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Reduction modulo B of Shimura curves
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0-1. Let F be a totally real algebraic number field of finite degree g,
and let B be a division quaternion algebra over F such that BX)oR is
isomorphic to the product of M,(R) and ¢g—1 copies of the division quaternion
algebra H over R. Let G be the algebraic F-group satisfying Grp=BX,
let G, be the adelization of G, and let G, be the subgroup of G, con-
sisting of all elements whose projections to M,(R) have positive determinants.
Let Go, and G, be the archimedean part and the finite part of G,,, let
Go+=G4+ NGy and let .2 be the family consisting of all subgroups .S of
G4y such that S has the form S=G,.,+S, with an open compact subgroup
S, of G,.

For each S€.Z, let I's=SNGq,, and we regard Iy as a subgroup of
GL(2,R). Then Iy acts on the complex upper half plane 9 in the usual
way, and ['s\® is a complete non-singular curve. Let v be the reduced
norm of B, and let ks be the abelian extension of F corresponding to the
subgroup v(S)+F* of Fj by class field theory. Then Shimura constructed
an algebraic curve Vg defined over ks and a holomorphic map ¢g of $
onto Vy inducing '\ =V, satisfying certain algebraic and arithmetic con-
ditions (cf. 1-1).

Let p be a prime number, and let 8 be an extension of p to a place
of @ Then we shall show that Vg has good reduction at P if @O P
does not divide the discriminant D(B/F) of B and (i) the “level” of S is
prime to p. (For the exact statement, see Main Theorem 1 in 1-2.) Fur-
thermore, as was conjectured in Shimura [24], 2.9, we shall construct a
system of curves over finite fields satisfying several conditions (see Main
Theorem 3).

0-2. The exact statements of our main results are in § 1. The proof
starts in § 2 and ends in § 3.

In 1-1, we quote the result of Shimura in our case. In 1-2, the
main results are stated. In 1-3, a summary of the proof of Shimura’s
result is given. In 2-1, we quote from Mumford the existence of the
fine moduli scheme for polarized abelian schemes with level structures. In
2-2 and 2-3, we construct moduli spaces for families of PEL-sturctures by
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making use of Mumford’s moduli (cf. in 2-3).

Let S&€.2, B and p be as in 0-1. Then we can construct a discrete
subgroup I's,(p=BNF) of PSL(2, R)x PGL(2,F,) as in Thara [8]. Hence,
by the result of Thara [8], we have the zeta function Z(I's,; u) for the
group I's, In 3-1, we calculate Z(I's,; «) in the terminology of isolated
fixed points (cf. Proposition 1)).

Now we assume that .S is a congruence subgroup of the form .S(5,¢)
(cf. 1-3) such that ¢ is prime to p. Then, as in Shimura [24], we can
construct families of PEL-structures parametrized by Vi (xE€G,,, T(x)=
x18(b, c) x). We choose a finite number of families 3(2;) (i€ I) parame-
trized by V;=Viyo, so that we have a classification of the set consisting
of the isomorphism classes of & =¢ modulo P of elements & of UZ(2)

such that & can be defined over ¥, (cf. and 3-2). Let (S;, ¢;) be the
moduli for the PEL-type 2; constructed in §2. Then S; is an irreducible
quasi-projective scheme over the integer ring t, of a finite extension K, of
krwy (cf. 3-2), P is unramified in K /F, and there exists a one-to-one bira-
tional morphism of V; to the generic fibre of S;.

Let K* be a quadratic extension of K, such that K¥ is normal over
F and PB|K, remains prime in Kj/K, Let K* be the residue field of
PB|K*. Then we calculate in 3-2 the congruence zeta function Z(u) of
U Si X speeccp Spec (K¥) by making use of the result of and the result of

3-1, and show that Z(u) is [[Z;(u), where each Z;(u) has the form of the

congruence zeta function of a complete non-singular curve defined over
K* whose genus is equal to the genus of V; (cf. [Proposition 2).

Let 1% be the valuation ring of P|K¥, and let S;=.5; X speccey Spec (tin)-
Let ¢; : S/—S; be the normalization of S} in the function field at the generic
point of S.. Then, by making use of [Proposition 2, we prove in 3-3 that
SV is smooth projective, there exists an isomorphism ji of V; to the general
fibre of SV, and these S} and ji! satisfy the conditions (i) and (iii) of Main
(cf. [Proposition 3).

In 3-4, we prove Main Theorem 1 by making use of [Proposition 3|
In 3-5, we show that Main Theorem 2 follows from Main Theorem 1. In
3-6, by modifying these arguments, we prove Main Theorem 3.

0-3. (1) In 1972, the author proved these results for the case of
F=Q. In 1974, by a recomendation of G. Shimura, he generalized the
results to the present case. But he once gave up the publication of this
paper, because he changed his field in 1974. It is due to a strong recom-
mendation of Y. Thara that he finished writing this paper. So the author
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would like to thank to Professors G. Shimura and Y. Thara. He would
like to apologize for the delay of the publication.

