $x\in B_{v}$ , or $x\in B_{A}$).
Let $G_{\infty 1}^{+}$ be $\{x\in G_{\infty 1}|\nu(x)>0\}$ , and let $G_{\infty+}$ (resp. $G_{A+}$) be $G_{\infty 1}^{+}\cross G_{\infty 2}\cross\cdots\cross G_{\infty g}$

(resp. $\{x\in G_{A}|\nu(x_{\infty 1})>0\}$ ). Put $G_{0}=\{x\in G_{A}|x_{\infty 1}=\cdots=x_{\infty g}=1\}$ and $G_{Q+}=B^{\cross}$

$\cap G_{A+}$ . Then $G_{A}=G_{\infty+}\cdot G_{0}$ and $G_{Q+}=\{x\in B|\nu(x)>0\}$ .
Let $\mathfrak{H}$ be the complex upper half plane. We fix an isomorphism

$B\otimes_{F}R\cong M_{2}(R)$ . Then $G_{\infty 1}^{+}$ can be identified with the group $GL^{+}(2, R)$ .
Hence an element $\gamma$ of $G_{Q+}$ acts on $\mathfrak{H}$ in the natural manner.

Let $Z$ be the set of all subgroups $S$ of $G_{A+}$ of the form $S=S_{0}\cdot G_{\infty+}$

with open compact subgroups $S_{0}$ of $G_{0}$ . For each $S\in Z$ , let $\Gamma_{S}=S\cap G_{Q+}$ .
Then $\Gamma_{S}$ (modulo its center) is a Fuchsian group. Let $k_{S}$ be the subfield
of $F_{ab}$ corresponding to the subgroup $F^{\cross}\cdot\nu(S)$ of $F_{A}^{\cross}$ by class field theory.
For each element $x$ of $G_{A}$ , let $\sigma(x)$ be the element $[\nu(x)^{-1}, F]$ of Gal $(F_{ab}/F)$ .

Let $M$ be a totally imaginary quadratic extension of $F$ contained in $C$,
and let $f$ be an $F$-linear isomorphism of $M$ into $B$ . Then $f(M^{\cross})$ has a
unique common fixed point $z$ on -. We normalize $f$ by

$( \frac{d}{dw})[f(a)(w)]_{w=z}=\overline{a}/a$ for all $a\in M^{\cross}:$

where the bar is the complex conjugation. We call such an embedding $f$

a normalized embedding, and denote by $(M,f, z)$ such a triple.
Now the main result of Shimura [24] in this case can be given in the

following manner :

THEOREM C. There exists a system

$\{V_{S}$, $\varphi_{S}$, $J_{TS}(x)(S, T\in Z ; x\in G_{A+})\}$

satisfying the following conditions :
(i) $V_{S}$ is a projective nonsingular curve defifined over $k_{S}$.
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(ii) $\varphi_{S}$ is a holomorphic map of $\mathfrak{H}$ to $V_{S}$, and induces an isomorphism
of $\Gamma_{S}\backslash \mathfrak{H}$ onto $V_{S}$.

(iii) $J_{TS}(x)$ , defifined if $xSx^{-1}\subseteqq T$, is a morphism of $V_{S}$ onto $V_{T}^{\sigma(x)}$

rational over $k_{S}$, and has the following three properties:
$(iii_{a})$ $J_{SS}(x)$ is the identity map of $V_{S}$ if $x\in S$ ;
$(iii_{b})$ $J_{TS}(x)^{\sigma(y)}\circ J_{SR}(y)=J_{TR}(xy)$ ;
$(iii_{c})$ $J_{TS}(\alpha)[\varphi_{S}(z)]=\varphi_{T}(\alpha(z))$ if $\alpha\in G_{Q+}$ and $z\in \mathfrak{H}$ .
(iv) Let $(M,f, z)$ be a triple consisting of a normalized embedding

$f:Marrow B$ and the fifixed point $z$ of $f(M^{\cross})$ on $\mathfrak{H}_{\vee}$ . Then $f$ induces a homO-
morphism of $M_{A}^{\cross}$ into $G_{A+}$ . Let $c$ be an element of $M_{A}^{\cross}$ . Then, for any
$S\in Z$ , the point $\varphi_{S}(z)$ is rational over $M_{ab}$ , and satisfifies

$\varphi_{S}(z)^{tc,MJ}=J_{ST}(f(c)^{-1})[\varphi_{T}(z)]$ ,

where $T=f(c)S.f(c)^{-1}$ .

REMARK. By Shimura [24], 2. 55, (iv) implies that $M\prime k_{S}(\varphi_{S}(z))$ is the
class field over $M$ corresponding to the subgroup $\{v\in M_{A}^{\cross}|f(v)\in f(M^{\cross})\cdot S\}$

of $M_{A}^{\cross}$ .

1-2. The main results. Let $S$ be an element of $Zr$ Let $P_{S}$ be the
set consisting of all ideals $q$ of $k_{S}$ such that (i) $q$ does not divide $D(B/F)$

and (ii) there exists $x_{Sp}\in G_{Q+}$ such that $S$ contains $x_{Sp}^{-1}\mathfrak{o}_{p}^{\cross}$ $Xsp$ , where $p=q\cap Q$

and $\mathfrak{o}_{p}$ is the $p$ -adic completion of $\mathfrak{o}$ . It is obvious that almost all prime
ideals of $k_{S}$ belong to $P_{S}$. Let $x_{Sq}$ be the valuation ring of $q\in P_{S}$, let $\tilde{k}_{Sq}$

be the residue field of $q$ , and let $\prime x_{S}$ be the intersection of all $x_{S\mathfrak{n}}(q\in P_{S})$ .
For each $q\in P_{S}$, let $\mathfrak{p}$ (resp. $\mathfrak{P}$) be the restriction of $q$ to $F$ (resp. an exten-
sion of $q$ to a place of $\overline{Q}$). Let $\mathscr{B}$ be the set consisting of all points $z$ on $\mathfrak{H}$

such that there exist a totally imaginary quadratic extension $M$ of $F$ con-
tained in $C$, and a normalized embedding $f$ of $M$ into $B$ satisfying (a) $z$ is
the common fixed point of $f(M^{\cross})$ . Let $\mathscr{C}(\mathfrak{p})$ be the subset of $\mathscr{B}$ satisfying
(b) $\mathfrak{p}$ is decomposed in $M$ and (c) $f$ induces an embedding of $x_{M\mathfrak{p}}\cong x_{F\mathfrak{p}}\oplus x_{F\mathfrak{p}}$

into $\mathfrak{o}_{\mathfrak{p}}$ . For given $S\in Z$ and $q\in P_{S}$, if $x_{Sp}$ and $x_{Sp}’$ satisfy the condition
(ii), then $x_{Sp}^{-1}x_{Sp}’\in \mathfrak{o}_{\mathfrak{p}}^{\cross}$ . Hence $x_{Sp}^{1}\mathscr{C}(\mathfrak{p})$ does not depend on a special choice
of $x_{Sp}$ .

The main results of this paper are the following three theorems:

MAIN THEOREM 1. Let $(V_{S}, \varphi_{S})$ be as in Theorem C. Then there exist
a smooth projective scheme $W_{S}$ over $Spec(x_{S})$ and an isomorphism $j_{S}$ of
$V_{S}$ onto the generic fifibre $W_{S0}=W_{S}\cross_{Spec(r_{S})}Spec(k_{S})$ of $W_{S}$ with the following
properties :
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For any $q\in P_{S}$, let $\overline{W}_{Sq}=W_{S}\cross_{Spec(r_{S^{)}}}$ Spec $(\tilde{k}_{Sq})$ . Then
(i) $\overline{W}_{Sq}$ is an absolutely irreducible projective nonsingular curve

defifined over $\tilde{k}_{Sq}$ .
(ii) Reduction modulo $\mathfrak{P}$ induces a surjection of $(j_{S}\circ\varphi_{S})(\mathscr{B})$ to the set

$\mathscr{F}^{j}(\overline{W}_{S_{l}})$ of all $\overline{F}_{p}$ -valued points of $\overline{W}_{Sq}$ . Furthermore it induces an injec-
tion $i_{SI\}}$ of $(j_{S}\circ\varphi_{S})(x_{Sp}^{-1}\mathscr{C}(\mathfrak{p}))$ into $\mathscr{F}(\overline{W}_{Sq})$ .

(iii) Let $\mathscr{F}_{ss}(\tilde{W}_{Sq})$ be the complement of $(i_{S\mathfrak{P}}\circ j_{S}\circ\varphi_{S})(x_{Sp}^{-1}\mathscr{C}(\mathfrak{p}))$ in $\mathscr{F}(\overline{W}_{S\tau})$ .
Then $\mathscr{F}_{ss}(\overline{W}_{S\tau})$ is $a$ fifinite set. Let $z$ be an element of $\mathscr{B}$ , and let $(M,f, z)$

be the corresponding triple. Then $(j_{S}\circ\varphi_{S})(z)$ modulo $\mathfrak{P}$ belongs to $\mathscr{F}_{ss}(\tilde{W}_{S_{i}})$

iff $\mathfrak{p}$ is not decomposed in M. Furthermore, for any element $w$ of $\mathscr{F}_{ss}(\overline{W}_{S\tau})$

and for any totally imaginary quadratic extension $M$ of $F$ contained in $C$

such that $\mathfrak{p}$ is not decomposed in $M$, there exists a nomalized embedding
$f$ of $M$ into $B$ such that one has

$(j_{S}\circ\varphi_{S})(z)$ modulo $\mathfrak{P}=w$

with the unique common fifixed point $z$ of $f(M^{\cross})$ .

MAIN THEOREM 2. Let $W_{S}$, $j_{S}$, $P_{S}$ etc. be as in Main Theorem 1.
Let $T$ be an element of $Z,\cdot$ and let $x$ be an element of $G_{A+}$ such that (i)
$xSx^{-1}\subseteqq T$, (ii) $q$ belongs to $P_{S}$ and (iii) $\nu(x)$ belongs to $\nu(S)\cdot F_{\mathfrak{p}}^{\cross}\cdot F^{\cross}$ . Then
the rational map $j_{T}^{\sigma(x)}\circ J_{TS}(x)\circ j_{S}^{-1}$ induces a morphism of $W_{Sr}=W_{S}\cross_{Spec(r_{S})}$

Spec $(x_{Sw})$ to $W_{T}^{\sigma(x)}\cross_{Spec(\tau_{T}^{\sigma\langle x)}}$ ) Spec $(x_{Sq})$ .

REMARK. As in Shimura [24], 2. 23, we can prove the congruence
relation for $\overline{W}_{Sq}$ if $q$ belongs to $P_{S}$. In particular, we have an affirmative
answer to Question 6. 2. 8 of Ihara [30] for such $q$ (cf. ibid., \S 6).

Let $\mathfrak{p}$ be a prime ideal of $F$ which does not divide $D(B/F)$ . Let $G^{(\mathfrak{p})}$

be the subgroup of $G_{A+}$ consisting of all elements $x$ such that $\nu(x)$ belongs
to the closure of $F_{\mathfrak{p}}^{\cross}\cdot F^{\cross}\cdot F_{\infty+}^{\cross}$ in $F_{A}^{\cross}$ . Let $Z^{(\mathfrak{p})}$ be the subset of $Z$ consisting
of all $S$ such that there exists $x_{S\mathfrak{p}}\in G_{Q+}$ satisfying $S\supseteqq x_{S\mathfrak{p}}^{1}\mathfrak{o}_{\mathfrak{p}}^{\cross}x_{Sp}$ . Let $\mathfrak{P}$ be
an extension of $\mathfrak{p}$ to a place of $\overline{Q}$. For any element $S$ of $\Leftrightarrow Z^{(\mathfrak{p})}$ , let $\tilde{k}_{S}$ be
the residue field of $\mathfrak{P}|k_{S}$, and let $\mathcal{G}s$ be the genus of $V_{S}$. For any $x\in G^{(\mathfrak{p})}$ ,
let $\overline{\sigma(x}$) be $\sigma(x)$ modulo $\mathfrak{P}\in Ga1(\overline{F}_{p}/\tilde{F})$ . Let $\mathscr{B}_{s}(resp.\mathscr{B}_{ss})$ be the set con-
sisting of all points $z\in \mathfrak{H}$ such that there exists a normalized embedding
$f:Marrow B$ satisfying (i) $z$ is the common fixed point of $f(M^{\cross})$ and (ii) $\mathfrak{p}$ is
decomposed in $M$ (resp. $\mathfrak{p}$ is not decomposed in $M$). Further, for a given
totally imaginary quadratic extension $M$ of $F$ contained in $C$, let $\mathscr{B}(M)$ be
the subset of $\mathscr{B}$ consisting of all $z\in \mathfrak{H}_{\vee}$ such that there exists a normalized
embedding $f$ of $M$ into $B$ satisfying $f(M^{\cross})z=z$ . Then we have
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MAIN THEOREM 3. There exists a system

$\{\tilde{V}_{S},\tilde{\varphi}_{S},\tilde{J}_{TS}(x)(S, T\in Z^{(\mathfrak{p})} ; x\in G^{(\mathfrak{p})})\}$

satisfying the following conditions:
(i) $\tilde{V}_{S}$ is an absolutely irreducible projective nonsingular curve defifined

over $\tilde{k}_{S}$ with genus $g_{S}$ .
(ii) $\tilde{\varphi}_{S}$ is a surjective map of $\Gamma_{S}\backslash \mathscr{B}$ onto the set of all $\overline{F}_{p}$-valued

points of $\tilde{V}_{S}$ . $\tilde{\varphi}_{S}$ induces a bijective map of $\Gamma_{S}\backslash x_{S}^{-1}\mathscr{C}(\mathfrak{p})$ to $\tilde{\varphi}_{S}(\mathscr{B}_{s})$ , and $a$

surjective map of $\mathscr{B}(M)$ to $\tilde{\varphi}_{S}(\mathscr{B}_{ss})$ for each $M$ such that $\mathfrak{p}$ is not decomposed
in $M/F$. Furthermore $\tilde{\varphi}_{S}(\mathscr{B}_{ss})$ is $a$ fifinite set.

(iii) $\tilde{J}_{TS}(x)$ , defifined if $xSx^{-1}\subseteqq T,\cdot$ is a separable morphism of $V_{S}$ to
$\tilde{V}_{T}^{\sigma\overline{(x)}}$ rational over $\tilde{k}_{S}$, and has the following properties:

$(iii_{a})$ $\tilde{J}_{SS}(x)$ is the identity map of $V_{S}$ if $x\in S$ ;
$(iii_{b})$ $\tilde{J}_{TS}(x)^{\overline{\sigma(y})}\circ\tilde{J}_{SR}(y)=\tilde{J}_{TR}(xy)$ ;
$(iii_{c})$ $\tilde{J}_{TS}(\alpha)[\tilde{\varphi}_{S}(z)]=\tilde{\varphi}_{T}(\alpha(z))$ if $\alpha\in G_{Q+}$ and $z\in \mathscr{B}$ .
(iv) Let $z$ be an element of $\mathscr{B}$ , and let $(M,fz)$ be the corresponding

triple. Let $c$ be an element of $M_{A}^{\cross}$ such that $[c, M]$ belongs to the decom-
position group of $\mathfrak{P}\cap M$, and let $[c, M]$ mod $\mathfrak{P}$ be the action of $[c, M]$ on
the residue fifield $\overline{M}_{ab}$ of $\mathfrak{P}|M_{ab}$ . Then, for any $S\in Z^{(\mathfrak{p})}$ , the point $\tilde{\varphi}_{S}(z)$

is rational over $\overline{M}_{ab}$ , and satisfifies
$\tilde{\varphi}_{S}(z)^{[c,M]mod \mathfrak{P}}=\tilde{J}_{ST}(f(c)^{-1})[\tilde{\varphi}_{T}(z)]$ ,

where $T=f(c)Sf(c)^{-1}$ .

REMARK. The Main Theorems for the case of the elliptic modular
groups ( $i$ . $e$ . the case of $B=M_{2}(Q)$ ) is known and due to Y. Ihara (cf. Ihara
[8] $)$ . In fact, the author started this reserch by trying to generalize the
results of Chapter 5 of [8], Though our theorems are formulated in a
slightly different way from the theorems in [8], it is well-known that the
both formulations are essentially equivalent. We used the present formulation
simply because this formulation is easier in quoting results from Shimura
[24].