(2) It seems that there are several methods to prove our main results.
For example, it is likely that we can prove the smoothness directly by
studying PEL-structures over Artinian rings. But we present here the origi-
nal proof, because it is one proof and it is an interesting proof, though it
is a little complicated.

Notation and terminology

Since we quote often the results of Shimura [24], we use his notation
and terminology. Further we use the standard notation and terminology of
EGA.

We denote by Z, Q, R, C, F,, respectively, the ring of rational integers,
the rational number field, the real number field, the complex number field,
the finite field with ¢ elements. If F is an algebraic number field of finite
degree, we denote by tr the ring of algebraic integers in F, and by Fj the
group of ideles of F. Further F; denotes the archimedean part of F3,
F%, the identity component of F%, F; the subset of F* consisting of the
elements whose projections to F% belong to FX,, and F, the maximal abelian
extension of F. For every u=F%, we denote by [u, F] the element of the
Galois group Gal (F,,/F) canonically associated with « by class field theory.
For a positive integer ¢, we write «=1 mod, (c) if, for every non-archimedean
prime v of F, the v-component u, of « is a v-unit, and (x,—1)/c is a v-
integer. For any ideal p of 17 we denote by tz, the p-adic completion of
17, and by F, 15&)2Q.

Let V be a vector space over @, and let G be the Q-algebraic group
GL(V). Let m be a Z-lattice in V, and z€G,. Put V,=VXeQy M=
m®,Z, for every rational prime p. Let x, be the p-component of z. Then
V/m is canonically isomorphic to the direct sum of all V,/m,, and the multi-
plication by z, defines an isomorphism of V,/m, to V,/m,x, Hence mz=
N(VNm,z,) is a Z-lattice and x defines an isomorphism of V/m to V/muz.

V4

Hence, for an element u of V/m, we denote by ux the corresponding ele-
ment of V/mx. If ¢ is a positive integer, we write x=1mod,(m, c) if
mx=m and m,(x,—1)Scm, for all p.

§ 1. The main results

1-1. Canonical models of Shimura. Let F be a totally real algebraic
number field of degree g<co, B a division quaternion algebra over F, 0
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a maximal order of B, and D(B/F) the discriminant of B over F. Let
To **» Toy be all isomorphisms of F into R. We assume that (i) F is a
subfield of R; (ii) ry=id. on F; (ili) BRQrR=M,(R); (iv) BQr,., R is iso-
morphic to the division quaternion algebra H over R for each v=2, where
we construct the tensor product by 7o, : F—R.

For any prime v of F, let B, be the v-adic completion of B. Let G
be the F-group satisfying Gy=B%, and let G, be the adelization of BX*.
Since G, is a subset of [[B,, any element x of G, can be written as x=(x,).

Let v, (1=v=g) be the archimedean prime of F corresponding to 7z, and,
for any z=G,, let z,, be the v,,-component of x. Similarly let G, be the
group of F,-valued points of G, and let G..,=G,, . Let v(x) and tr(z) be
the reduced norm and the reduced trace of x&B (or x=B,, or z&B,).
Let G&; be {xE€Goy|v(x) >0}, and let Guop (resp. G4y) be GEi X Gog X -+ X Gy
(resp. {x€GL4v(Xer) >0}). Put Gy={x=G, |xy=""+=x0,=1} and Gq,= B*
NG4r. Then G,=Gn. Gy and Go,={x< Bly(x) >0}.

Let $ be the complex upper half plane. We fix an isomorphism
BRrR=M,(R). Then GZ; can be identified with the group GL*(2, R).
Hence an element y of Gg, acts on 9 in the natural manner.

Let .Z be the set of all subgroups .S of G,, of the form S=5,-G..,
with open compact subgroups S, of G, For each S&.7, let I'¢=S5N Gq.,.
Then I's (modulo its center) is a Fuchsian group. Let kg be the subfield
of Fy, corresponding to the subgroup F*-u(S) of F; by class field theory.
For each element z of G,, let o(x) be the element [v(x)™Y, F] of Gal (F,/F).

Let M be a totally imaginary quadratic extension of F contained in C,
and let f be an F-linear isomorphism of M into B. Then f(M*) has a
unique common fixed point 2 on . We normalize f by

<7dz?>[f @)(w)],_,=a/a for all acM,

where the bar is the complex conjugation. We call such an embedding f
a normalized embedding, and denote by (M, f, z) such a triple.

Now the main result of Shimura in this case can be given in the
following manner :

THEOREM C. There exists a system
(Vs 05 Jus(@) (S, TEZ 5 €G]

satisfying the following conditions :
(1) Vs is a projective nonsingular curve defined over ks.
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(ii) ¢s 2s a holomorphic map of O to Vs, and induces an isomorphism
of I's\9 onto Vs

(i) Jrs(x), defined if xSx*CT, is a morphism of Vs onto Vi®
rational over ks, and has the following three properties:

(iily) Jss(x) is the identity map of Vg if xES;

(illy)  Jrs(2)V oJsp(Y) =J rr(2Y) ;

(i) Jrs(a) [ps(2)] =pr(a(2)) if aEGay and 2E9.

(iv) Let (M,f,z) be a triple consisting of a normalized embedding
f: M—B and the fixed point z of f(M*) on . Then f induces a homo-
morphism of My into G,.. Let ¢ be an element of M}. Then, for any
Se.Z, the point ¢s(2) is rational over My, and satisfies

os(2) = Jsr(Fl0)) [02(2)]
where T=f(c) S+f(c)™.

REMARK. By Shimura [24], 2.55, (iv) implies that M-ks(ps(2)) is the
class field over M corresponding to the subgroup {ve M| f(v)Ef(M*).S}
of Mj;.

1-2. The main results. Let .S be an element of .Z. Let Pg be the
set consisting of all ideals q of ks such that (i) q does not divide D(B/F)
and (i) there exists x5, EGq, such that S contains xg,0; xs, Where p=qNQ
and o, is the p-adic completion of o. It is obvious that almost all prime
ideals of kg belong to Ps. Let 15 be the valuation ring of q&Pg, let ks,
be the residue field of q, and let 1y be the intersection of all tg(qEPy).
For each q=Ps, let  (resp. P) be the restriction of q to F (resp. an exten-
sion of q to a place of @). Let # be the set consisting of all points z on 9
such that there exist a totally imaginary quadratic extension M of F con-
tained in C, and a normalized embedding f of M into B satisfying (a) 2 is
the common fixed point of f(M*). Let #(p) be the subset of # satisfying
(b) p is decomposed in M and (c) f induces an embedding of Ty, =17, DIz,
into 0,. For given S€.2 and q&Ps, if x5, and 2§, satisfy the condition
(i), then x5z, €0, Hence x5,% (p) does not depend on a special choice
of xzgp.

The main results of this paper are the following three theorems:

MaIN THEOREM 1. Let (Vy, @s) be as in Theorem C. Then there exist
a smooth projective scheme Wy over Spec(ts) and an isomorphism js of
Vs onto the generic fibre Wg=WsX specccSpec (ks) of W with the following
properties :
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For any q€Pg, let qu:WSXSpec(tS) Spec (ks). Then

(i) Ws, is an absolutely irreducible projective nonsingular curve
defined over IESq.

(ii) Reduction modulo B induces a surjection of (jsops)(#) to the set
F(Ws) of all F ,-valued points of Ws,. Furthermore it induces an injec-
tion isy of (jsoes) (x5 % (D)) into T (Ws,).

(i) Let F(Ws,) be the complement of (isyojsoes) (52 € V) in I (We).
Then z SS(WSQ) s a finite set. Let 2z be an element of %, and let (M, f, 2)
be the corresponding triple. Then (jsops)(z) modulo B belongs to 7 (W)
tf p is not decomposed in M. Furthermore, for any element w of Fs(Ws,)
and for amy totally imaginary quadratic extension M of F contained in C

such that p is not decomposed in M, there exists a nomalized embedding
f of M into B such that one has

(jSO@S) (Z) modulo 13 = w
with the unique common fixed point z of f(MX).

MaiN THEOREM 2. Let Wy, js, Ps etc. be as in Main Theorem 1.
Let T be an element of Z, and let x be an element of G, such that (i)
xSx7'CT, (ii) q belongs to Ps and (iii) v(x) belongs to v(S)F}+F*. Then
the rational map j7°oJrs(x)ejs' induces a morphism of We=WsX speece
Spec (tg,) to Wi X gpocgsen Spec (Xs,).

REMARK. As in Shimura [24], 2.23, we can prove the congruence
relation for Ws, if q belongs to Ps. In particular, we have an affirmative

answer to Question 6.2.8 of Ihara Sor such q (cf. ibid., § 6).

Let p be a prime ideal of F which does not divide D(B/F). Let G®
be the subgroup of G, consisting of all elements x such that v(z) belongs
to the closure of F;«F*<F}, in F;. Let 2% be the subset of .2 consisting
of all .§ such that there exists x5, &Gq, satisfying SDa5 0} x5, Let P be
an extension of p to a place of @. For any element S of .2, let £g be
the residue field of P|ks, and let g5 be the genus of Vs For any z=G®,
let o(x) be o(x) modulo PeGal (F,/F). Let B, (resp.#,) be the set con-
sisting of all points 29 such that there exists a normalized embedding
S M— B satisfying (i) z is the common fixed point of f(M*) and (i) b is
decomposed in M (resp. p is not decomposed in M). Further, for a given
totally imaginary quadratic extension M of F contained in C, let #(M) be
the subset of # consisting of all 2= such that there exists a normalized

embedding f of M into B satisfying f(M*) z=2. Then we have
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MAIN THEOREM 3. There exists a system
(Vs 65 Tus(2) (S, TeZ? 5 2£GY)]

satisfying the following conditions :

(i) Vs is an absolutely irreducible projective nonsingular curve defined
over ks with genus ¢s.