We note that, by generalizing Ihara’s method, G. Shimura proved the
theorems in the case when $p=\mathfrak{p}\cap Q$ is completely decomposed in $F/Q$ or $p$

remains prime in $F/Q$ for almost all such $\mathfrak{p}$ . The key point in his proof
was the fact that the bijectivity of $i_{sr}$ to $\mathscr{F}(\overline{W}_{Sq})\backslash \mathscr{F}_{ss}(\tilde{W}_{Sq})$ follows from
the surjectivity or the injectivity of it if good reduction of $V_{S}$ is assumed.
On the other hand, we are going to prove the bijectivity of it at first, and
prove good reduction of $V_{S}$ from the bijectivity. It should be noted that
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our proof of the bijectivity is essentially the same as Shimura’s proof, though

it is technically more difficult.

REMARK. In a series of papers published in Canadian Journal of Mathe-
matics, R. P. Langlands studied the zeta-functions of the Shimura varieties
obtained from a totally indefinite quaternion algebra. In his case, there exist
canonical families of abelian varieties, so that it is not necessary to decend
the fields of rationality of the varieties. But his papers suggest the way

how to treat the general higher dimensional Shimura varieties.

REMARK. The author heard from Y. Ihara and M. Ohta that each
of them can prove the good reduction of the Shimura curve $V_{S}$ if (i) $\mathfrak{P}$

does not divide $D(B/F)$ and (ii) the level of $S$ is prime to $\mathfrak{p}$ (cf. Ihara-Miki
[32] for Ihara’s proof).

1-3. Outline of the proof of Theorem C. The rest of \S 1 will be
used to summarize the proof of Theorem C. More precisely, 1-3 is a
summary of Shimura [24], \S 6 in our case. It will be used in proving the
main theorems in \S 3.

Let $K$ be a totally imaginary quadratic extension of $F$ contained in $C$,

and let $\tau_{1}=id.$ , $\cdots$ , $\tau_{g}$ be isomorphisms of $K$ into $C$ satisfying $\tau_{\nu}|F=\tau_{0v}$ for
each $\nu=1$ , $\cdots$ , $g$ . Let $L$ be the quaternion algebra $B\otimes_{F}K$ over $K$, and let
$\rho$ be a positive involution of $L$ . Let $v$ be an invertible element of $L$ such
that $v^{\rho}=-v$ , and we assume $B=\{x\in L|x’=vx^{\rho}v^{-1}\}$ , where $xarrow\acute{x}$ denotes
the main involution of $L$ . It is obvious that $\rho$ induces the complex conju-
gation on $K$.

Let $\Phi$ be a representation of $L_{R}=L\otimes_{Q}R$ by complex matrices such

that the restriction of $\Phi$ to $K$ is equivalent to 2 $( \tau_{1}+\tau_{1}\rho+2\sum_{\nu=2}^{g}\tau_{\nu})$ . We

denote $\Phi|K$ by the same letter $\Phi$ . Let $\omega_{\nu}$ : $L_{n}arrow M_{2}(C)$ be a representation
satisfying $\omega_{\nu}(a)=a^{\tau_{y}}1_{2}$ for any $a\in K$. It is known that, for any given $K$,

$\tau_{1}$ , $\cdots$ , $\tau_{g}$ and $\omega_{1}$ , $\cdots$ , $\omega_{g}$ , there exist a positive involution $\rho$ of $L$ and an in-
vertible element $v$ of $L$ such that $v^{\rho}=-v$ , $B=\{x\in L|x’=vx^{\rho}v^{-1}\}$ and the
complex hermitian matrix $-\sqrt{-1}\omega_{\nu}(v)$ has the signature (1, -1) or $(1, 1)$

according as $\nu=1$ or $\nu>1$ .
Let $T(x,y)$ be the $L$ -valued $\rho$ -anti-hermitian form on $L$ defined by

$T(x, y)=xvy^{\rho}$ for $x$, $y\in L$ , and let $G(T)$ be the group of all similitudes of
$T$ Let $G^{*}$ be the $Q$ -algebraic group satisfying $G_{Q}^{*}=G(T)$ , and let $\nu:G^{*}arrow F^{\cross}$

be the homomorphism such that $\nu(x)$ is the multiplier of the similitude for
any $x\in G_{Q}^{*}$ . Let $G_{\infty+}^{*}$ be the identity component of $G_{\infty}^{*}=G_{R}^{*}$ , let $G_{A}^{*}$ be
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the adelization of $G^{*}$ , and let $G_{A+}^{*}$ be the subgroup of $G_{A}^{*}$ consisting of all
elements $x$ such that the projection of $x$ to $G_{\infty}^{*}$

. belongs to $G_{\infty+}^{*}$ . It is obvious
that $G_{Q}^{*}$ contains $G_{F}$ . (In fact, it is known that $G(T)=K^{\cross}\cdot B^{\cross}.$ )

Let $\mathscr{D}$ be the unit ball $\{z\in C||z|<1\}$ . Shimura defined an action of
$G_{\infty+}^{*}$ on $\mathscr{D}$ in [22], and proved that there is a holomorphic isomorphism $j$

of $\mathfrak{H}$ to $\mathscr{D}$ satisfying $j(\alpha(z))=\alpha(j(z))$ for any $z\in \mathfrak{H}$ and $\alpha\in G_{\infty+}$ . Therefore
we identi$fy$ $\mathfrak{H}$ and $\mathscr{D}$ and make $G_{\infty+}^{*_{\vee}}$ act on $\mathfrak{H}_{-}$ .

For every $Z$-lattice $\mathfrak{R}$ in $L$ , and for every positive integer $a$ , put

$\Gamma^{*}(\mathfrak{R}, a)=\{\gamma\in G_{Q}^{*}|\nu(\gamma)=1$ , $\mathfrak{R}\gamma=\mathfrak{R}$, $\mathfrak{R}(1-\gamma)\subseteqq a\mathfrak{R}\}$

Let $\mathfrak{o}$ be as before ( $i$ . $e$ . a maximal order of $B$). Put $\mathfrak{M}=r_{K}\otimes_{c_{F}}\mathfrak{o}\subseteqq L$ . For
every positive integer $a$ , put

$S(\mathfrak{o}, a)=\{x\in G_{A+}|x_{p}\in \mathfrak{o}_{p}^{\cross}$ , $\mathfrak{o}_{p}(x_{p}-1)\subseteqq a\mathfrak{o}_{p}$ for all prime number $p\}$

For any two positive integers $b$ and $c$, put

$S(b, c)=S(\mathfrak{o}, c)\cdot\{x\in S(\mathfrak{o}, b)|\nu(x)=1\}$

It is known that, for a given integer $a$ , there exist two integers $b$ and $c$

satisfying the following three conditions:
(i) $cZ\subseteqq bZ\subseteqq aZ$ ;
(ii) Put $E=x_{F}^{\cross}$ . Then, for every $u\in G_{A}$ and $v\in K_{A}^{\cross}$

$E\cdot\Gamma(u^{-1}S(b, c)u)=E\cdot\Gamma^{*}(v\mathfrak{M}u, b)$ ;

(iii) For every $u\in G_{A}$ and $v\in K_{A}^{\cross}$ , $\Gamma^{*}(v\mathfrak{M}u, b)$ has no element of finite
order other than the identity element. Hereafter we shall consider only
such a group $S(b, c)$ . We note here that, by Shimura [24], 6. 4 and [22]
6. 3, and by Chevalley [1], we can choose $b$ and $c$ in the following manner:
For any positive integer $b$ satisfying $b\geqq 3$ , and for any given integer $d$

which is prime to $b$ , there exists a positive integer $c$ such that $c$ is prime
to $d$ and such that the pair $(b, c)$ satisfies the above three conditions for
every divisor $a$ of $b$ and for every $K$, if $K$ has no roots of unity other
than $\pm 1$ and there exists a prime ideal of $F$ such that it is ramified in
$K$ and it does not divide 2 $D(B/F)$ .

Let $(K, \Phi)$ be as before, and let $(K’, \Phi’)$ be the reflex of $(K, \Phi)$ in the
sense of Shimura [24], 1. 3. Hence $K’=Q$ if $F=Q$ . Put $K’=H$. Let $a$,
$b$ , $c$ be as before, and put $S=S(b, c)$ . Let $H_{c}$ be the class field over $H$

corresponding to the subgroup $H^{\cross}\cdot\{h\in H_{A}^{\cross}|h\equiv 1mod_{0}(c)\}$ of $H_{A}^{\cross}$ . Then it
is known that $H_{c}$ contains $k_{S}\cdot H$.
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Let $\mathfrak{R}l$ be as before, and let $\mathfrak{R}$ be a $Z$-lattice in $L$ of the form $\mathfrak{R}=$

$f\mathfrak{M}p$ with $f\in K_{A}^{\cross}$ and $p\in G_{A}$ . Let us now consider a PEL-type

$\Omega=(L, \Phi, \rho;\kappa T, \mathfrak{R};q_{1^{ }},\cdots, q_{s})$ ,

where the $q_{i}$ are elements of $L/\mathfrak{R}$ and $\kappa$ is a totally positive element of $F$

such that $b^{-1} \mathfrak{R}/\mathfrak{R}=\sum_{i=1}^{s}Zq_{i}$ and $tr_{L/Q}(\kappa T(\mathfrak{R}, \mathfrak{R}))=Z$. Since $L$, $\Phi$ , $\rho$ and $T$

are common to all these PEL-structures, we write simply $\Omega=(\kappa, \mathfrak{R}, \{q_{i}\})$ .
We construct a family $\Sigma(\Omega)=\{\mathscr{Q}_{z}|z\in \mathfrak{H}\}$ of PEL-structures

$\mathscr{Q}_{z}=(A_{z}, \mathscr{C}_{z}, \theta_{z} _{;} _{t_{1z}}\cdots, t_{sz})$

by means of the parametrizing function $\mathfrak{h}$ as in Shimura [23], 6. 4, common
to all $\Omega$ of this type.

By Shimura [24], 6. 6, there exists a subfield $k_{\Omega}$ of $H_{c}$ with the following
property: Let $\mathscr{Q}$ be a PEL-structure of type $\Omega$ , and let $\sigma$ be an automorphism
of $C$ . Then $\mathscr{Q}^{\sigma}$ is of type f2 iff $\sigma$ is the identity mapping on $k_{\Omega}$ . Further
Shimura constructed in [21] a fibre system of PEL-structures

$\mathscr{F}=\{V$, $W$, $h,f$, $Y$, $S(a)$ , $f_{1}$ , $\cdots$ , $f_{s}\}$

and a holomorphic map $\varphi$ of $\mathfrak{H}_{\vee}$ onto $V$ with the following properties: (i)
$V$ is a projective nonsingular curve; (ii) $h:Warrow V$ defines a projective abelian
scheme with $f:Varrow W$ as the unit section; (iii) $Y$ is an effective Cartier
divisor relatively ample with respect to $h;(iv)S(a)$ is defined for every
element $a$ of the left order of $\mathfrak{R}$ , and $\theta:aarrow S(a)$ gives an injection of this
order into the endomorphism ring of the abelian scheme $h$ : $Warrow V;(v)$

The $f_{i}(i=1, \cdots, s)$ are the $b$ -section points of $h:Warrow V;(vi)$ For every
PEL-structure $\mathscr{Q}$ of type $\Omega$ , there exists exactly one point $u$ of $V$ such
that $\mathscr{Q}$ is isomorphic to the fibre $\mathscr{Q}_{u}$ on $u;(vii)$ Every element of $\mathscr{F}$ is
defined over $k_{\Omega}$ ; (viii) $\varphi$ induces an isomorphism of $\Gamma(\mathfrak{R}, b)\backslash \mathfrak{H}$ to $V$ such that
$\mathscr{Q}_{z}\in\Sigma(\Omega)$ is isomorphic to $\mathscr{Q}_{\varphi^{(z)}}$ for each $z\in \mathfrak{H}$ . Note that $\mathscr{Q}_{\varphi^{(z)}}$ is defined
over $k_{\Omega}(\varphi(z))$ and $k_{\Omega}(\varphi(z))$ is the field of moduli of $\mathscr{Q}_{z}$ .

Let $\tau_{1}$ , $\cdots$ , $\tau_{g}$ be as before. If $F\neq Q$ , then let $\Phi_{0}$ be a representation of
$K$ such that $\Phi_{0}\sim\sum_{\nu=2}^{g}\tau_{\nu}$ . Let $(K’, \Phi_{0}’)$ be the reflex of $(X, \Phi_{0})$ and put $\pi=\det\Phi_{0}’$ .

Then we have $N_{H/F}(y)\pi(y)\pi(y)^{\rho}=N_{H/Q}(y)$ for every $y\in H=K’$ . If $F=Q$ ,
then let $\pi(a)=1$ for any $a\in Q=K’$

Let $x$ be an element of $\mathscr{G}_{H+}=\{x\in G_{A+}|\nu(x)\in N_{H/F}(H_{A}^{\cross})\cdot F^{\cross}\cdot F_{\infty+}^{\cross}\}$ , and
let $d$ be an element of $H_{A}^{\cross}$ such that $\nu(x)/N_{H/F}(d)\in F^{\cross}\cdot F_{\infty+}^{\cross}$ . Put $\sigma=[d^{-1}, H]$ .
Then $\Omega^{\sigma}$ is equivalent to $\Omega’=(\mu(\pi(d)x)^{-1}x, \pi(d)\mathfrak{R}x$, $\{\pi(d)q_{i}x\})$ , where $\mu(\pi(d)x)$

is defined in the following manner: : Since $N_{H/F}(d)\pi(d)\pi(d)^{\rho}=N_{H/Q}(d)\in Q_{A}^{\cross}$ ,
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let $\nu(\pi(d)x)=\pi(d)\pi(d)^{\rho}\nu(x)=abc$ with $a\in Q_{A}^{\cross}$ , $b\in F_{+}^{\cross}$ and $c\in F_{\infty+}^{\cross}$ . Let $a_{1}$

be the positive integer which generates the ideal associated with $a$ . Then
put $\mu(\pi(d)x)=a_{1}b\in F_{+}^{\cross}$ (cf. Shimura [24], 6. 2).

Let $S=S(b, c)$ , $\mathfrak{R}=f\mathfrak{M}p$ , $\Omega=(\kappa, \mathfrak{R}, \{q_{i}\})$ , $\Sigma(Q)$ , $\mathscr{F}=$ $\{$ $V$, $W$, $h,f$, $S(a)$ ,
$f_{1}$ , $\cdots,f_{s}\}$ , $\varphi$ etc. be as before. Put $T=p^{-1}S(b, c)p,\overline{V}_{T}=V$ and $\overline{\varphi}_{T}=\varphi$ . Then

$\overline{\varphi}_{T}$ induces an isomorphism of $\Gamma_{T}\backslash \mathfrak{H}$ onto $\overline{V}_{T}$.
Let $x$, $d$, $\sigma$ and $\Omega’$ be as before. Put $U=x^{-1}Tx$. Then we have

$\mathscr{F}’=\{V, W’, h’,f’. Y’, S’(a), f_{1^{ }}’,\cdots,f’\}$ and $\varphi’$ for $\Omega’$ . Put $\overline{V}_{U}=V’$ and
$\overline{\varphi}_{U}=\varphi’$ . Since $\Omega^{\sigma}$ is equivalent to $\Omega’$ , it is known that there exists a biregular
morphism $J$ of $\overline{V}_{U}$ to $\overline{V}_{T}^{\sigma}$, rational over $k_{\Omega}$ , such that, for any automorphism
$\tau$ of $C$ which induces $\sigma$ on $k_{\Omega}$ , and for any $\mathscr{Q}_{w}\in\Sigma(\Omega)$ and $\mathscr{Q}_{z}’\in\Sigma(\Omega’)$ , the
equality $\varphi(w)^{\tau}=J(\varphi’(z))$ holds iff $\mathscr{Q}_{w}^{\tau}$ is isomorphic to $\mathscr{Q}_{z}’$ . Since $k_{\Omega}$ is con-
tained in $H_{c},\overline{V}_{T},\overline{V}_{U}$ and $J$ are defined over $H_{c}$ .