(i) @g is a surjective map of I's\#B onto the set of all F p,-valued
points of Vs. s induces a bijective map of I's\xs'€ () to ¢ps(#s), and a
surjective map of B (M) to ¢s(Hs,) for each M such that p is not decomposed
in M|/F. Furthermore ¢s(%s) is a finite set.

(iti) o ps(2), defined if xSx*CT, is a separable morphism of Vs to
Ji® rational over ks, and has the following properties

(i) Jss(2) s the identity map of Vg if z€S;

(iiiy) T zs(2)"® o s(y) =T ra(2y) ;

(i) T rs(e) [Bo(2)] =@r(al2)) if a€Ga, and 2E 4.

(iv) Let 2 be an element of #, and let (M,f 2) be the corresponding
triple. Let ¢ be an element of M} such that [c, M] belongs to the decom-
position group of BN M, and let [c, M] mod B be the action of [c, M] on
the residue field My, of B|M,,. Then, for any S€.Z?, the point $s(2)
is rational over M,,, and satis fies

Bl z)ie-MImod B — jsr<f(6)_l> [¢T(2)] ’
where T=f(c).S flc)™L

ReMARK. The Main Theorems for the case of the elliptic modular
groups (1. e. the case of B=M,(Q)) is known and due to Y. Thara (cf. Ihara
[8]). In fact, the author started this reserch by trying to generalize the
results of Chapter 5 of [8]. Though our theorems are formulated in a
slightly different way from the theorems in [8], it is well-known that the
both formulations are essentially equivalent. We used the present formulation
simply because this formulation is easier in quoting results from Shimura
124].

We note that, by generalizing Thara’s method, G. Shimura proved the
theorems in the case when p=pN@Q is completely decomposed in F/Q or p
remains prime in F/Q for almost all such p. The key point in his proof
was the fact that the bijectivity of is; to Z(Ws)\Fs(Ws) follows from
the surjectivity or the injectivity of it if good reduction of Vg is assumed.
On the other hand, we are going to prove the bijectivity of it at first, and
prove good reduction of Vg from the bijectivity. It should be noted that
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our proof of the bijectivity is essentially the same as Shimura’s proof, though
it is technically more difficult.

REMARK. In a series of papers published in Canadian Journal of Mathe-
matics, R. P. Langlands studied the zeta-functions of the Shimura varieties
obtained from a totally indefinite quaternion algebra. In his case, there exist
canonical families of abelian varieties, so that it is not necessary to decend
the fields of rationality of the varieties. But his papers suggest the way
how to treat the general higher dimensional Shimura varieties.

ReMark. The author heard from Y. Ihara and M. Ohta that each
of them can prove the good reduction of the Shimura curve Vg if (i) B
does not divide D(B/F) and (ii) the level of S is prime to p (cf. Thara-Miki

for Ihara’s proof).

1-3. Outline of the proof of Theorem C. The rest of §1 will be
used to summarize the proof of [Theorem C. More precisely, 1-3 is a
summary of Shimura [24], § 6 in our case. It will be used in proving the
main theorems in § 3.

Let K be a totally imaginary quadratic extension of F contained in C,
and let r,=id., -+, 7, be isomorphisms of K into C satisfying ,|F=t, for
each v=1,---,¢g. Let L be the quaternion algebra BRrK over K, and let
o be a positive involution of L. Let v be an invertible element of L such
that v*= —v, and we assume B={x&L|x =vxfv™Y}, where xz—a denotes
the main involution of L. It is obvious that p induces the complex conju-
gation on K.

Let @ be a representation of L,=L®eR by complex matrices such

g
that the restriction of @ to K is equivalent to 2(r;+7;p+227,). We
v=2

denote @K by the same letter @. Let w,: Lo—M,(C) be a representation
satisfying ,(a)=a"1, for any a=K. It is known that, for any given K,
Ty -+, T, and @y, -++, @, there exist a positive involution p of L and an in-
vertible element v of L such that v"=—v, B={zx&L|2 =vz’v™} and the
complex hermitian matrix —y—1o,(v) has the signature (1, —1) or (1,1)
according as v=1 or v>1.

Let T(x,y) be the L-valued p-anti-hermitian form on L defined by
T(z,y)=zvy* for z, y€L, and let G(T) be the group of all similitudes of
T. Let G* be the Q-algebraic group satisfying G§=G(T'), and let v : G¥—>F*
be the homomorphism such that v(z) is the multiplier of the similitude for
any =G5 Let G%, be the identity component of GXZ=G%, let Gi be
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the adelization of G*, and let G%, be the subgroup of G} consisting of all
elements x such that the projection of x to G% belongs to G%,. It is obvious
that G§ contains Gp. (In fact, it is known that G(T)=K*.B*.)

Let & be the unit ball {=C||z|<1}. Shimura defined an action of
Giy on Z in [22], and proved that there is a holomorphic isomorphism j
of ® to I satisfying j(a(z))=a(j(z)) for any 2€9 and a=G.,,. Therefore
we identify 9 and P and make G%,. act on .