It is known that $(\overline{V}_{T},\overline{\varphi}_{T})$ does not depend on a special choice of $f$, $p$

and $\{q_{i}\}$ , and that $J$ depends only on the coset $xU$ and the effect of $[d^{-1}, H]$

on $H_{c}$ (cf. Shimura [24], 6. 10, 6. 11, 6. 12). Hence we put $J=\overline{J}(x, d)$ . Then
we have the following:

(i) Let T. $x$, $d$, $U$ be as before. Let $y\in \mathscr{C}_{H+}$ and $e\in H_{A}^{\cross}$ satisfying
$\nu(y)/N_{H/F}(e)\in F^{\cross}F_{\infty+}^{\cross}$ . Put $R=y^{-1}Uy$ and $\tau=[e^{-1}, H]$ . Then

$\overline{J}_{TR}(xy, de)=\overline{J}_{TU}(x, d)^{\tau}\circ\overline{J}_{UR}(y, e)$ ;

(ii) Let $T$ be as before, and let $\alpha$ be an element of $G_{Q+}$ . Put $U=x^{-1}Tx$.
Then

$\overline{J}_{TU}(\alpha, 1)[\overline{\varphi}_{U}(z)]=\overline{\varphi}_{T}(\alpha(z))$

Let $\mathscr{V}_{bc}$ be the subfamily of $\sim Z$ consisting of all $p^{-1}S(b, c)p$ with $p\in G_{A}$ ,
where we assume that $b$ and $c$ satisfy the previous conditions. Then we
have a system

$\{\overline{V}_{T},\overline{\varphi}_{T},\overline{J}_{TU}(x, d)\}$

for $T$, $U\in \mathscr{U}_{bc}^{\nearrow^{\wedge}}$ , $x\in \mathscr{C}_{H+}$ and $d\in H_{A}^{\chi}$ such that $U=x^{-1}Tx$ and $\nu(x)/N_{H/F}(d)$

$\in F^{\cross}F_{\infty+}^{\cross}$ . Shimura constructed the canonical system of Theorem $C$ by
taking quotients and descending the field of rationality of these systems.
In particular, he proved that this system is biregularly equivalent over $H_{c}$

to the subsystem

$\{V_{T}$, $\varphi_{T}$, $J_{TU}(x)(T\in^{o}\mathscr{T}_{bc}, x\in \mathscr{C}_{H+}, U=x^{-1}Tx)\}$

of the canonical system.
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\S 2. Moduli spaces

2-1. Mumford’s moduli. Let $S$ be a locally noetherian scheme, and
let $\mathscr{M}_{g,d,N}(S)$ be the set consisting of all isomorphism classes of all triple
$(X, \omega, \{\sigma_{j}\})$ such that (i) $X$ is a projective $g$-dimensional abelian scheme over
$S$, (ii) $\omega$ is a plarization of $X$ of degree $d^{2}$ , and (iii) $\{\sigma_{1}, \cdots, \sigma_{2g}\}$ is a level
$N$-structure of $X$ over $S$, all in the sense of Mumford [14]. Then $\mathscr{M}_{g,l,N}($

defines a contravariant functor from the category of locally noetherian schemes
to the category of sets.

Now assume that $N\geqq 3$ . Then Mumford proved in [14] that $\mathscr{M}_{g,d,N}$

is represented by a scheme $M=M_{g,d,N}$ which is quasi-projective over Spec (Z).
In other words, there exists an element $(Z, \Omega, \{\Sigma_{j}\})$ of $\mathscr{M}_{g,d,N}(M)$ such that,
for any locally noetherian scheme $S$ and for any $(X, \omega, \{\sigma_{j}\})\in \mathscr{M}_{g,d,N}(S)$ ,
there exists a unique morphism $F:Sarrow M$ such that $(X, \omega, \{\sigma_{j}\})$ is isomorphic
to the pull back $(Z, \Omega, \{\Sigma_{j}\})\cross_{M}S$ of $(Z, \Omega, \{\Sigma_{j}\})$ by $F$ .

2-2. Embedding of Shimura’s moduli into Mumford’s moduli M.
Let $\Omega=(L, \Phi, \rho;T, \mathfrak{M};v_{1}, \cdots, v_{u})$ be a PEL-type in the sense of Shimura
[21], 3. 1. Let $N$ be a natural number satisfying $N\geqq 3$ , and we assume
that $\{v_{1}, \cdots, v_{u}\}$ is a basis of the $Z/NZ$ moduli $N^{-1}\mathfrak{M}/\mathfrak{M}$ . Let $U(T)$ be
the unitary group of the $\rho$-anti-hermitian form $T$, and let $\mathscr{F}$ be the bounded
symmetric domain which is the quotient space of $U(T)_{R}$ by a maximal
compact subgroup. Let

$\Gamma^{*}(T, N)=\{\alpha\in U(T)|\mathfrak{M}\alpha=\mathfrak{M}$, $( \sum_{i=1}^{u}Zv_{i})(1-\alpha)\subseteqq \mathfrak{M}\}$ ,

and we assume that either dim $(\mathscr{F})>1$ or $\Gamma^{*}(T, N)\backslash \mathscr{F}$ is compact. Then,
by Theorem 5. 3 of Shimura [21], there exist an algebraic number field
$k_{\Omega}$ , a holomorphic map $\varphi$ of $\mathscr{A}$ to a quasi-projective non-singular variety
$V$ defined over $k_{\Omega}$ , and a fibre system of PEL-structures

$\mathscr{F}=\{V$, $W$, $h,f$, $Y$, $S(a),f_{1}$ , $\cdots,f_{u}\}$

on $V$ defined over $k_{\Omega}$ and satisfying the eight conditions in 1-3.
Let $h:Warrow V$ be as above. Then, by Theorem 6. 14 of Mumford [14],

$h:Warrow V$ is a projective abelian scheme over $V$ with $f:Varrow W$ as its identity.
Since $Y$ is an effective relative Cartier divisor (cf. the proof of Theorem 5. 3
of Shimura [21] $)$ , $Y$ defines a $V$ homomorphism $\omega:Warrow\hat{W}$. Since $\omega$ induces
on each geometric fibre $W_{s}$ of $\pi$ the homomorphism $\varphi_{Y}s:uarrow Cl(Y_{su}-Y_{s})$

with a positive non-degenerate divisor $Y_{s}$, $Y$ defines a relatively ample inver-
tible sheaf on $h:Warrow V$ (cf. EGA, III, 4. 7. 1). Hence $\omega$ is a polarization.
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Therefore
$\mathscr{F}’=\{V, W, h,f, \omega,f_{1}, \cdots,f_{u}\}$

is an element of $\mathscr{M}_{g,d,N}(V)$ with $u=2g$ and deg $(\omega)=d^{2}$ . Since $N\geqq 3$ , there
exists a unique morphism $F_{0}$ : $Varrow M=M_{g,d,N}$ such that $\mathscr{F}’$ is isomorphic
to the pull back $(Z, \Omega, \{\Sigma_{j}\})\cross_{M}V$ of the universal polarized abelian scheme
$(Z, \Omega, \{\Sigma_{j}\})$ to $V$ by the map $F_{0}$ .

Put $k=k_{\Omega}$ , $x_{k}=x_{k_{\Omega}}$, $M_{k}=M\cross_{Spec(Z)}$ Spec (k) and $M_{t}=M\cross_{Spec(Z)}$ Spec $(x_{k})$ .
Since $\mathscr{F}’$ is rational over $k_{\Omega}$ , $F_{0}$ induces a morphism $F:Varrow M_{k}$ . Since
$M_{k}$ is an $M$-scheme, we may regard $F$ as a morphism of $V$ to $M$.

Let $t$ be a generic point of $V$. Then the fibre of $h$ at $t$ gives a PEL-
structure $\mathscr{Q}_{t}=(A_{t}, \mathscr{C}_{t}, \theta_{t} ; f_{jt})$ of type $\Omega$ , hence also an element $\mathscr{P}_{t}=(A_{t},$ $\mathscr{C}_{t}$ ;
$f_{jt})$ of $\mathscr{M}_{g,d,N}(Spec(k_{\Omega}(t)))$ . Obviously $\mathscr{P}_{t}$ is isomorphic to the fibre of $(Z$,
$\Omega$, $\{\Sigma_{j}\})\cross_{Spec(z)}$ Spec $(k_{\Omega})$ at $F(t)$ .

Let $\mathfrak{p}$ be a discrete valuation with quotient field $K$, and let $\mathscr{Q}=(A,$ $\mathscr{C}$ ,
$\theta;f_{j})$ be a PEL-structure of type $\Omega$ defined over $K$ . Then, by Shimura-
Taniyama [25], III, 11 and by Serre-Tate [19], \S 1, $\mathscr{Q}$ has good reduction
at $\mathfrak{p}$ iff $\mathscr{P}=(A, \mathscr{C} ; f_{j})$ has good reduction at $\mathfrak{p}$ , and there exists at most
one prolongation of $\mathscr{Q}$ to an object over the valuation ring of $\mathfrak{p}$ . Hence,
by the valuative criterion (cf. EGA, $II$ , 7. 3. 8), $F$ is a proper morphism. In
particular, $F(V)$ is a closed subscheme of $M_{k}$ .

Let $U_{0}=F(V)$ , and let $U$ be the Zariski closure of $U_{0}$ in $M_{r}$ . Then
$U$ is irreducible and quasi-project over Spec $(x_{k})$ . Hence, for any geometric
point $w’$ of $U$, there exists a valuation $\mathfrak{p}$ of $k_{\Omega}(t)$ such that (i) the valuation
ring $R$ of $\mathfrak{p}$ contains $x_{k}$ and (ii) $w’$ is reduction modulo $\mathfrak{p}$ of $w=F(t)$ .
Since $w’$ is a point of $U$, $\mathscr{P}_{t}=(A_{t}, \mathscr{C}_{t} ; f_{jt})$ and $\mathscr{O}_{t}’=(A_{t}, \mathscr{C}_{t}, \theta_{t} ; f_{jt})$ have
good reduction at $\mathfrak{p}$ . Here, by Lemma 2 of Shimura-Taniyama [25], III,
9. 3, we may assume that $\mathfrak{p}$ is discrete (but may not be of rank one). There-
fore, for any geometric point $w’$ of $U$, there exists a discrete place $\mathfrak{p}$ of
$k_{\Omega}(t)$ such that (i) the generic PEL-structure $\mathscr{Q}_{t}=(A_{t}, \mathscr{C}_{t}, \theta_{t} ; f_{jt})$ of type $\Omega$

has good reduction at $\mathfrak{p}$ and (ii) $(A_{t}, \mathscr{C}_{t} ; f_{jt})$ mod $\mathfrak{p}$ is the polarized abelian
scheme with level $N$-structure corresponding to $w’r$

2-3. Moduli spaces of families of PEL-structures. Let the notation
and assumptions be as in 2-2. Let $\mathscr{S}_{0}$ be the set consisting of all isomor-
phism classes of all $PEL$-structures of type $\Omega$ . For any element $\mathscr{Q}$ of $\mathscr{S}_{0}$

and for any place $\mathfrak{p}$ of any field of definition of $\mathscr{Q}$ such that (i) the valua-
tion ring of $\mathfrak{p}$ contains $x_{k}$ , (ii) the residue characteristic of $\mathfrak{p}$ is prime to the
level $N$, and (iii) $\mathscr{Q}$ has good reduction at $\mathfrak{p}$ , we denote by $\mathscr{Q}$ mod $\mathfrak{p}$ re-
duction modulo $\mathfrak{p}$ of the PEL-structure $\mathscr{Q}$ .
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For any prime ideal $q$ of $x_{k}$ such that $q$ is prime to the level $N$, we
fix an extension $\mathfrak{Q}$ of $q$ to a place of $C$ . Let $\Omega(q)$ be the residue field of
$\mathfrak{Q}$ , and let $\mathscr{S}t$ be the set consisting of all isomorphism classes of all $\mathscr{Q}$

mod $\mathfrak{Q}(\mathscr{Q}\in \mathscr{S}_{0})$ . Let

$\mathscr{S}=\mathscr{S}_{0}\square \square \mathscr{S}_{q}q$ .

Let $U$ be as in 2-2, and let $(X, \omega, \{\sigma_{j}\})$ be the canonical polarized abelian
scheme with level $N$ structure over $U(i.$ $e$ . the inverse image of $(Z, \Omega, \{\Sigma_{j}\})$

by $U5$ $M_{t}arrow M$). Let $\mathcal{E}=\pi_{*}(L^{\Delta}(\omega)^{3})$ and $\phi_{3}$ : $X5P(\mathcal{E})$ be as in Mumford
[14], Proposition 7.5 and Proposition 6. 13. Since $U$ is quasi-compact, it
follows from Mumford [14], Proposition 7. 5 that there exists a finite affine
covering $\{U_{i}\}_{i\in I}$ of $U$ with the following properties: (i) The restriction of
$\langle$ $X$, $\omega$, $\{\sigma_{j}\})$ to each $U_{i}$ admits a linear rigidification $\phi_{i}$ : $P(\mathcal{E})\cross UU_{i}arrow-P_{m}\cross U_{i}$

with $m=6^{g}d-1$ ; (ii) There exists a $(U_{i}\cap U_{j})$ -valued point $g_{ij}$ of $PGL(m)$

such that $g_{ij}\circ\phi_{i}|(P(\mathcal{E})\cross U(U_{i}\cap U_{j}))=\phi_{j}|(P(\mathcal{E})\cross U(U_{i}\cap U_{j})$ for any $i$, $j\in I$. Put
$\overline{\phi}_{i}=\phi_{i}\circ\phi_{3}$ for each $i\in I$.

Let $\mathfrak{o}$ be the left order of $\mathfrak{M}$ , and let $r_{1}$ , $\cdots$ , $r_{v}$ be a $Z$-base of $\mathfrak{o}$ . Let
Let $t$ be a generic point of $V$ over $k_{\Omega}$ , and put $w=F(t)$ . Then, by the
defifinition of $U$, $w$ is a generic point of $U$. Let $\mathscr{Q}_{t}=(A_{t}, \mathscr{C}_{t}, \theta_{t} ; f_{jt})$ be
the fibre of $\mathscr{F}$ at $t$ . Then $F$ induces an isomorphism $F_{t}$ of $(A_{t}, \mathscr{C}_{t} ; f_{ft})$

to the fibre of $(X, \omega, \{\sigma_{j}\})$ at $w$ , rational over $k_{\Omega}(t)$ . Hence $\overline{\phi}_{i}\circ F_{t}$ induces
an embedding of $A_{t}$ into $P_{m}\cross U$ for each $i\in J$. Let $A_{ti}$ be the image of
this embedding, and let $\theta_{ti}$ be the injection of $0$ into End $(A_{ti})$ corresponding
to $\theta_{t}$ . Since $F_{t}$ is rational over $k_{\Omega}(t)$ , all elements of $\theta_{ti}(\mathfrak{o})$ are defined over
$k_{\Omega}(t)$ . Let $R_{til}$ be the graph of $\theta_{ti}(r_{l})$ for every $l=1$ , $\cdots$ , $v$ . By the Segre
morphism (cf. EGA, $II$ . 43. 1), we may regard $R_{til}$ as a subset of $P_{m(l)’}$

with a certain integer $m(l)’\epsilon$ Let $c_{il}$ be the Chow point of $R_{til}$ , and let
$s_{i}=c_{i1}\cross\cdots\cross c_{iv}\cross w$ . Then $s_{i}$ is a $k_{\Omega}(t)$ -valued point of $P_{m(1)}\cross\cdots\cross P_{m(v)}\cross U_{i}$

with certain integers $m(1)$ , $\cdots$ , $m(v)$ . Let $S_{i}$ be the Zariski closure of $s_{i}$ in
$P_{m(1)}\cross\cdots\cross P_{m(v)}\cross U_{i}$ .

By the functoriality of the Segre morphism, the $(U_{i}\cap U_{j})$ -action $g_{ij}$ on
$P_{m}\cross(U_{i}\cap U_{j})$ can be extended to a $(U_{i}\cap U_{j})$ -action on $P_{m(l)’}\cross(U_{i}\cap U_{j})$ for
every $l=1$ , $\cdots$ , $v$ . Further it follows from the definition of Chow points
that $g_{ij}$ can be extended to a $(U_{i}\cap U_{j})$ -action on $P_{m(1)}\cross\cdots\cross P_{m(v)}\cross(U_{i}\cap U_{j})$ .
It is obvious that this action induces an isomorphism of $S_{i}\cross U_{i}(U_{i}\cap U_{j})$

onto $S_{j}\cross_{U_{j}}(U_{i}\cap U_{j})$ . Hence we can glue $\{S_{i}\}_{i\in I}$ and construct a scheme
$S$. Similarly we glue $\{P_{m(1)}\cross\cdots\cross P_{m(v)}\cross U_{i}\}_{i\in I}$ and construct a scheme $P$.
Let $q$ be the morphism of $S$ to $U$ which is induced by the projection of
$P_{m(1)}\cross\cdots\cross P_{m(v)}\cross U_{i}$ to $U_{i}$ . We see that (i) there exist locally free $\mathscr{Q}_{U}$-
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modules $\mathcal{E}_{1}$ , $\cdots$ , $\mathcal{E}_{v}$ such that $P$ is $U$ isomorphic to $P(\mathcal{E}_{1})\cross U\ldots\cross P(\mathcal{E}_{v})$

(construct the $\mathcal{E}_{j}$ from $\mathcal{E}$ by taking direct sums and tensor products), and
that (ii) $S$ is a closed $U$-subscheme of $P$. Hence $q$ is projective, and $S$ is
quasi-projective over Spec $(x_{k})$ .

Let $\mathscr{Q}=(A, \mathscr{C}, \theta;f_{j})$ be an element of $\mathscr{S}$ . Let $w’$ be the point of $U$

corresponding to $(A, \mathscr{C} ; f_{j})$ . We assume that $(A, \mathscr{C} ; f_{j})$ is the fibre of
$(X, \omega, \{\sigma_{j}\})$ at $w’$ . Since $N\geqq 3$ , $(A, \mathscr{C} ; f_{j})$ has no automorphism other than
the identity map. Hence $\theta:\mathfrak{o}arrow End$ $(A)$ is uniquely determined by the is0-
morphism class of $(A, \mathscr{C}, \theta;f_{j})$ . Let $\{U_{i}\}_{i\in I}$ be as before. We assume that
$w’$ is a $K$-valued point of $U_{i}$ . Let $\theta_{i}’$ be the injection of $\mathfrak{o}$ into End $(\overline{\phi}_{i}(A))$

corresponding to $\theta$ . Let $R_{il}’$ be the graph of $\theta_{i}’(r_{l})(l=1, \cdots, v)$ , and let $c_{il}’$

be the Chow point of $R_{il}’$ . Put $s_{i}’=c_{i1}’\cross\cdots\cross c_{iv}’\cross w$ .
Since $w=F(t)$ is a generic point of $U$, $w’$ is a specialization of $w$ .

Since $F_{t}(A_{t}, \mathscr{C}_{t} ; f_{jl})$ and $(A, \mathscr{C} ; f_{j})$ are fibers of $(X, \omega;\{\sigma_{j}\})$ at $w=F(t)$

and $w’$ , $F_{t}(A_{t}, \mathscr{C}_{t} ; f_{jt})arrow(A, \mathscr{C} ; f_{j})$ is a specialization over $warrow w’$ in the
sense of Shimura [20]. Hence $F_{t}(A_{t}, \mathscr{C}_{l}, \theta_{t} ; f_{jt})arrow(A, \mathscr{C}, \theta;f_{j})$ is a specializa-
tion over $warrow w’$ . By Shimura-Taniyama [25], III, 11. 1, Proposition 12,
this specialization induces $R_{til}arrow R_{il}’$ for each $l$ . Furthermore, by the defini-
tion of specializations of cycles in projective spaces, the specialization induces
$c_{il}arrow c_{il}’$ . Hence there exists a discrete place $\mathfrak{p}$ of $k_{\Omega}(t)$ such that $s_{i}’=c_{i1}’\cross\cdots\cross$

$c_{iv}’\cross w’$ is reduction modulo $\mathfrak{p}$ of $s_{i}=c_{i1}\cross\cdots\cross c_{iv}\cross w$ . Since $S_{i}$ is the Zariski
closure of $s_{i}$ in $P_{m(1)}\cross\cdots\cross P_{m(v)}\cross U_{i}$ , and since $w’$ is a C- or $\Omega(q)$ -valued
point of $U_{i}$ , $s_{i}’$ is a C- or $\Omega(q)$ -valued point of $S_{i}$ . We observe that $s_{i}’$

determines a C- or $\Omega(q)$ -valued point $s’$ of $S$, and this $s’$ does not depend
on a special choice of $U_{i}$ . Therefore we have constructed a map $\psi$ of $\mathscr{S}$

to the set of all C- or $\Omega(q)$ -valued points of $S$.
It is obvious that this map $\psi$ commutes with any operation of discrete

places and automorphisms of the field $K$ of definition of any element $\mathscr{Q}$ of
$\mathscr{S}$ (replace $\mathscr{Q}_{t}$ and $\mathscr{Q}$ by $\mathscr{Q}$ and $\mathscr{Q}$ mod $\mathfrak{p}$ (or $\mathscr{Q}^{\sigma}$) and repeat the above
arguments). Further it follows from the last remark in 2-2 and Proposition
12 of Shimura-Taniyama [25], III, 11. 1 that $\psi$ is surjective. Since $\psi$ induces
an injective map of isomorphism classes of the polarized abelian varieties with
level $N$-structure to $U$, and since the injection $\theta$ of $\mathfrak{o}$ into the endomorphism
ring is uniquely determined by the isomorphism class of an element $\mathscr{Q}=$

$(A, \mathscr{C}, \theta;f_{j})$ for a given $(A, \mathscr{C} ; f_{j})$ , it follows from the construction of $\mathscr{S}$

and $\psi$ that $\psi$ is injective.
Let $V$ be as before. For an element $\mathscr{Q}$ of $\mathscr{S}_{0}$ , let $\mathfrak{v}(\mathscr{Q})$ be the point

on $V$ such that $\mathscr{Q}$ is isomorphic to the fibre of $\mathscr{F}\circ$ at $\mathfrak{v}(6’?)$ . Then $(V, \mathfrak{v})$
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satisfies the conditions of Theorem 6. 2 of Shimura [21]. Put $S_{0}=S\cross$

Spec(e) Spec(k\Omega ). Then, by Theorem 6. 7 of Shimura [21], there exists a one-
t0-0ne morphism $j$ of $V$ onto $S_{0}$ such that $j$ is defined over $k_{\Omega}$ and $\psi(\mathscr{Q})=$

$j(\mathfrak{v}(\mathscr{Q}))$ for any $\mathscr{Q}\in \mathscr{S}_{0}$ . Therefore we have proved:

THEOREM 1. Let the $PEL$-structure $\Omega$ be as in 2-2, and let $V$, $\mathfrak{v}$, $k_{\Omega}$ ,

$x_{k}$ , $\mathscr{S}_{0}$, the $q$ , the f2 (q) and $\mathscr{S}$ be as before. Then there exist a scheme
$S=S(\Omega)$ , a map $\psi=\psi_{\Omega}$ of $\mathscr{S}$ to the set of geometric points of $S$, and $a$

morphism $j=j_{\Omega}$ of $V$ to $S$ with the following properties:
(i) $S$ is irreducible and quasi-projective over $Spec(x_{k})$ .
(ii) $\psi$ induces a bijective map of $\mathscr{S}$ to the set { $C$-valued points of $S$}

$\square \square$ {$\Omega(q)$ -valued points of $S$}.
$q$

$(iii)$ Let $\mathscr{Q}$ be an element of $S$, and let $\mathfrak{p}$ (resp. $\sigma$) be a discrete place
(resp. an automorphism) of the fifield of defifinition of $\mathscr{Q}$ such that $\mathscr{Q}$ mod $\mathfrak{p}$

(resp. $\mathscr{Q}^{\sigma}$) belongs to $\mathscr{S}$ . Then $\psi$ ( $\mathscr{Q}$ mod $\mathfrak{p}$) $=\psi(\mathscr{Q})$ mod $\mathfrak{p}$ (resp. $\psi(\mathscr{Q}^{\sigma})=$

$\psi(\mathscr{Q}^{\sigma}))$ holds.
(iv) $j$ induces $a$ one-tO-One morphism of $V$ onto $S_{0}=S\cross_{Spec(r_{k})}$ Spec(k\rho )

defifined over $k_{\Omega}$ such that $\psi(\mathscr{Q})=j(\mathfrak{v}(\mathscr{Q}))$ for any $\mathscr{Q}\in \mathscr{S}_{0}$ .

REMARK. The condition (iii) implies $k_{\Omega}(\psi(\mathscr{Q}))$ is the field of moduli
for each $\mathscr{Q}\in \mathscr{S}_{0}$ . Hence $j$ is a birational morphism.

REMARK. It is more natural to use Hilbertian schemes instead of Chow
points. But we have avoided it simply because our result is enough to

prove our main theorems.

\S 3. Proof of the main results

3-1. Zeta functions of Ihara groups. Let the notation and assump-
tions be as in 1-1. In particular, $B$ is a division quaternion algebra over
a totally real algebraic number field $F$. Let $\mathfrak{p}$ be a prime ideal of $F$ which
does not divide the discriminant $D(B/F)$ of $B$ . Let $S$ be an element of
$Z$ containing $\mathfrak{o}_{\mathfrak{p}}^{\cross}$ , and let $\overline{\Gamma}_{S\mathfrak{p}}=G_{Q+}\cap(S\cdot B_{\mathfrak{p}}^{\cross})$ . We fix an isomorphism of
$B_{\mathfrak{p}}$ onto $M_{2}(F_{\mathfrak{p}})$ , and regard $\overline{\Gamma}_{S\mathfrak{p}}$ as a subgroup of $GL^{+}(2, R)\cross GL(2, F_{\mathfrak{p}})$ .
Let $\Gamma_{S\mathfrak{p}}$ be the image of $\overline{\Gamma}_{S\mathfrak{p}}$ by the natural map of $GL^{+}(2, R)\cross GL(2, F_{\mathfrak{p}})$

to $PGL^{+}(2, R)\cross PGL(2, F_{\mathfrak{p}})$ . Then, by Proposition 1 of Ihara [8], Vol. 1,

p. 174, $\Gamma_{S\mathfrak{p}}$ is a discrete subgroup of $PGL^{+}(2, R)\cross$ $PGL(2, F_{\mathfrak{p}})$ such that (i)

the quotient $\Gamma_{S\mathfrak{p}}\backslash PGL^{+}(2, R)\cross PGL(2, F_{\mathfrak{p}})$ is compact and (ii) the projection
of $\Gamma_{S\mathfrak{p}}$ to each component of $PGL^{+}(2, R)\cross PGL(2, F_{\mathfrak{p}})$ contains a dense
subgroup of $PSL(2, R)$ or $PSL(2, F_{\mathfrak{p}})$ . Hereafter we assume that $\Gamma_{Sp}$ is
contained in $PSL(2, R)\cross PSL(2, F_{\mathfrak{p}})$ . Let $\Gamma=\Gamma_{Sp}$ and $\Gamma^{0}=\Gamma_{S}(=\Gamma_{S\mathfrak{p}}\cap \mathfrak{o}_{p}^{\cross})$ .
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Since $\Gamma$ is a subgroup of $PSL(2, R)$ , $\Gamma$ acts on $\mathfrak{H}$ in the usual manner.
Let $z$ be a point of $\mathfrak{H}$ , and let $\Gamma_{z}=\{\gamma\in\Gamma|\gamma z=z\}$ . If $\Gamma_{z}$ is an infinite group,
then we denote by $\{z\}_{\Gamma}$ the $\Gamma$-equivalence class of $z\in \mathfrak{H}$ . Let $\mathscr{P}(\Gamma)$ be the
set of all such $\Gamma$-equivalence classes $\{z\}_{\Gamma}$.

Let $z$ be a point of $\mathfrak{H}_{-}$ with an infinite group $\Gamma_{z}$ . Then, by Ihara [8],
Vol. 1, p. 17, Corollary, $\Gamma_{z}$ is the product of a finite group and an infinite
cyclic group. Let $\gamma_{z}$ be a generator of the infinite cyclic part of $\Gamma_{z}$ , and let
$\{\rho_{z}, \rho_{z}^{-1}\}$ be the set of eigen values of $\gamma_{z}$ . Then $\rho_{z}$ belongs to $F_{\mathfrak{p}}$ and $\rho_{z}$ is
not a $\mathfrak{p}$ -adic unit (cf. ibid., Vol. 1, p. 17, Corollary). Hence we define the
degree deg $\{z\}_{\Gamma}$ of $\{z\}_{\Gamma}$ by the absolute value of the $\mathfrak{p}$ -adic order of $\rho_{z}$ . Put

$Z( \Gamma;u)=\prod_{P\epsilon{?}(\Gamma)}(1-u^{\deg P})^{-1}$

Then the following theorem is a special case of Theorem 1 of Ihara [8],
Vol. 1, p. 21.

THEOREM Z. Let the notation and assumptions be as above. We
assume further that $\Gamma$ is torsion free. Then $Z(\Gamma;u)$ has the following
form:

$\prod(1-\rho_{i}u)(1-\rho_{i}’u)g$

$Z( \Gamma;u)=\frac{i=1}{(1-u)(1-q^{2}u)}\cross(1-u)^{(q-1)(g-1)}’$.

where $q$ is the number of the residue fifield of $\mathfrak{p}$ $(i. e. q=N\mathfrak{p})$ , $g$ is the genus
of $\Gamma^{0}\backslash \mathfrak{H}$ , and the $\rho_{i}$ and $\rho_{i}’$ are algebraic integers satisfying $\rho_{i}\rho_{i}’=q^{2}$, $|\rho_{i}|$ ,
$|\rho_{i}’|\leqq q^{2}$ and $\rho_{i}\neq 1$ , $q^{2}$.

Let $\pi$ be a prime element of $\mathfrak{p}$ , and let

$\Gamma^{l}=\Gamma\cap PSL(2, x_{F\mathfrak{p}})$ $(\begin{array}{ll}\pi^{l} 00 \pi^{-l}\end{array})$ PSL {2,$x_{F\mathfrak{p}}$)

for each non-negative integer $l$ . Then, by the theory of elementary divisors,
$\Gamma$ is the disjoint union of the $\Gamma^{l}(l=0,1,2, \cdots)$ . Let $\{z\}_{\Gamma}$ be an element of
$\mathscr{P}(\Gamma)$ , and let $\gamma_{z}$ be as before. We define the length $l\{z\}_{\Gamma^{0}}$ of the $\Gamma^{0}$

-

equivalence class of $z$ by the integer $l$ satisfying $\gamma_{z}\in\Gamma^{l}$ . Then, by Theorem
2 of Ihara [8], Vol. 2, p. 27, $P=\{z\}_{\Gamma}$ contains exactly deg $P\Gamma^{0}$-equivalence
classes $\{z\}_{\Gamma^{0}}$ with $l\{z\}_{\Gamma^{0}}=\deg P$, and the degree of any other $\Gamma^{0}$-equivalence
class is greater than deg $P$.

Let $z$, $\gamma_{z}$, $\rho_{z}$ be as before. Then $M_{z}=F(\rho_{z})$ is a totally imaginary quad-
ratic extension of $F$ contained in $C$, and $\mathfrak{p}$ is decomposed in $M_{z}$ . Further
$\rho_{z}\mapsto\gamma_{z}$ or $\rho_{z}^{-1}\mapsto\gamma_{z}$ induces a normalized $F$-linear isomorphism of $M_{z}$ into $B$ .
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Conversely, let $M$ be a totally imaginary quadratic extension of $F$ contained
in $C$, and let $f$ be a normalized $F$-linear isomorphism of $M$ into $B$ such
that $\mathfrak{p}$ is decomposed in $M$ as $\mathfrak{p}=q\overline{q}$ . Since $S$ is an open subgroup of $G_{A+}$

containing $G_{\infty+}\cdot \mathfrak{o}_{\mathfrak{p}}^{\cross}$ , there exist a positive integer $d$ and an element $\gamma$ of
$\overline{\Gamma}=G_{Q+}\cap(SG_{\mathfrak{p}})$ such that $\gamma$ is contained in $f(M^{\cross})$ and $f^{-1}(\gamma)$ generates the
ideal $(q\overline{q}^{-1})^{a}$ . Since any power of $\gamma$ fixes the unique common fixed point $z$

of $f(M^{\cross})$ , $\Gamma_{z}$ is an infinite group. It is easy to see that deg $\{z\}_{\Gamma}$ is the
smallest integer $d$ such that $(q\overline{q}^{-1})^{a}=f^{-1}(\gamma)x_{M}$ with $\gamma\in F_{\mathfrak{p}}^{\cross}(f(M^{\cross})\cap SB_{\mathfrak{p}}^{\cross})$ .
Furthermore, since $l\{z\}_{\Gamma^{0}}$ is the smallest positive integer $l$ satisfying $\pi^{l}\gamma_{z}\in \mathfrak{o}_{\mathfrak{p}}$ ,
$l\{z\}_{\Gamma^{0}}=\deg\{z\}_{\Gamma}$ holds iff $f(q^{2d})\subseteqq \mathfrak{o}_{\mathfrak{p}}$ . This condition is satisfied iff $f$ induces
an optimal embedding of $x_{M\mathfrak{p}}\cong x_{F\mathfrak{p}}\oplus x_{F\mathfrak{p}}$ into $\mathfrak{o}_{\mathfrak{p}}$ .