For every Z-lattice 3 in L, and for every positive integer a, put
I, o) = {reGy|p() =1, Ry =R, N(L—71)SaR.

Let 0 be as before (i.e. a maximal order of B). Put M=1£).,0S L. For
every positive integer a, put

S(o, a) = {xEGAJrprED;, 0p(x,—1)Cao, for all prime number p}.
For any two positive integers b and ¢, put
S(b, ¢) = S(o, )+ {xE S(o, B)|v(x) =1} .

It is known that, for a given integer a, there exist two integers & and ¢
satisfying the following three conditions :

(1) cZCbZCl aZ,

(ii) Put E=1};. Then, for every u=G, and v K;

E-F(u—IS(b, 0) u) = E.-I"*(vWMu, b) ;

(i) For every u=G, and ve K}, I'*(vMu, b) has no element of finite
order other than the identity element. Hereafter we shall consider only
such a group S(b,c). We note here that, by Shimura [24], 6.4 and
6.3, and by Chevalley [1], we can choose b and c in the following manner :
For any positive integer b satisfying #>3, and for any given integer d
which is prime to b, there exists a positive integer ¢ such that ¢ is prime
to d and such that the pair (b, c) satisfies the above three conditions for
every divisor a of b and for every K, if K has no roots of unity other
than +1 and there exists a prime ideal of F such that it is ramified in
K and it does not divide 2 D(B/F).

Let (K, @) be as before, and let (K, @) be the reflex of (K, ®) in the
sense of Shimura [24], 1.3. Hence K'=Q if F=Q. Put K=H. Let q,
b, ¢ be as before, and put S=S(b,c). Let H, be the class field over H
corresponding to the subgroup H*-{he H;|h=1mod,(c)} of H;. Then it
is known that H, contains kg« H. '
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Let MM be as before, and let N be a Z-lattice in L of the form N=
fMp with feK; and peG,. Let us now consider a PEL-type

‘Q :(La @,‘07 ICT,%; dis * s QS) ’
where the ¢; are elements of L/t and « is a totally positive element of F
such that 6-'9YN=>Zg and trye(kT (M, N)=Z. Since L, @, o and T
i=1

are common to all these PEL-structures, we write simply 2= (x, R, {g;})-
We construct a family X (Q)={&,|2€ 9} of PEL-structures

@’z = (Aza € 02' > Lizs o0y tsz)

by means of the parametrizing function 9 as in Shimura [23], 6.4, common
to all £ of this type.

By Shimura [24], 6. 6, there exists a subfield &, of H, with the following
property: Let & be a PEL-structure of type £, and let ¢ be an automorphism
of C. Then & is of type Q2 iff ¢ is the identity mapping on k,. Further
Shimura constructed in a fibre system of PEL-structures

7 ={V.W, b1, Y, 8(a), fir > 3}

and a holomorphic map ¢ of § onto V with the following properties: (i)
V is a projective nonsingular curve; (i) 2 : W—V defines a projective abelian
scheme with f: V—W as the unit section; (iii) Y is an effective Cartier
divisor relatively ample with respect to A; (iv) S(a) is defined for every
element a of the left order of N, and 6: a—S(a) gives an injection of this
order into the endomorphism ring of the abelian scheme A:W—-V; (v)
The f; (i=1,--,s) are the b-section points of h:W—V; (vi For every
PEL-structure & of type £, there exists exactly one point z of V such
that & is isomorphic to the fibre &, on u; (vii Every element of # is
defined over kg ; (vii) ¢ induces an isomorphism of I'(N, b))\ D to V such that
&,=3(Q) is isomorphic to &, for each 2€9. Note that &, is defined
over ko(p(2)) and ko(p(2)) is the field of moduli of &..

Let 7, -+, 7, be as before. If F#Q, then let @, be a representation of
K such that @,~ }frv. Let (K, @) be the reflex of (K, ®,) and put z=det @;.
v=2

Then we have Ngz®) z(¥) n(y)’=Nuoly) for every yc H=K'. If F=Q,
then let #(a)=1 for any a=Q=K'.

Let £ be an element of ¥y ={x=G,,|v(x) ENgr(H}) F*+F%.}, and
let d be an element of Hj such that v(2)/Ngr(d)EF*+F%,. Put e=[d}, H].
Then £ is equivalent to 2 =(u(z(d) x) 'z, =(d) Nz, {x(d) ¢;z}), where u(z(d) z)
is defined in the following mannet: Since Nyr(d) n(d) n(d)=Nme(d)EQ1,
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let v(z(d) x)=nr(d) n(d)’v(x)=abc with a€Q}, b&F; and c&F},. Let a
be the positive integer which generates the ideal associated with a. Then
put pu(z(d) x)=aq;b F; (cf. Shimura [24], 6. 2).

Let S=S(b,¢), N=fMp, 2=(x, N, {q;}), 2 (D), 7 ={V,W,h, f, Sa),
S 5 fs), @ etc. be as before. Put T=p~1S5(b, ¢) p, V=V and dr=¢. Then
@r induces an isomorphism of I'2\$ onto V.