Let $\mathscr{C}(P)$ be as in 1-2. Hence $\mathscr{C}(P)$ is the set consisting of all points
$z$ on $\mathfrak{H}$ such that (i) there exist a totally imaginary quadratic extension $M$

of $F$ contained in $C$, and a normalized $F$-linear embedding $f$ of $M$ into $B$

such that $z$ is the unique common fixed point of $f(M^{\cross})$ , (ii) $\mathfrak{p}$ is decomposed
in $M$ as $\mathfrak{p}=q\overline{q}$ , and (iii) $f$ induces an injection of $x_{M\mathfrak{p}}\cong x_{Fp}\oplus x_{Fp}$ into $\mathfrak{o}_{\mathfrak{p}}$ . Let
$\mathscr{C}(S, \mathfrak{p})$ be the set of all $\Gamma_{S}$-equivalence classes of all $z\in \mathscr{C}(\mathfrak{p})$ . For every
$P=\{z\}_{\Gamma_{S}}$ of $\mathscr{C}(S, \mathfrak{p})$ , let deg $P$ be the smallest positive integer $d$ such that
there exists an element $\gamma$ of $F_{\mathfrak{p}}^{\cross}(f(M^{\cross})\cap SB_{\mathfrak{p}}^{\cross})$ satisfying $f^{-1}(\gamma)x_{M}=(q\overline{q}^{-1})^{a}$ .
Then we have proved:

PROPOSITION 1. Let the notation and assumptions be as above. For
every positive integer $m$, let

$N_{m}=$
$P \epsilon\epsilon(S,\mathfrak{p})\sum_{\deg P|7n},\deg P$

.

Then we have

log $Z( \Gamma_{S\mathfrak{p}} _{;} _{u})=\sum_{m=1}^{\infty}\frac{N_{m}}{m}u^{m}$ .

COROLLARY. Let $N_{m}$ be as in Proposition 1. We assume that $\Gamma_{S\mathfrak{p}}$ is
torsion free. Then

exp
$\{\sum_{m=1}^{\infty}\frac{N_{m}}{m}u^{m}\}(1-u)^{-(q-1)(g-1)}=\frac{\prod_{i=1}^{g}(1-\rho_{i}u)(1-\rho_{i}’u)}{(1-u)(1-q^{2}u)}$

:

where $g$, $q$, $\rho_{i}$ , $\rho_{i}’$ are as in Theorem $Z$.

3-2. Calculation of congruence zeta functions, I. Let the notation
and assumptions be as in \S 1. Hence $K$ is a totally imaginary quadratic
extension of $F$ contained in $C$, $\tau_{1}$ , $\cdots$ , $\tau_{g}$ are extensions of $\tau_{01}$ , $\cdots$ , $\tau_{0g}$, and
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$L=B\otimes_{F}K$. Let $\mathfrak{p}$ be a prime ideal of $F$ which does not $d_{\dot{1}}videD(B/F)$ .
Let $p$ be the prime number divisible by $\mathfrak{p}$ , and let $p=\mathfrak{p}_{1}^{e_{1}}\cdots \mathfrak{p}_{t}^{e_{t}}(\mathfrak{p}_{1}=\mathfrak{p})$ be the
factorization of $p$ in $F$. Let $\mathfrak{P}$ be an extension of $\mathfrak{p}$ to a place of $\overline{Q}$ . We
assume hereafter that (a) each $\mathfrak{p}_{i}(i=1, \cdots, t)$ is decomposed in $K$ as $\mathfrak{p}_{i}=$

$\mathfrak{P}_{i}\mathfrak{F}_{i}$ , (b) $\tau_{1}=id$ . and none of the $\mathfrak{F}_{i^{y}}^{\tau}(i=1, \cdots, t, \nu=1, \cdots, g)$ is contained in
$\mathfrak{P}$, (c) $K$ has no root of unity other than $\pm 1$ , (d) $K$ is generated over $Q$

by $\sum_{\nu=2}^{g}x^{\tau_{\nu}}$ for all $x\in K$ if $F\neq Q$, and (e) there exists a prime ideal of $F$

which is ramifified in $K$ and which does not divide $2D(B/F)$ . By the
proof of Shimura [22], Proposition 7.6, for a given natural number $m$ , there
exist infinitely many $(K, \tau_{1}, \cdots, \tau_{g})$ satisfying (a) $\sim(e)$ and (f) all prime divisors
of $m$ are completely decomposed in $K/F$. We note that (d) implies $K’=K$

if $F\neq Q$ (cf. Shimura [22], 5. 14. 7).

Let $\mathfrak{M}=x_{K}\otimes_{r_{F}}\mathfrak{o}$, and let $S(b, c)$ be as in 1-3. Hence we assume that
$S(b, c)$ satisfifies the conditions (i) $\sim(iii)$ in 1-3. Since $\Gamma^{*}(\mathfrak{M}, b)$ is torsion
free, $b\geqq 3$ . Hence the condition (iii) implies that $\Gamma_{S}(S=S(b, c))$ is torsion
free. We assume further that (iv) $c$ is prime to $p$ and (v) $\Gamma_{S\mathfrak{p}}$ is contained
in $PSL(2, R)\cross PSL(2, F_{\mathfrak{p}})$ (cf. [1]). Then the condition (iv) implies that
$S(b, c)\supset \mathfrak{o}_{p}^{\cross}$ . Hence we can apply the result of 3-1 to the group $\Gamma_{T\mathfrak{p}}(T=$

$x^{-1}S(b, c)x)$ for any element $x$ of $G_{A+}$ whose projection to $G_{p}$ belongs to $\mathfrak{o}_{p}^{\cross}$ .
Let $K_{c}$ be the class field over $K$ which corresponds to $K^{\cross}\cdot\{h\in K_{A}^{\cross}|h\equiv 1$

$mod_{0}(c)\}$ of $K_{A}^{\cross}$ by class field theory. Let $\mathfrak{P}_{c}$ be the restriction of $\mathfrak{P}$ to
$K_{c}$ , let $x_{c}$ be the maximal order of $K_{c}$ , let $\tilde{K}_{c}$ be the residue field of $\mathfrak{P}_{c}$ ,
and let $f$ be the residue degree of $\mathfrak{P}_{c}/\mathfrak{p}$ . Then $K_{c}$ is normal over $F$, $\mathfrak{P}$ is
unramified in $K_{c}/F$, and $\mathfrak{p}^{f}$ is generated by an element $\epsilon$ of $F_{+}^{\cross}$ satisfying
$\epsilon\equiv 1$ mod* $c$ . Let $K_{c}^{*}$ be a quadratic extension of $K_{c}$ such that $K_{c}^{*}$ is normal
over $F$ and $\mathfrak{P}_{c}$ remains prime in $K_{c}^{*}/K_{c}$ . Let $\mathfrak{P}_{c}^{*}=\mathfrak{P}|K_{c}^{*}$ , let $x_{c}^{*}$ be the
valuation ring of $\mathfrak{P}_{c:}^{*}$ and let $\tilde{K}_{c}^{*}$ be the residue field of $\mathfrak{P}_{c}^{*}$ .

Put $U=\{x\in G_{A+}|\mathfrak{o}x=\mathfrak{o}\}$ . Let $X=\{X_{1}^{ },\cdots, x_{h}\}$ be a set of representatives
of $U\backslash G_{A+}/G_{Q+}$ , and let $F=\{f_{1^{ }},\cdots,f_{h’}\}$ be a set of representatives of
$\{x\in K_{A}^{\cross}|xx_{K}=x_{K}\}\cdot F_{A}^{\cross}\backslash K_{A}^{\cross}/K$. We assume that $x_{1}$ , $\cdots$ , $x_{h}$ , $f_{1}$ , $\cdots,f_{h’}$ are prime
to $cp$ . Then $f_{\mu}\mathfrak{M}x_{\lambda}/bf_{\mu}\mathfrak{M}x_{\lambda}=\mathfrak{M}/b\mathfrak{M}$ for any $f_{\mu}\in F$ and $x_{\lambda}\in X$. For any
$f_{\mu}\in F$ and $x_{\lambda}\in X$, let $\beta_{\lambda\mu}$ be a totally positive element of $F$ satisfying

$tr_{L/Q}\{\beta_{\lambda\mu}T(f_{\mu}\mathfrak{M}x_{\lambda}, f_{\mu}\mathfrak{M}x_{\lambda})\}=Z$

Put $\Gamma_{\lambda}=\{\gamma\in x_{\lambda}^{-1}\mathfrak{o}x_{\lambda}|N_{B/F}(\gamma)=1\}$ , and let $\mathfrak{T}_{\lambda}(b)=\{t$ mod $\mathfrak{M}x_{\lambda}|t\in L$, $b^{-1}\mathfrak{M}x_{\lambda}$

$=\mathfrak{M}x_{\lambda}+\mathfrak{M}x_{\lambda}t\}/\Gamma_{\lambda}$ . Let $\mathfrak{T}(b)$ be the disjoint union of the $\mathfrak{T}_{\lambda}(b)(\lambda=1, \cdots, h)$ .
Let $\{s_{1}, \cdots, s_{v}\}$ be a $Z$-basis of $\mathfrak{M}$ , let $\Omega_{\lambda\mu t}=(\beta_{\lambda\mu},f_{\mu}\mathfrak{M}x_{\lambda}, \{f_{\mu}s_{j}x_{\lambda}t\})$ be as in 1-3
for any $x_{\lambda}\in X$, $f_{\mu}\in F$ and $t\in \mathfrak{T}_{\lambda}(b)$ , and let $\Sigma(b)$ be the union of all the
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families $\Sigma(\Omega_{\lambda\mu t})$ . Then $\Omega_{\lambda\mu t}$ is not equivalent to $\Omega_{\lambda’\mu’t’}$ if $(\lambda, \mu, t)\neq(\lambda’, \mu’, t’)$ .
For every triple $(\lambda, \mu, t)$ , we fix a set of representatives of $\{\gamma\in\Gamma_{\lambda}|\gamma\equiv 1$

$mod_{0}(x_{\lambda}^{-1}\mathfrak{o}x_{\lambda}, b)\}\backslash \mathscr{C}(\mathfrak{p})$ . Let $\mathscr{C}_{\lambda\mu l}^{*}(b, \mathfrak{p})$ be the subset of $\Sigma(\Omega_{\lambda\mu t})$ consisting
of all $\mathscr{Q}_{z}$ such that $z$ belongs to the representatives, and let $\mathscr{C}^{*}(b, \mathfrak{p})$ be the
disjoint union of all $\mathscr{C}_{\lambda\mu t}^{*}(b, \mathfrak{p})$ $(\lambda=1, \cdots, h, \mu=1, \cdots, h’, t\in \mathfrak{T}_{\lambda}(b))$ .

Let $\mathfrak{P}$ be as before. We extend $\mathfrak{P}$ to a place of $C$ and denote it by
the same $\mathfrak{P}$ . Let $\mathscr{Q}$ be any element of $\Sigma(b)$ . If $\mathscr{Q}$ has good reduction
at $\mathfrak{P}$ , we denote by $\tilde{\mathscr{Q}}$ reduction modulo $\mathfrak{P}$ of $\mathscr{Q}$ . Let $\mathscr{F}_{\lambda\mu t}^{*}(b, \mathfrak{p})$ be the
set consisting of all isomorphism classes of $\tilde{\mathscr{Q}}(\mathscr{Q}\in\Sigma(Q_{\lambda\mu t}))$ such that $\tilde{\mathscr{Q}}$ can
be defined over a finite field, and let $\mathscr{F}^{*}(b, \mathfrak{p})$ be the union of all $\mathscr{F}_{\lambda\mu t}^{*}(b, \mathfrak{p})$ .
Then, by the results of [13], (i) reduction modulo $\mathfrak{P}$ induces an injection $\iota$ of
$\mathscr{C}^{*}(b, \mathfrak{p})$ to $\mathscr{F}^{*}(b, \mathfrak{p})$ , and (ii) the number of elements of $\mathscr{F}^{*}(b, \mathfrak{p})\backslash \iota\{\mathscr{C}^{*}(b, \mathfrak{p})\}$

is finite, and equal to $\sum_{\lambda}|F||\mathfrak{T}_{\lambda}(b)|(N_{F/Q}(\mathfrak{p})-1)(g_{b\lambda}-1)$ , where $|*|$ denotes the
cardinality of $*$ and $g_{b\lambda}$ is the genus of $\Gamma^{*}\underline{(}\mathfrak{M}x_{\lambda}$ , $b$) $\backslash \mathfrak{H}=\{\gamma\in\Gamma_{\lambda}|\gamma\equiv 1mod$

$(x_{\lambda}^{-1}\mathfrak{o}x_{\lambda}, b)\}\backslash \mathfrak{H}$ . Further, (iii) for any element $\mathscr{Q}$ of $\mathscr{F}^{*}(b, \mathfrak{p})\backslash \iota\{\mathscr{C}^{*}(b, \mathfrak{p})\}$ and
for any totally imaginary quadratic extension $M$ of $F$ contained in $C$ such
that $\mathfrak{p}$ is not decomposed in $M$, there exists a triple { $M,f z)$ such that (a)
$f$ is a normalized $F$-linear isomorphism of $M$ into $B$, (b) $z$ is the unique
common fixed point of $f(M^{\cross})$ , (c), at least for one $(\lambda, \mu, t)$ , the element
$\mathscr{Q}_{z}\in\Sigma(Q_{\lambda\mu l})$ has good reduction at $\mathfrak{P}$ and $\mathscr{Q}_{z}$ modulo $\mathfrak{P}$ is isomorphic to
$\overline{\mathscr{Q}}$ . Furthermore, (iv) for any totally imaginary quadratic extension $M$ of
$F$ contained in $C$, and for any such triple $(M,f z)$ , reduction modulo $\mathfrak{P}$ of
$\mathscr{Q}_{z}\in\Sigma(\Omega_{\lambda\mu t})$ belongs to $\{\mathscr{C}^{*}(b, \mathfrak{p})\}$ (resp. $\mathscr{F}^{*}(b$ , $\mathfrak{p})\backslash \iota\{\mathscr{C}^{*}(b,$ $\mathfrak{p})\}$ ) iff $\mathfrak{p}$ is decom-
posed in $M/F$ (resp. $\mathfrak{p}$ is not decomposed in $M/F$).

Let $\Omega_{\lambda\mu t}$ be as above. Since $b\geqq 3$ , we can apply Theorem 1 to this
PEL type $\Omega_{\lambda\mu t}$ . Let $\mathscr{S}(\Omega_{\lambda\mu t})$ and $S(\Omega_{\lambda\mu t})$ be as in Theorem 1. Let $I=\{i=$

$(\lambda, \mu, t)|1\leqq\lambda\leqq h$, $1\leqq\mu\leqq h’$ . $t\in \mathfrak{T}_{\lambda}(b)\}$ , and put $\Omega_{i}=\Omega_{\lambda\mu t}$ , $k_{i}=k_{o_{i}}$ , $r_{i}=x_{k_{i}}$ , $\mathscr{S}_{i}=$

$\mathscr{S}(\Omega_{i})$ , $S_{i}=S(\Omega_{i})$ and $\psi_{i}=\psi_{\Omega_{i}}$ . Then the $k_{i}(i\in I)$ are contained in $K_{c}$ .
Let $\leqq$ be a linear order of $I$, let 1 be the smallest element of $I$, and,

for each $i\in I$, let $\mathscr{S}_{i}^{**}$ be the subset of $\mathscr{S}_{i}$ consisting of all elements which
are isomorphic to some elements of $\mathscr{S}_{j}$ with $j\in I$, $j_{\neq}^{<}i$ . Since $\Omega_{i}$ is not
equivalent to any $\Omega_{j}(j\neq i)$ , $\mathscr{S}_{i}^{**}$ contains no PEL-structure defined over
a field of characteristic 0. It is obvious that $\mathscr{S}_{i}^{**}$ is stable by $x_{c}$-0perations
of discrete places and automorphisms. Hence $\psi_{i}(\mathscr{S}_{i}^{**}$

.
$)$ defines a closed $x_{c}$ -

subscheme $S_{i}^{**}$ of $S_{i}^{*}=S_{i}\cross_{Spec(r_{i})}$ Spec $(x_{c})$ . It is obvious that $S_{i}^{**}\cap(S_{i}^{*}x_{Spec(c_{i})}$

Spec $(K_{c}))=\phi$ and $\psi=\square \psi_{i}i$ induces a bijective map of $\square i(\mathscr{S}_{i}\backslash \mathscr{S}_{i}^{**})$ to $\square _{i}$

{geometric points of $S_{i}^{*}\backslash S_{i}^{**}$ }. In particulai, $\psi$ induces an injective map of
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$\mathscr{F}^{*}(b, \mathfrak{p})$ to the set $\mathscr{F}(b, \mathfrak{p})$ of all $\overline{F}_{p}$-valued points of $\square _{i}(S_{i}^{*}\backslash S_{i}^{**})\cross_{Spec(){}^{t}c}$

Spec $(\tilde{K}_{c})$ . Since any $\overline{F}_{p}$-valued point of $S_{i}$ can lifted to a $\overline{Q}$-valued point of
$S_{i}$ (cf. \S 2 and Mumford [15], Chap. 2, \S 8, Theorem 1), this map is surjective.
Hence $\psi:\mathscr{F}^{*}(b, \mathfrak{p})arrow \mathscr{F}(b, \mathfrak{p})$ is bijective, and commutes with the actions of
Gal $(\overline{F}_{p}/\tilde{K}_{c})$ .