Let x, d, ¢ and 2 be as before. Put U=x'Tx. Then we have
' ={V, W, K, f,Y, S, fi, [} and ¢ for &. Put Vy=V' and
@r=¢ . Since £° is equivalent to £', it is known that there exists a biregular
morphism J of Vy to V3, rational over k,, such that, for any automorphism
7 of C which induces ¢ on k, and for any &,€2(2) and &,3(2'), the
equality ¢(w) =J(¢ (2)) holds iff &%, is isomorphic to . Since k, is con-
tained in H,, V5, Vy and J are defined over H,.

It is known that (Vj, @;) does not depend on a special choice of f, p
and {g;}, and that J depends only on the coset U and the effect of [d~}, H]
on H, (cf. Shimura [24], 6. 10, 6. 11, 6.12). Hence we put J=J(z,d). Then
we have the following :

(i) Let T, z, d, U be as before. Let y&%y, and e= H, satisfying
v(Y)/Nyrle)eF*F%,.. Put R=y Uy and r=[e¢7Y, H]. Then

Jrr(xy, de) = Jry(x, d) o yr(Y, €) ;

(ii) Let T be as before, and let a be an element of G¢,. Put U=a"'Tx.
Then

Troles 1) @u(2)] = oo (a(2)) .

Let 9% 4. be the subfamily of .2 consisting of all p~15(b, ¢) p with p=G,,
where we assume that b and ¢ satisfy the previous conditions. Then we
have a system

{VT’ @rs jTU(x7 d)}

for T, UEY 4, x€% ., and d= H; such that U=x"'Tx and v(x)/Nyz(d)
eF*F%,.. Shimura constructed the canonical system of Theorem C by
taking quotients and descending the field of rationality of these systems.
In particular, he proved that this system is biregularly equivalent over H,
to the subsystem

{Va, o, Joo2) (TEH 0o 2EG gy, U = 27 T)}

of the canonical system.
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§ 2. Moduli spaces

2-1. Mumford’s moduli. Let .S be a locally noetherian scheme, and
let ;. 5(S) be the set consisting of all isomorphism classes of all triple
(X, , {o;}) such that (i) X is a projective g-dimensional abelian scheme over
S, (i) w is a plarization of X of degree @2 and (iii) {0y, :--, g5} is a level
N-structure of X over S, all in the sense of Mumford [14]. Then A, .~
defines a contravariant functor from the category of locally noetherian schemes
to the category of sets. .

Now assume that N=3. Then Mumford proved in that A, n
is represented by a scheme M= M, , y which is quasi-projective over Spec (Z).
In other words, there exists an element (Z, 2, {¥;}) of A, 4 x(M) such that,
for any locally noetherian scheme S and for any (X, o, {s;}) E A, 4,x(S),
there exists a unique morphism F:S—M such that (X, w, {¢;}) is isomorphic
to the pull back (Z, 2, {2;}) XuS of (Z, 2,{2;}) by F.

2-2. Embedding of Shimura’s moduli into Mumford’s moduli M.
Let Q=(L,®,p0; T, M; vy, --,v,) be a PEL-type in the sense of Shimura
[21], 3.1. Let N be a natural number satisfying N=3, and we assume
that {vy, -+, vy} is a basis of the ZI|NZ-module N7*IM/IMM. Let U(T) be
the unitary group of the p-anti-hermitian form 7, and let .% be the bounded
symmetric domain which is the quotient space of U(T), by a maximal
compact subgroup. Let

I'*(T, N) = {ae U(T)| M = M, (zzv) (1 —a)czzam} ,

and we assume that either dim (ug)>1 or I'*(T, N\& is compact. Then,
by Theorem 5.3 of Shimura [21], there exist an algebraic number field
kg, a holomorphic map ¢ of &% to a quasi-projective non-singular variety
V defined over k, and a fibre system of PEL-structures

T ={V, W, b1, Y, S(@). fi, -+, fi}

on V defined over k, and satisfying the eight conditions in 1-3.

Let h: W—V be as above. Then, by Theorem 6.14 of Mumford [14],
h: W—YV is a projective abelian scheme over V with f: V—>W as its identity.
Since Y is an effective relative Cartier divisor (cf. the proof of Theorem 5.3
of Shimura [21]), Y defines a V-homomorphism »: W—W. Since o induces
on each geometric fibre W, of = the homomorphism ¢y :u—CI(Y,,—Y))
with a positive non-degenerate divisor Y,, Y defines a relatively ample inver-
tible sheaf on h: W—V (cf. EGA, III, 4.7.1). Hence o is a polarization.
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Therefore
oJ[, = {V’ W’ h,f; w’.fl’ ’fu}

is an element of A, (V) with u=2g and deg(w)=d% Since N=3, there
exists a unique morphism Fo: V—>M=M,,y such that &' is isomorphic
to the pull back (Z, 2,{2;}) X xV of the universal polarized abelian scheme
(Z, 2,{2;}) to V by the map F,.