Let $\mathscr{C}^{*}(b, \mathfrak{p})=\square \mathscr{C}_{\lambda\mu t}^{*}(b, \mathfrak{p})\lambda,\mu,t$ and $\iota:\mathscr{C}^{*}(b, \mathfrak{p})arrow \mathscr{F}^{*}(b, \mathfrak{p})$ be as before. Let
$\mathscr{Q}’$ be an element of $\mathscr{C}_{\lambda\mu t}^{*}.(b, \mathfrak{p})$ . Let $\sigma$ be an element of Gal $(\overline{Q}/K_{c})$ which
belongs to the decomposition group of $\mathfrak{P}$, and let $\tilde{\sigma}$ be $\sigma$ mod $\mathfrak{P}\in Ga1(\overline{F}_{p}/K_{c})$ .
Then $\mathscr{Q}^{\sigma}$ belongs to $\mathscr{C}_{\lambda ul}^{*}(b, \mathfrak{p})$ because $K_{c}\supseteqq k_{i}(i\in I)$ and $\mathscr{Q}$ and $\mathscr{Q}^{\sigma}$ are
conjugate over $K_{c}$ . It follows from the injectivity of $\iota$ and $\psi$ that the follow-
ing six conditions are equivalent: $(a\underline{)}\psi(\mathscr{Q})^{\sigma}=\underline{\psi(}\mathscr{Q});(b)$ $\psi(\mathscr{Q}^{\sigma})=\psi(\mathscr{Q});(c)$

$\mathscr{Q}^{\sigma}\cong \mathscr{Q};(d\underline{)}\overline{\mathscr{Q}}^{\tilde{\sigma}}\cong\tilde{\mathscr{Q}};(e)\psi(\overline{\mathscr{Q}}^{\tilde{\sigma}})=\psi(\mathscr{Q});(f)\psi(\mathscr{Q})^{\tilde{ae}}=\psi(\mathscr{Q})$ . Hence $\psi(\mathscr{Q})^{\sigma}=$

$\psi(\mathscr{Q})$ iff $\psi(\mathscr{Q})^{\tilde{\sigma}}=\psi(\overline{\mathscr{Q}})$ . As we noted in 1-3, there exists an isomorphism $h_{T}$

of the canonical model $V_{T}$ of $\Gamma_{T}\backslash \mathfrak{H}(T=x_{\lambda}^{-1}S(b, c)x_{\lambda})$ to $S(\Omega_{\lambda\mu t})\cross_{Spec(r_{i^{)}}}Spec(K_{c})$

defined over $K_{c}$ . Hence $\psi(\tilde{\mathscr{Q}})^{\tilde{\sigma}}=\psi(\overline{\mathscr{Q}})$ iff $(h_{T}^{-1}\circ\psi)(\mathscr{Q}^{\sigma})=(h_{T}^{-1}\circ\psi)(\mathscr{Q})$ .
Let $(z, M,f)$ be the triple corresponding to an element of $\mathscr{C}_{\lambda\mu t}^{*}(b, \mathfrak{p})$ .

Hence $M$ is a totally imaginary quadratic extension of $F$ contained in $C$, $f$

is a normalized $F$-linear embedding of $M$ into $B$, and $z$ is the unique com-
mon fixed point of $f(M^{\cross})$ on $\mathfrak{H}$ . Let $\mathfrak{p}=q\overline{q}(q\subseteqq \mathfrak{P})$ be the factorization of
$\mathfrak{p}$ in $M$, and let $u$ be the idele of $M_{A}^{\cross}$ corresponding to $q$ . Then $[u]$ mod $\mathfrak{P}$

generates the Galois group of $\overline{F}_{p}$ over the residue field $\tilde{F}$ of $\mathfrak{p}$ . Hence,
for any even power $\sigma=[u]^{2m}$ of $[u],\tilde{\sigma}$ is trivial on $\tilde{K}_{c}^{*}$ and $\psi(\overline{\mathscr{Q}})^{\tilde{\sigma}}=\psi(\overline{\mathscr{Q}})$

iff $[\tilde{K}_{c}^{\star} : \tilde{F}]=2f$ divides $2m$ and $\varphi_{T}(z)^{\sigma}=\varphi_{T}(z)$ . By 3. 5. 1 (and 3. 7) of Shimura
[24], this condition is satisfied iff $f|m$ and $f(u^{2n\iota})=\delta t$ with $\delta\in f(M^{\cross})$ and
$t\in T_{1}$ Let $\epsilon$ be as before. Then $\gamma=\epsilon^{-m/f}\delta=f(\epsilon^{-m/f}u^{2m})t^{-1}\in f(M^{\cross})\cap TB_{\mathfrak{p}}^{\cross}$ and
$f^{-1}(\gamma)t_{-M}=(q\overline{q}^{-1})^{m}$ . Conversely, if there exists $\gamma\in f(M^{\cross})\cap TB_{\mathfrak{p}}^{\cross}$ such that $f|m$

and $f^{-1}(\gamma)x_{M}=(q\overline{q}^{-1})^{m}$ , then $\delta=\epsilon^{m/f}\gamma\in f(M^{\cross})$ and $t=\gamma^{-1}f(\epsilon^{-m/f}u^{2m})\in T\mathfrak{o}_{\mathfrak{p}}^{\cross}=T$

It follows from the definition of deg $P=\deg\{z\}_{\Gamma}$ (cf. 3-1) that $[K_{c}^{*}(\psi(\overline{\mathscr{Q}})):K_{c}^{*}]$

$=\deg P/(\deg P,f)$ .

If $\overline{\mathscr{Q}}$ is an element of $\mathscr{F}^{*}(b, \mathfrak{p})\backslash \iota\{\mathscr{C}^{*}(b, \mathfrak{p})\}$ , then, for any totally
imaginary quadratic extension $M$ of $F$ contained in $C$ such that $\mathfrak{p}$ remains
prime in $M/F$, let $(z, M,f)$ and $\mathscr{Q}_{z}\in\Sigma(Q_{\lambda\mu t})$ be as before. Let $\sigma$ be the
$f$-th power of the Frobenius automorphism for $\mathfrak{p}x_{K}$. Then $\sigma$ generates the
Galois group of $\overline{F}_{p}$ over $\tilde{K}_{c}^{*}$ and $P^{f}$ is generated by the element $\epsilon$ of $F_{+}^{\cross}\cap T$.
Hence, by Theorem $C$ , $\varphi_{T}(z)^{\sigma}=\varphi_{T}(z)$ . Hence $\psi(\mathscr{Q})^{\sigma}=\psi(\mathscr{Q})$ . Therefore $\psi({?})$

is rational over $\tilde{K}_{c}^{\star}$ . Since $\mathscr{F}^{*}(b, \mathfrak{p})\backslash \iota\{\mathscr{C}^{*}(b, \mathfrak{p})\}$ contains exactly $\sum_{\lambda}|F||\mathfrak{T}_{\lambda}(b)|$

$(N_{F/Q}(\mathfrak{p})-1)(g_{b\lambda}-1)$ elements, it follows from the bijectivity of $\psi:\mathscr{F}^{*}(b, \mathfrak{p})arrow$
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$\mathscr{F}(b, \mathfrak{p})$ that the number $N_{m}^{*}$ of $F_{q^{2}}fm$ -rational points $(f=[\tilde{K}_{c}:\tilde{F}])$ of
$\square i$

$(S_{i}^{*}\backslash S_{i}^{**})\cross_{Spec(r_{C})}$ Spec $(\tilde{K}_{c}^{*}’)$ is given by

$N_{m}^{*}= \sum_{\lambda,\mu,t}[$

$\{_{\deg P/(\deg P,f)_{1}^{1}}^{P\epsilon r(x_{\lambda}^{-1}Sx_{\lambda},\mathfrak{p})}’,,\sum_{m}\deg P+(N_{F/Q}(\mathfrak{p})-1)(g_{b\lambda}-1)]1$

Hence, by the corollary of Proposition 1, we have:

PROPOSITION 2. The congruence zeta function $Z(u)= \exp\{\sum_{m-1}^{\infty}\frac{N_{m}^{*}}{m}u^{m}\}$ of
the algebraic set $\square i$

$(S_{i}^{*}\backslash S_{i}^{**})\cross_{Spec(r_{C})}$ Spec $(\tilde{K}_{c}^{*})$ is

$\prod_{\lambda=1}^{h}\{^{g}\prod_{i=1}^{b\lambda}(1-\rho_{\lambda i}^{f}u)(1-(\rho_{\lambda i}’)^{f}u)/(1-u)(1-q^{2f}u)\}^{h’|\Sigma_{\lambda}(b)|}\eta$
,

where the $\rho_{\lambda i}$ and the $\rho_{\lambda i}’$ are the roots of $Z(\Gamma_{x_{\lambda\lambda}^{-1_{Sx,\mathfrak{p}}}} ; u)$ (cf. Theorem $Z$).

3-3. Calculation congruence zeta functions, $II$. Let $x=x_{c\mathfrak{P}}^{*}$, be the
valuation ring of $\mathfrak{P}\cap K_{c}^{*}$ . Let $S_{i}’=S_{i}^{*}\cross_{Spec(r_{C})}$ Spec $(x_{c\mathfrak{P}}^{*})$ and $S_{i}^{\prime*}=S_{i}^{A_{1}*}x_{Spec(r_{C})}$

$Spec(x_{c\mathfrak{P}}^{*})$ . It is obvious that $\square _{i}(S_{i}’\backslash S_{i^{*}}’)\cross_{Spec(r)}Spec(\tilde{K}_{c}^{*})$ is a Zariski open
$\tilde{K}_{c}^{*}$ -rational subset of a purely one dimensional $\tilde{K}_{c}^{*}$ -rational cycle in a pr0-

jective space. Since $\rho_{\lambda i}\rho_{\lambda i}’=q^{2}$ , the reduced denominator of $Z(u)$ is a power
of $(1-u)$ $(1-q^{2f}u)$ . It follows from the results of Weil [27] that each ge0-

metrically irreducible component of $\square i$

$(S_{i}’\backslash S_{i^{*}}’)\cross_{Spec(r)}$ Spec $(\tilde{K}_{c}^{*})$ is rational

over $\tilde{K}_{c}^{*}$ . Since $Z(u)$ is the congruence zeta function of a Zariski open sub-
set of a one dimensional cycle, $\rho=\rho_{\lambda i}^{f}$ or $(\rho_{\lambda i}’)^{f}$ satisfies (i) $|\rho|=1$ , or (ii) $|\rho|=q^{f}$

or (iii) $\rho=p^{2f}$. Since $\rho_{\lambda i}\rho_{\lambda i}’=q^{2}$ , it follows that $|\rho|=1$ holds iff $\rho=1$ . Hence
no root of the reduced numerator of $Z(u)$ is a root of unity. It follows
that each connected component of $\square i(S_{i}’\backslash S_{i^{*}}’)x_{Spec(r)}Spec(\tilde{K}_{c}^{*}.)$ is proper and

geometrically irreducible, and that no two connected components intersect.
Furthermore no root of the numerator of the congruence zeta function of
each component is a root of unity.

Since $S_{i}’$ is quasi-projective, we can define the Zariski closure $\overline{S}_{i}’$ of $S_{i}’$ .
Since $S_{i}’\cross_{Spec(\mathfrak{c})}$ Spec $(K_{c}^{*}.)$ is a geometrically irreducible proper curve, it follows
from the Zariski connection theorem (cf. EGA, III, 4. 3. 1) that $\overline{S}_{i}’\cross_{Spec(r)}$

Spec $(\tilde{K}_{c}^{*})$ is connected. Since the $(S_{i}’\backslash S_{i^{*}}’)x_{Spec(\mathfrak{c})}$ Spec $(\tilde{K}_{c}^{*})$ are open in
$\square (S_{i}’\backslash S_{i}^{\prime*})x_{Spec(r)}$ Spec $(\tilde{K}_{c}^{*_{\backslash }})$ , each $(S_{i}’\backslash S_{i^{*}}’)\cross_{Spec(t)}$ Spec $(\tilde{K}_{c}^{*})$ is a disjoint union
of a finite number of proper geometrically irreducible curves. Hence $(S_{i}’\backslash S_{i^{*}}’)$

$x_{Spec(r)}$ Spec $(\tilde{K}_{c}^{*})$ is open and closed in $\overline{S}_{i}’x_{Spec(r)}$ Spec $(\tilde{K}_{c}^{*})$ . Therefore $(S_{i}’\backslash$

$S_{i}^{\prime*})x_{Spec(r)}$ Spec $(\tilde{K}_{c}^{*})$ is either $\phi$ or $\overline{S}_{i}’x_{Spec(r)}$ Spec $(\tilde{K}_{c}^{*})$ . In particular, either
$(S_{i}’\backslash S_{i^{*}}’)\cross_{Spec(c)}$ Spec $(\tilde{K}_{c}^{*})=\phi$ or $S_{i^{*}}’=\phi$ .
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Since $S_{1^{*}}’=\phi$ , and since $S_{1}’\cross_{Spec(e)}$ Spec $(\tilde{K}_{c}^{*})\neq\phi$ (because each $\mathscr{Q}\in \mathscr{C}^{*}(b, \mathfrak{p})$

has good reduction at $\mathfrak{P}$ and determines a point of $S_{1}’x_{Spec(r)}Spec(\tilde{K}_{c}^{*}))$ , it
follows that $S_{1}’X_{Spec(r)}$ Spec $(\tilde{K}_{c}^{*}.)=\overline{S}_{1}’\cross_{Spec(r)}$ Spec $(\tilde{K}_{c}^{*})$ . Hence $S_{1}’$ is projective
and $S_{1}’X_{Spec(\tau)}$ Spec $(\tilde{K}_{c}^{*})$ is geometrically irreducible. Furthermore, by chang-
ing the order of $I$ , we observe that each $S_{i}’(i\in I)$ has the same properties.
In particular, any $\mathscr{O}\in\Sigma(b)$ has good reduction at $\mathfrak{P}$ .

Let $\varphi_{i}$ : $S_{i}’arrow S_{i}’$ be the normalization of $S_{i}’$ in the function fifield at the
generic point of $S_{i}’$ . By EGA, $II$ , 6. 3. 10, $\varphi_{i}$ is a finite morphism. Hence
$S_{i}’$ is projective over Spec(\mbox{\boldmath $\tau$}). It is obvious that the general fibre of $S_{i}’$ is
the complete non-singular model of the general fibre of $S_{i}’$ . Hence there
exists an isomorphism $j_{i}’$ of $V_{T}\cross_{Spec(k_{T})}$ Spec $(K_{c}^{*})$ onto $S_{i}’\chi_{Spec(r)}$ Spec $(K_{c}^{*})$

with $T=x_{\lambda}^{-1}S(b, c)x_{\lambda}$ . Let $S_{i1}’$ , $\cdots$ , $S_{it}’$ be the irreducible components of
$\tilde{S}_{i}’=S_{i}’\cross_{Spec(c)}$ Spec $(\tilde{K}_{c}^{*})$ , and let $\overline{S3}_{1}$ , $\cdots,$

$\vee\overline{p_{i_{l}}}$ be the function fields at the generic
points of $\tilde{S}_{i1}’$ , $\cdots$ , $S_{it}’$ . Let $e_{ij}$ (resp. $f_{ijs}r_{ij}$) (resp. $r_{ij}$) be the multiplicity of
$\tilde{S}_{ij}’$ (resp. the separable degree of $\tilde{\varphi}_{j}$ over the function $fifie1d.\tilde{\Omega_{\dot{\iota}}}$ at the generic
point $\tilde{S}_{i}’=S_{i}’\cross_{Spec(r)}$ Spec $(\tilde{K}_{c}^{*}))$ (resp. the degree $[\mathfrak{n}_{j}^{1}\overline{R}\cap\overline{F}_{p}$ : $\hat{\dot{a}}\cap\overline{F}_{p}]$ ). Then
$f_{ijs}$ is an integer. Let $g(\tilde{S}_{i}’)$ be the genus of $.\overline{9}$ . Then, by the Hurwitz
formula, the genus $g(\tilde{S}_{ij}’)$ of $\oplus_{j}\sim$ satisfies $g(S_{ij}’)-1\geqq f_{ijs}(g(S_{i}’)-1)$ . Further,
by the result of Popp [17],

$\sum_{j=1}^{t}r_{ij}e_{ij}(g(\tilde{S}_{ij}’)-1)\leqq g_{b\lambda}-1$

Hence we have

$( \sum_{j=1}^{t}r_{ij}e_{ij}f_{ijs})(g(\tilde{S}_{i}’)-1)\leqq g_{b\lambda}-1$

Since $g_{b\lambda}-1>0$ , this implies $g(\tilde{S}_{i}’)-1\leqq g_{b\lambda}-1$ .
Let $J$ be the set consisting of all $i\in I$ satisfying $(S_{i}’\backslash S_{i^{*}}’)\cross_{Spec(r)}$ Spec $(\tilde{K}_{c}^{*})$

$\neq\phi$ . Then it follows from our calculation of $Z(u)$ in 3-2 that

$\sum_{i\in J}(2g(\tilde{S}_{i}’)-2)=\sum_{i\in I}(2g_{b\lambda}-2)$

Since

$\sum_{i\in J}(g(\tilde{S}_{i}’)-1)\leqq\sum_{i\in J}(g_{b\lambda}-1)$

$= \sum_{i\in I}(g_{b\lambda}-1)-\sum_{i\in I\backslash J}(g_{b\lambda}-1)=\sum_{i\in J}(g(\tilde{S}_{i}’)-1)-\sum_{i\in I_{\backslash }^{\backslash }J}(g_{b\lambda}-1)$ ,

we obtain $\sum_{i\in I\backslash J}(g_{b\lambda}-1)\leqq 0$ . Since $g_{b\lambda}\geqq 2$ , we obtain $I\backslash J=\phi$ . Hence $I=J$.
Hence, for any $i\in I$,

$g(\tilde{S}_{i}’)-1\leqq g_{b\lambda}-1$ and $\sum_{i\in I}(g(\tilde{S}_{i}’)-1)=\sum_{i\in I}(g_{b\lambda}-1)$
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It follows that $g(\tilde{S}_{i}’)-1=g_{b\lambda}-1>0$ . Hence

$\sum_{j=1}^{t}e_{ij}r_{ij}f_{ijs}\leqq 1$

Therefore $t=1$ , $e_{i1}=r_{i1}=f_{i1s}=1$ . Hence $\tilde{S}_{i}’=S_{i}’\cross_{Spec(t)}$ Spec $(\tilde{K}_{c}^{*})$ is geometri-
cally irreducible, the generic point of $s_{i}$

\prime\prime is reduced, and $\varphi_{i}$ induces a purely
inseparable morphism $\tilde{\varphi}_{i}$ : $\tilde{S}_{i}’arrow S_{i}’$ . Furthermore the genus $g(S_{i}’)$ of the
function field at the generic point of $\tilde{S}_{i}’$ satisfies

$g(\tilde{S}_{i}’)=g(S_{i}’)=g_{b\lambda}$

Hence the effective genus of the special fibre $S_{i}’=S_{i}’\cross_{Spec(r)}$ Spec $(\tilde{K}_{c}^{*})$ is equal
to the effective genus of the general fibre $S_{i}’x_{Spec(e)}$ Spec(Kt). Since the
general fibre is non-singular, it is also equal to the arithmetic genus of the
general fibre. By the invariance of the Euler-Poincare characteristic (cf.
$e$ . $g$ . EGA, III, 7. 94), it follows that the effective genus of the special fibre
$\tilde{S}_{i}’$ is equal to the arithmetic genus of $g_{i}\prime\prime$ . Hence $g_{i}$

\prime\prime is an absolutely ir-
reducible projective non-singular curve defined over $\tilde{K}_{c}^{*}$ with genus $g_{b\lambda}=g_{T}$.
Hence $S_{i}’$ is smooth and projective over $Spec(x_{c^{1}P}^{*})$ . In particular, $S_{i}’$ is a
stable curve over Spec $(x_{c\mathfrak{P}}^{*})$ (cf. Deligne-Mumford [3]).

Since $g(\tilde{S}_{i}’)=g_{b\lambda}$ , the numerator of $Z(u)$ has $\sum_{i\in I}2g_{b\lambda}$ roots $\rho$ with $|\rho|=q^{-f}$.
Hence $|\rho_{\lambda i}|=|\rho_{\lambda i}’|=q^{f}$ . Furthermore the congruence zeta function $Z_{i}(u)$ of
each $\tilde{S}_{i}’$ has the form

$\prod_{j=1}^{g_{b\lambda}}(1-\rho_{ij}u)(1-\rho_{ij}’u)/(1-u)(1-q^{2f}u)$

with $|\rho_{ij}|=|\rho_{ij}’|=q^{f}$, because $Z(u)= \prod_{i\in I}Z_{i}(u),\tilde{S}_{i}’$ is geometrically irreducible and
$g(S_{i}’)=g_{\lambda b}$ . Since $\tilde{\varphi}_{i}$ : $\tilde{S}_{i}’arrow\tilde{S}_{i}’$ is a purely inseparable morphism, the congruence
zeta function of $\tilde{S}_{i}’$ is also equal to $Z_{i}(u)$ . Hence $\tilde{\varphi}_{i}$ is one-tO-One. In par-
ticular, $\varphi_{i}^{-1}\circ\psi_{i}$ induces a bijective map of $\mathscr{F}_{i}^{*}(b, \mathfrak{p})$ to the set of all $\overline{F}_{p}$-valued
points of $\tilde{S}_{i}’$ .

Since $I=J$, $(S_{i}\backslash S_{i^{*}}’)\cross_{Spec(t)}$ Spec $(\tilde{K}_{c}^{*})\neq\phi$ for each $i\in I$. Hence $S_{i^{*}}’=\phi$ for
each $i\in I$. Hence $\mathscr{S}_{i}^{**}.=\phi$ for each $i\in I$. Therefore $\mathscr{F}_{i}^{*}(b, \mathfrak{p})\cap \mathscr{F}_{j}^{*}(b, \mathfrak{p})=\phi$

if $i\neq j$ . This shows that the results of [13], which we quoted in 3-2, hold
if we restrict to each $PKh$-type $\Omega_{i}$ . Therefore, by the bijectivity of $\varphi_{i}^{-1}\circ\psi_{i}$ ,
$S_{t}’$ and $J_{i}’*$ satisfy the conditions (ii) $\sim(iii)$ of Main Theorem 1 for $\mathfrak{P}$ . There
fore we have proved :

PROPOSITION 3. There exist a smooth projective scheme $S_{i}’(i=(\lambda, \mu, t)$

$\in I)$ over the valuation ring $x$ of $\mathfrak{P}|K_{c}^{*}$ and an isomorphism $j_{i}’$ of $V_{T}\cross_{Spec(k_{T})}$

Spec $(K_{c}^{*})(T=x_{\lambda}^{-1}S(b, c)x_{\lambda})$ onto the general fifibre $S_{i}’\cross_{Spec(r)}$ Spec{Kt) of $S_{i}’$
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such that $S_{i}’$ and $j_{i}’$ satisfy the conditions (ii) and (iii) of Main Theorem 1.

3-4. Proof of Main Theorem 1. Let $b$ and $c$ be positive integers
such that $b\geqq 3$ , $b|c$ and the pair $(b, c)$ satisfies the conditions (i) $\sim(iii)$ in 1-3
for every divisor $a$ of $b$ and for every $K$ such that $K$ has no roots of
unity other than $\pm 1$ and there exists a prime ideal of $F$ such that it is
ramified in $K$ and does not divide $2D(B/F)$ . Let $S=S(b, c)$ be as in 1-3,
and let $P_{S}$ be as in 1-2.

Since $S(b, c)\subseteqq S(\mathfrak{o}, b)$ , an ideal $q$ of $k_{S}$ belongs to $P_{S}$ only if $q$ does not
divide $b$ . In this case, $\{x\in S(\mathfrak{o}, b)|\nu(x)=1\}$ contains $\{x_{p}\in \mathfrak{o}_{p}^{\cross}|\nu(x)=1\}$ , where
$p=q\cap Q$ . Hence $S(b, c)\supseteqq \mathfrak{o}_{p}^{\cross}$ iff $q\parallel b$ and $\nu(\{x_{p}\in \mathfrak{o}_{p}^{\cross}|\mathfrak{o}_{p}(x_{p}-1)\subseteqq c\mathfrak{o}_{p}\})=x_{Fp}^{\cross}$ . Let
$\mathfrak{p}=q\cap F$ . Since $\mathfrak{p}\int D(B/F)$ , $\nu(\{x_{\mathfrak{p}}\in \mathfrak{o}_{\mathfrak{p}}^{\cross}|\mathfrak{o}_{\mathfrak{p}}(x_{\mathfrak{p}}-1)\subseteqq c\mathfrak{o}_{\mathfrak{p}}\})=x_{Jp}^{\cross}$, iff $\mathfrak{p}$ does not divide
$c$ . Therefore $q\in P_{S}$ iff $q$ does not divide $cD(B/F)$ . We note that $q$ is
unramifified in $k_{T}/F$ in this case.

Let $q$ be an element of $P_{S}$ , $\mathfrak{p}=q\cap F$ , and let $\Gamma_{S\mathfrak{p}}$ be as in 3-1. We
assume that $\Gamma_{S\mathfrak{p}}$ is contained in $PSL(2, R)\cross PSL(2, F_{\mathfrak{p}})$ . Then we claim that
there exist a smooth projective scheme $W_{Sq}$ over the valuation ring $x_{q}=x_{Sq}$

of $q$ and an isomorphism $j_{Sq}$ of $V_{S}$ onto $W_{S0}=W_{So}\cross_{Spec(r\mathfrak{p})}$ Spec $(k_{S})$ satisfying
the conditions (i) $\sim(iii)$ of Main Theorem 1 for this $q$ and for any extension
$\mathfrak{P}$ of $q$ to an place of $\overline{Q}$ .

Let $K$, $\tau_{1}$ , $\cdots$ , $\tau_{g}$, $L$ , $\mathfrak{p}_{1}$ , $\cdots$ , $\mathfrak{p}_{t}$ , $\mathfrak{P}_{1}$ , $\cdots$ , $\mathfrak{P}_{t}$ , etc. be as in 3-2. Hence we
assume that the conditions (a) $\sim(e)$ are satisfied. Let $X=\{x_{1}, \cdots, x_{h}\}$ , $F=$

$\{f_{1}, \cdots,f_{h’}\}$ , $\mathfrak{T}_{\lambda}(b)$ , $\mathfrak{T}(b)$ , $I=\{i=(\lambda, \mu, t)\}$ , the $\Omega_{i}$ etc. be as in 3-2. Let $K_{c}$

be as before, and let $K_{c}^{*}$ be a quadratic extension of $K_{c}$ such that $K_{c}^{*}$ is
normal over $F$ and $\mathfrak{P}|K_{c}$ remains prime in $K_{c}^{*}/K_{c}$ . Let $S_{i}’$ and $j_{i}’$ be as in
Proposition 3 for $S(b, c)$ . We assume that $x_{\lambda}=1$ and $f_{\mu}=1$ for $1=(\lambda, \mu, t)$ .
Then $S_{1}’$ is a smooth projective scheme over the valuation ring $X$ of the
restriction of $\mathfrak{P}$ to $K_{c}^{*}$ , and $j_{1}’$ is an isomorphism of $V_{S}x_{Spec(k_{S})}$ Spec $(K_{c}^{*})$ onto
the general fibre $S_{10}’$ of $S_{1}’$ . Furthermore, $S_{1}’$ and $j_{1}’$ satisfy the conditions
(ii) and (iii) of Main Theorem 1 for these $q$ and $\mathfrak{P}$

Let $\sigma$ be an element of Gal $(K_{c}^{*}./k_{S})$ . Then there exists an isomorphism
$J_{0}(\sigma)$ of $S_{10}’$ to $(S_{10}’)^{\sigma}$, and these $J_{0}(\sigma)$ satisfy the cocycle condition for descent.
Since the $(S_{1}’)^{\sigma}$ are stable curves over $X$ , each $J_{0}(\sigma)$ extends to an isomorphism
$J(\sigma)$ of $S_{1}’$ to $(S_{1}’)^{\sigma}$ (cf. Deligne-Mumford [3]). Since Spec (1) is etale over
$Spec(x_{q})$ , these $J(\sigma)$ give a descent deta. Hence, by the result of GrO-
thendieck [6], 190, there exist a scheme $W_{Sq}$ over $Spec(x_{q})$ and an is0-
morphism $j_{S}’$ of $S_{1}’$ to $W_{S_{fi}}\cross_{Spec(c_{q})}$ Spec (e). Since Spec $(x)arrow Spec(x_{q})$ is faith-
fully flat and quasi-compact, and since $S_{1}’$ is smooth and proper over Spec (x),
$W_{Sq}$ is proper and smooth over $Spec(x_{\mathfrak{g}})$ . Since the general fibre of $W_{Sq}$ is an
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absolutely irreducible projective non-singular curve with genus $g_{S}$, the special
fibre has the same property. Since the special fibre is projective, $W_{Sr}$ is
projective over Spec $(x_{q})$ (cf. EGA, III, 4. 7. 1). Hence $W_{Sq}$ and $j_{Sq}=j_{S}’\circ j_{1}’$

satisfy the required conditions. Therefore the claim is proved.

Let $T$ be any element of $\Leftrightarrow Z$ . For each $q\in P_{T}$, let $\mathfrak{P}$ be as in 1-2.
Since the problem is local, if, for each $q$ , there exist a smooth projective
scheme $W^{*}$ over the valuation ring of $q$ and an isomorphism $j^{*}$ of the
canonical model $V_{T}$ for $T$ to the general fibre of $W^{*}$ satisfying the con-
ditions $(i)\sim(iii)$ of Main Theorem 1 for $\mathfrak{P}$ , then Main Theorem 1 holds for
$T$ Let $x_{\tau p}$ be as in 1-2. If $W^{*}$ and $j^{*}$ satisfy these conditions for $x_{Tp}Tx_{Tp}^{-1}$

and $q$ , then $W^{*}$ and $j^{*}\circ x_{Tp}$ satisfy the conditions for $T$ and $q$ . Hence we
assume that $T\supseteqq \mathfrak{o}_{p}^{\cross}$ , and prove the existence of such $W^{*}$ and $j^{*}$ .

Let $U=\{x\in G_{A+}|\mathfrak{M}x=\mathfrak{M}\}$ . Then $U$ is an element of $Z$ . Let $R=$

$\bigcap_{x\in T}x(T\cap U)x^{-1}$ (cf. [24], 3. 11). Then $R$ is a normal subgroup of $T$

satisfying $T\cap U\supseteqq R\supseteqq \mathfrak{o}_{p}^{\cross}$ . Since $R\supseteqq \mathfrak{o}_{p}^{\cross}$ and $R\in Z$ , there exists a pair $(b, c)$

of positive integers such that (a) $R\supseteqq S(b, c)$ and (b) $(b, c)$ satisfies the condi-
tions at the beginning of 3-4 for $q$ (cf. [1]). It is obvious that $S=S(b, c)$

is a normal subgroup of $R$ .
Since $S$ is normal in $R$ , $\Gamma_{S}$ is normal in $\Gamma_{R}$ . Hence $V_{R}’=V_{R}\cross_{Spec(k_{R})}$

Spec $(k_{S})$ can be regarded as the quotient of $V_{S}$ by $G=\{J_{SS}(\gamma)|\gamma\in\Gamma_{R}$ modulo
$\Gamma_{S}\}$ . Let $x_{S}=x_{Sq^{*}}$ and $x_{R}$ be the valuation rings of $q^{*}=\psi|k_{S}$ and $\mathfrak{P}|k_{R}$ .
Then there exist a smooth projective scheme $W_{Sq^{*}}$ over $Spec(x_{S})$ and an is0-
morphism $j_{Sn^{*}}$ of $V_{S}$ to the general fibre $W_{S0}$ of $W_{Sq^{*}}$ , and these $W_{Sr^{*}}$ and

$j_{Sq^{*}}$ satisfy the conditions (ii) and (iii) of Main Theorem 1. Since $W_{Sq^{*}}$ is a
stable curve, the $J_{SS}(\gamma)(\gamma\in\Gamma_{R}/\Gamma_{S})$ can be extended to elements of Aut $(W_{Sq^{2}})$

Let $W_{R}^{\prime*}$ be the quotient of $W_{Sq^{*}}$ by this finite group $G$ (cf. Mumford [14]

and Grothendieck [6], 212).
Since $W_{Sq^{*}}$ is of finite type over $Spec(x_{S})$ , $W_{R}^{\prime*}$ is of finite type over

$Spec(x_{S})$ . Since $W_{Sq^{*}}arrow W_{R}^{\prime*}$ is surjective, $W_{R}^{\prime*}$ is proper over $Spec(x_{S})$ (cf.