Put k=kg, =11, Mip=MX gpeecay Spec (k) and M,= M X gpeeczy Spec ().
Since %' is rational over k, F, induces a morphism F:V—M,. Since
M, is an M-scheme, we may regard F as a morphism of V to M.

Let ¢ be a generic point of V. Then the fibre of & at ¢ gives a PEL-
structure &,=(A,, €:,0;; fi) of type 2, hence also an element #,=(A;, €:;
fie) of Myan(Spec(ko(t))). Obviously £, is isomorphic to the fibre of (Z,
92, {2 }) X speccar Spec (ko) at F(¢).

Let p be a discrete valuation with quotient field K, and let &=(A4, &,
6; f;) be a PEL-structure of type £ defined over K. Then, by Shimura-
Taniyama [25], III, 11 and by Serre-Tate [19], § 1, & has good reduction
at p iff Z=(A, ¥ ; f;) has good reduction at p, and there exists at most
one prolongation of & to an object over the valuation ring of p. Hence,
by the valuative criterion (cf. EGA, II, 7. 3.8), F is a proper morphism. In
particular, F(V) is a closed subscheme of M;.

Let Uy=F(V), and let U be the Zariski closure of U, in M.. Then
U is irreducible and quasi-projective over Spec (1;). Hence, for any geometric
point w/ of U, there exists a valuation p of k,(¢) such that (i) the valuation
ring R of p contains 1; and (i) w' is reduction modulo p of w=F().
Since ' is a point of U, #,=(A, %:; fy) and &&,=(A, %1, 0.5 fi) have
good reduction at p. Here, by Lemma 2 of Shimura-Taniyama [25], III,
9.3, we may assume that p is discrete (but may not be of rank one). There-
fore, for any geometric point w' of U, there exists a discrete place p of
k,(t) such that (i) the generic PEL-structure &,=(A,, €+, 0:; f;) of type 2
has good reduction at p and (i) (A, %, ; f) modp is the polarized abelian
scheme with level N-structure corresponding to w'.

2-3. Moduli spaces of families of PEL-structures. Let the notation
and assumptions be as in 2-2. Let &, be the set consisting of all isomor-
phism classes of all PEL-structures of type 2. For any element & of ¥,
and for any place p of any field of definition of & such that (i) the valua-
tion ring of p contains 14, (i) the residue characteristic of p is prime to the

level N, and (i) & has good reduction at p, we denote by & modyp re-
duction modulo p of the PEL-structure &.
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For any prime ideal q of 1; such that q is prime to the level N, we
fix an extension Q of q to a place of C. Let 2(q) be the residue field of
9, and let %, be the set consisting of all isomorphism classes of all &
mod Q (ZF). Let

y:youuyq

Let U be as in 2-2, and let (X, o, {¢;}) be the canonical polarized abelian
scheme with level N structure over U (i. e. the inverse image of (Z, 2, {¥;})
by UGM—M). Let €&€=r4(L*®)? and ¢;: XGP(£) be as in Mumford
[14], Proposition 7.5 and Proposition 6.13. Since U is quasi-compact, it
follows from Mumford [14], Proposition 7.5 that there exists a finite affine
covering {Uj}c; of U with the following properties: (i) The restriction of
(X, w, {o;}) to each U, admits a linear rigidification ¢;: P(€) X ;U=>P,, x U,
with m=69d—1; (ii) There exists a (U;N Uj)-valued point g;; of PGL(m)
such that g;;06:(P(&) X oy(U;N Uy)) =¢,;|(P(E) X y(U; N Uy) for any 7, j&I. Put
i=¢iop; for each il

Let o be the left order of I, and let 7, ---,7, be a Z-base of 0. Let
Let # be a generic point of V over k, and put w=F(). Then, by the
definition of U, w is a generic point of U. Let &,=(A; € 0:; fi) be
the fibre of .# at ¢£. Then F induces an isomorphism F; of (A, €:; fi)
to the fibre of (X, w, {¢;}) at w, rational over k,(¢). Hence &;oF; induces
an embedding of A; into P,XU for each i=J. Let A, be the image of
this embedding, and let 6,; be the injection of o into End (A;; corresponding
to §,. Since F, is rational over k,(z), all elements of 6,;(0) are defined over
ko(t). Let Ry, be the graph of 6,(r;) for every I=1,---,v. By the Segre
morphism (cf. EGA, II. 43.1), we may regard R,; as a subset of P,
with a certain integer m(l). Let ¢; be the Chow point of Ry and let
s;=cCy X+ XcwXw. Then s;is a ky(f)-valued point of Py X -+ X Ppew X U,
with certain integers m(1), ---, m(v). Let .S; be the Zariski closure of s; in
P X+ X Py X Us.