EGA, $II$ , 5. 53). Since $W_{s_{q}*}arrow W_{R}^{\prime*}$
. is faithfully flat, and since $W_{Sq^{*}}arrow Spec$ $(x_{S})$

is flat, $W_{R}^{\prime*}arrow Spec(x_{S})$ is flat (cf. EGA, $IV$ , 2. 2. 13). Since $W_{Sq^{*}}$ is smooth
over $Spec(x_{S})$ , $W_{Sq^{*}}$ is normal. Hence $W_{R}^{\prime*}$ is normal. In particular, the
general fibre $W_{R0}^{\prime*}$ of $W_{R}^{\prime*}$ is non-singular. Furthermore, by the results of
Lamprecht [11] (cf. Definition 3, Satz 2 and Korollar 5), and by the definition
of $W_{R}^{\prime*}$ , the special fibre of $W_{R}^{\prime*}$ is non-singular. Hence all geometric fibres
of $W_{R}^{\prime*}$ are non-singular. Since $W_{R}^{\prime*}$ is flat over $Spec(x_{S})$ , $W_{R}^{\prime*}$ is smooth
over Spec $(r_{S})$ . Therefore $W_{R}^{\prime*}$

. is smooth and projective over Spec $(x_{S})$ . It
is obvious that there is an isomorphism $j_{R}^{\prime\star_{1}}$ of $V_{R}’$ to the general fibre of
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$W_{R}^{\prime*}$ , and that these $V_{R}’$, $\varphi_{R}$ , $j_{R}^{\prime*}$ and $W_{R}^{\prime*}$ satisfy the conditions (ii) and (iii)
of Main Theorem 1.

Let $\sigma$ be an element of Gal $(k_{S}/k_{R})$ . Then there exists an isomorphism
$J_{0}(\sigma)$ of $V_{R}’$ to $V_{R}^{\prime\sigma}$ , and these $J_{0}(\sigma)$ satisfy the cocycle condition for descent.
Since the $(W_{R}^{\prime\star})^{\sigma}$ are stable curves over $Spec(x_{S})$ , each $J_{0}(\sigma)$ extends to an
isomorphism $J(\sigma)$ of $W_{R}^{\prime*}$ to $(W_{R}^{\prime*})^{\sigma}$ . Since $F\subseteqq k_{T}\subseteqq k_{S}\subseteqq K_{c}$ , Spec $(r_{S})$ is etale
over $Spec(x_{R})$ . Hence the $J(\sigma)$ give a descent deta for $Spec(x_{S})arrow Spec(r_{R})$ .
Hence, by the result of Grothendieck [6], there exist a smooth projective
scheme $W_{R}^{*}$ over Spec $(x_{R})$ satisfying $W_{R}^{*}\cross_{Spec(c_{R})}Spec(x_{S})\cong W_{R}^{\prime*}$ , and an is0-
morphism $j_{R}^{*}$ of $V_{R}$ to the general fibre of $W_{R}^{*}$ . It is obvious that $W_{R}^{*}$ and
$j_{R}^{*}$ satisfy the conditions (ii) and (iii) of Main Theorem 1.

Since $R$ is a normal subgroup of T. and since $F\subseteqq k_{T}\subseteqq k_{R}\subseteqq K_{c}$ , we can
repeat the above arguments and construct $W_{T}^{*}$ and $j_{T}^{\star}$ from $W_{R}^{*}$ and $j_{R}^{*}$ .
Then these $W_{T}^{*}$ and $j_{T}^{*}$ satisfy the required conditions. Therefore Main
Theorem 1 holds in the general case.

3-5. Proof of Main Theorem 2. Let the notation and assumptions
be as in Main Theorem 2. Put $R=x^{-1}Tx$ . Then $R\supseteqq S$ and $J_{TS}(x)=J_{TR}(x)\circ$

$J_{SR}(1)$ . Hence the proof of Main Theorem 2 is reduced to the cases (i)
$x=1$ and (ii) $xSx^{-1}=T$

We assume $x=1$ and $S\subseteqq T$ Then $j_{T}\circ J_{TS}(1)\circ j_{S}^{-1}$ induces a morphism of
the general fibre $W_{S0}$ of $W_{S}$ to the general fibre $W_{T0}$ of $W_{T}$. Let $G_{0}$ be the
graph of this morphism. Since $x=1$ , $q_{T}=\mathfrak{P}|k_{T}$ and $\nu(x)=1$ . Since $S\subseteqq T_{\eta}$

,

$q\in P_{S}$ implies $q_{T}=q|k_{T}\in P_{T}$ . We assume $x_{Sp}=x_{Tp}$ . Let $G$ be the Zariski c10-
sure of $G_{0}$ in $W_{S}\chi_{Spec(e_{Sq})}$ { $W_{T}\cross_{Spec(r_{T})}$ Spec $(x_{Sr})$ }. Put $\tilde{G}=GX_{Spec(r_{Sq^{)}}}$ Spec $(\tilde{k}_{Sq})$ .
Then $\tilde{G}$ is reduction modulo $q$ of $G_{0}$ . Since reduction modulo $q$ preserves
intersection multiplicities, $G$ (considered as a cycle) can be written as $G_{0}+$

$\sum_{i=1}^{N}G_{i}$ , where $G_{0}$ is a graph of a rational map $\tilde{f}$ and each $\tilde{G}_{i}$ has the form
$u_{i}\cross\{W_{T}x_{Spec(r_{T})}Spec(\tilde{k}_{Sq})\}$ . Let $v$ be any point of $(i_{\tau \mathfrak{P}}\circ j_{T}\circ\varphi_{T})(x_{Sp}^{-1}\mathscr{C}(\mathfrak{p}))$ such
that $(i_{\tau r}\circ j_{T}\circ\varphi_{T})^{-1}(v)\in \mathfrak{H}_{arrow}$ is not fixed by $\Gamma_{T}$. Then, by (ii) of Main Theorem
1, there exist exactly $\rho=[\Gamma_{T} : \Gamma_{S}]$ (the index as transformation groups) diff-
erent points $w_{1}$ , $\cdots$ , $w_{\rho}$ of $(i_{S\mathfrak{P}}\circ j_{S}\circ\varphi_{S})(x_{Sp}^{1}\mathscr{C}(\mathfrak{p}))$ which correspond to $v$ by
the correspondence $\tilde{G}$ . Since there exists such a point $v$ , the separable
degree of $\tilde{f}$ is at least $10$ . Since the degree of the rational map $J_{TS}(1)$ is $\rho$ ,
and since reduction modulo $q$ preserves intersection multiplicities, it follows
that $\tilde{G}=\tilde{G}_{0}$ and $\tilde{f}$ is separable. Since $\tilde{W}_{Sq}$ is a complete non-singular curve,
$\tilde{f}$ is a morphism.

Let $g$ be the projection of $G$ to $W_{Sq}$ . Then, by the above result, $g^{-1}(y)$

is a finite set for any point $y$ of $W_{Sq}$ . It is obvious that $g$ is a birational
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morphism and $W_{Sq}$ is normal. Therefore, by EGA, III, 4. 4. 9, $g$ is an
isomorphism. Hence, by EGA, $I$ , 5.3. 11, $G$ is a graph of a morphism.
Hence $j_{T}\circ J_{TS}(1)\circ j_{S}^{-1}$ can be extended to a morphism of $W_{Sr}$ to $W_{T}\cross_{Spec(e_{T})}$

Spec $(x_{Sq})$ .

Next we assume $xSx^{-1}=T$ Let $q$ and $\nu(x)$ be as in the theorem.
Then $\sigma(x)$ belongs to the decomposition group of $q=\mathfrak{P}|k_{S}$. Since $k_{T}=k_{S}$ in
this case, $W_{T}^{\sigma(x)}X_{Spec(c_{T}^{\sigma(x)_{)}}}$ Spec $(x_{Sq})$ is well-defined. Since $xSx^{-1}=T$, it follows
from Shimura [24], 2. 6 that $J_{TS}(x)$ is a biregular isomorphism defined over
$k_{S}$ . Since $W_{S}$ and $W_{T}$ are stable curves, the isomorphism $j_{T}^{\sigma(x)}\circ J_{TS}(x)\circ j_{S}^{-1}$ can
be extended to an isomorphism of $W_{S\not\in}to$ $W_{T}^{\sigma(x)}\chi_{Spec(e_{T}^{\sigma(x)_{)}}}$ Spec $(x_{Sq})$ . Therefore
we have completed the proof of Main Theorem 2.

3-6. Proof of Main Theorem 3. Let $\mathfrak{p}$ , $\mathfrak{P}$ , $Z^{(\mathfrak{p})}$ , $G^{(\mathfrak{p})}$ etc. be as in
1-2. Let $Z^{(p)}$ be the subset of $Z^{(\mathfrak{p})}$ consisting of all $S$ such that there
exists $x_{Sp}\in G_{Q+}$ satisfying $S\supseteqq x_{Sp}^{-1}\mathfrak{o}_{p}^{\cross}$ $xSp$ . Then the assertions of Main TheO-
rem 3 concerning for this subfamily $Z^{(p)}$ follow immediately from TheO-
rem $C$ and Main Theorems 1 and 2. Hence the main task of the proof
of Main Theorem 3 is in extending $Z^{(p)}$ to $Z^{(\mathfrak{p})}$ .

Let $(K, \tau_{1^{ }},\cdots, \tau_{g})$ be as in 3-2. Let $p=\mathfrak{p}_{1}^{e_{1}}\cdots \mathfrak{p}_{c^{t}}^{e}$ and $\mathfrak{p}_{1}=\mathfrak{p}$ be as in 3-2.
By our assumption, each $\mathfrak{p}_{j}$ is decomposed as $\mathfrak{p}_{j}=\mathfrak{P}_{j}\overline{\mathfrak{P}}_{j}$, $\mathfrak{P}_{j}\neq\overline{\mathfrak{P}}_{j}$ in $K/F$.
Let $b$ , $c$, $S(b, c)$ , $\Omega_{i}$ , $\Sigma(\Omega_{i})$ etc. be as in 3-2. Let $\tilde{\mathscr{Q}}=(\tilde{A},\tilde{\mathscr{C}},\hat{\acute{\theta}} ; \tilde{t}_{1}, \cdots,\tilde{t}_{v})$

be reduction of $\mathscr{Q}\in\Sigma(Q_{i})$ modulo $\mathfrak{P}$ . Let $\lambda_{j}$ be the $\overline{\mathfrak{P}}_{j}$ -multiplication of
$(\tilde{A},\tilde{\theta})$ . Then, by the result of [13], $\lambda_{2}$, $\lambda_{3}$ , $\cdots$ , $\lambda_{t}$ are separable isogenies.

Let $m$ be a positive integer such that the $\mathfrak{p}_{j}^{e_{j}m}$ and the $\mathfrak{P}_{j}^{e_{j}m}$ are principal
ideals. Put $b=b\overline{\mathfrak{P}}_{2}^{e_{2}m}\cdots\overline{\mathfrak{P}}_{t}^{e_{t}m}$ , $b_{0}=b\mathfrak{p}_{2^{2}}^{em}\cdots \mathfrak{p}_{\iota^{t}}^{em}$ , $c=c\overline{\mathfrak{P}}_{2^{2}}^{em}\cdots\overline{\mathfrak{P}}_{t}^{e_{t}m}$ , $c_{0}=c\mathfrak{p}_{2^{2}}^{em}\cdots \mathfrak{p}_{c^{t}}^{em}$ .
Define $S(b_{0}, c_{0})$ , $\mathfrak{T}_{\lambda}(b)$ , $\Sigma(b)$ , $\tilde{\mathscr{C}}(b, \mathfrak{p})$ , $\mathscr{F}(b, \mathfrak{p})$ etc. in the obvious manner.
Then, replacing $b$, $c$ and $H_{c}$ by $b_{0}$ , $c_{0}$ and $H_{cp^{m}}$ , the results of 1-3 hold.
Furthermore, replacing $\mathfrak{T}_{\lambda}(b)$ , $\Sigma(b),\tilde{\mathscr{C}}(b, \mathfrak{p})$ , $c\mathscr{F}(b, \mathfrak{p})$ etc. by new objects, the
results of [13], which we quoted in 3-2, hold without any further cahnge
(cf. [13], the remark after Theorem 3).

Let $\prime \mathfrak{c}$ be the valuation ring of $\mathfrak{P}|K_{cp^{m}}$ . Since the $b$ -multiplication of
$(\tilde{A}, \theta")$ is a separable isogeny, the group of the $b$-section points is etale.
Hence, repeating the arguments in \S 2, we can construct a moduli scheme
for $\Omega_{i}$ over Spec (x). Then, repeating the same arguments, the results in
$3-2\sim 3-3$ hold. Let $T=x^{-1}S(b_{0}, c_{0})x(x\in G_{A})$ . Then there exist a smooth
projective scheme $S_{T}’$ over Spec(x) and an isomorphism $*\mathfrak{j}_{T}’$ of $V_{T}\cross_{Spec(k,)}$

Spec $(K_{cp^{m}})$ to the general fifibre $S_{T0}$ of $S_{T}$ such that $S_{T}$ and $J_{T}’*$ satisfy the
conditions (ii) and (iii) of Main Theorem 1.

Let $T$ be an element of $Z^{(\mathfrak{p})}$ . Then, repeating the arguments in 3-4,
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we can show that there exist a smooth projective scheme $W_{T}’$ over Spec(x)
and an isomorphism $j_{T}’$ of $V_{T}’=V_{T}\cross_{Spec(k_{T})}Spec(K_{cp^{m}})$ satisfying the condi-
tions (ii) and (iii) of Main Theorem 1. Furthermore, repeating the arguments
in 3-5, we see that $j_{T}^{\prime\sigma(x)}\circ J_{TS}(x)\circ j_{s^{-1}}’(x\in G^{(\mathfrak{p})}, T, S\in Z^{(\mathfrak{p})}, xSx^{-1}\subseteqq T)$ induces
a morphism of $W_{S}’$ to $W_{T}^{\prime\sigma(x)}$ . Let $\tilde{K}$ be the residue field of $\mathfrak{F}$} $|K_{cp^{m}}$ . Let
$\tilde{V}_{T}’=W_{T}’\cross_{Spec(r)}$ Spec $(\tilde{K}),\tilde{J}_{TS}’(x)=(j_{T}^{\prime\sigma(x)}\circ J_{TS}(x)\circ j_{s^{-1}}’)\cross_{Spec(r)}$ Spec $(\tilde{K})$ , and let $\tilde{\varphi}_{T}’$

be the composition of $j_{T}’\circ\varphi_{T}$ and reduction modulo $\mathfrak{P}$ . Obviously $\tilde{V}_{T}’$ is an
absolutely irreducible projective non-singular curve with genus $g_{T}$ .

For any $\sigma\in Ga1(K_{cp^{m}}/k_{\mathcal{T}})$ , let $J_{0}(\sigma)$ be the conjugation map of $V_{T}’$ to
$V_{T}^{\prime\sigma}$ . Then the $J_{0}(\sigma)$ satisfy the cocycle condition. Since $W_{T}’$ and $W_{T}^{\prime\sigma}$ are
stable curves, each $J_{0}(\sigma)$ can be extended to an isomorphism $J(\sigma)$ of $W_{T}’$

to $(W_{T}’)^{\sigma}$ . If $\sigma$ is an element of the decomposition group of $\mathfrak{P}$ , then $J(\sigma)$

induces an isomorphism $\tilde{J}(\sigma)$ of $\tilde{V}_{T}’$ to $(V_{T}’)^{\sigma}$ . Obviously such $\tilde{J}(\sigma)$ satisfy
the cocycle condition. Hence, by the result of Weil [26], there exist an
absolutely irreducible projective non-singular curve defifined over $\tilde{k}_{T}$ and
an isomorphism $j_{T}’$ of $\tilde{V}_{T}’$ to $\tilde{V}_{T}$ defifined over $\tilde{K}$ . Let $\tilde{\varphi}_{T}=j_{T}’\circ\tilde{\varphi}_{T}’$ and $\tilde{J}_{TS}(x)$

$=j_{T}’\circ\tilde{J}_{TS}’\circ(j_{S}’)^{-1}$ . Then the conditions (i) and (ii) of Main Theorem 3 are
satisfified by $V_{T}$ and $\tilde{\varphi}_{T}$ . Furthermore, it follows from Theorem $C$ and our
construction of $V_{T}$ and $\tilde{\varphi}_{T}$ that the condition (iii) of Main Theorem 3 is also
satisfified. Therefore we have completed the proof of Main Theorems 1, 2, 3.
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