By the functoriality of the Segre morphism, the (U;N Uj)-action ¢;; on
P, x(U;NU,) can be extended to a (U;N U,)-action on P,q X(U;NU;) for
every [=1,---,v. Further it follows from the definition of Chow points
that g;; can be extended to a (U;N Uj)-action on Py X -+ X Py X (U; N U,).
It is obvious that this action induces an isomorphism of .S; X (U;NU))
onto S;Xy;(U;NUy). Hence we can glue {Si}ier and construct a scheme
S. Similarly we glue {Pung X -+ X Puw X U}ier and construct a scheme P.
Let ¢ be the morphism of .S to U which is induced by the projection of
Py X+ XPpwXxU; to U. We see that (i) there exist locally free O-
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modules &y, -+, &, such that P is U-isomorphic to P(&;) Xy X P(Ey)
(construct the &; from & by taking direct sums and tensor products), and
that (ii) .S is a closed U-subscheme of P. Hence g is projective, and S is
quasi-projective over Spec (1;).

Let &=(A,%,0; f;) be an element of &. Let w be the point of U
corresponding to (A, % ; f;). We assume that (A,%; f; is the fibre of
(X, o, {o;}) at w'. Since N=3, (A, % ; f,) has no automorphism other than
the identity map. Hence #:0—End (A) is uniquely determined by the iso-
morphism class of (4, %,0; f;). Let {U;};c;r be as before. We assume that
w is a K-valued point of U;. Let #; be the injection of o into End (¢;(A))
corresponding to . Let R}, be the graph of #/(r) ({=1,---,v), and let ¢},
be the Chow point of R};. Put si=c}; X+ Xy X w.

Since w=F{(t) is a generic point of U, w' is a specialization of .
Since F,(A;, %.; fi) and (A, € ; f,) are fibers of (X, w; {o;}) at w=F()
and w', F,(A, €.; fi)—(A, € ; f;) is a specialization over w—w' in the
sense of Shimura [20]. Hence F,(A;, €1 0,3 f1)—(A, €, 0 ; f;) is a specializa-
tion over w—w'. By Shimura-Taniyama [25], III, 11.1, Proposition 12,
this specialization induces R;;— R}, for each [. Furthermore, by the defini-
tion of specializations of cycles in projective spaces, the specialization induces

cu—cy. Hence there exists a discrete place p of ko(f) such that sj=c}; X --- X
cly X w' is reduction modulo p of s;=c;; X - X ;o X w. Since S; is the Zariski
closure of s; in Puyg X -+ X Ppwy X U;, and since w' is a C- or 2(q)-valued
point of U, s/ is a C- or 2(q)-valued point of S;, We observe that s/
determines a C- or £(q)-valued point s of S, and this s’ does not depend
on a special choice of U;. Therefore we have constructed a map ¢ of &
to the set of all C- or 2(q)-valued points of S.

It is obvious that this map ¢ commutes with any operation of discrete
places and automorphisms of the field K of definition of any element & of
& (replace &2, and & by & and & modp (or &) and repeat the above
arguments). Further it follows from the last remark in 2-2 and Proposition
12 of Shimura-Taniyama [25], III, 11. 1 that ¢ is surjective. Since ¢ induces
an injective map of isomorphism classes of the polarized abelian varieties with
level N-structure to U, and since the injection @ of 0 into the endomorphism
ring is uniquely determined by the isomorphism class of an element &=
(A, 4,0, f;) for a given (A, € ; f;), it follows from the construction of &
and ¢ that ¢ is injective.

Let V be as before. For an element & of %, let (&) be the point
on V such that & is isomorphic to the fibre of .# at 9(&?). Then (V,b)
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satisfies the conditions of Theorem 6.2 of Shimura [2I]. Put S=S5X
specco Spec (ko).  Then, by Theorem 6.7 of Shimura [21], there exists a one-
to-one morphism j of V onto .S, such that j is defined over k, and ¢(&2)=
j(0()) for any &<, Therefore we have proved :

TueorM 1. Let the PEL-structure 2 be as in 2-2, and let V, b, ky,
1, Po, the q, the 2(q) and & be as before. Then there exist a scheme
S=S(2), a map ¢=¢o of & to the set of geometric points of S, and a
morphism j=jo, of V to S with the following properties:

(1) S is irreducible and quasi-projective over Spec (ty).

(ii) ¢ induces a bijective map of & to the set {C-valued points of S}
[11] {R(q)-valued points of S}.

,, (i) Let & be an element of S, and let p (resp. o) be a discrete place
(resp. an automorphism) of the field of definition of & such that & mod p
(resp. &) belongs to &. Then ¢(&@ mod p)=¢(&Z) modp (resp. (&)=
¢(@?)) holds.

(iv) j induces a one-to-one morphism of V onto Ss=:S8X speccyy Spec (ka)
defined over kg, such that ¢(&)=j(0(&)) for any & €F,.

ReMARK. The condition (iii) implies ko(¢(«2)) is the field of moduli
for each @<= %, Hence j is a birational morphism.

ReMARK. It is more natural to use Hilbertian schemes instead of Chow
points. But we have avoided it simply because our result is enough to
prove our main theorems.

§ 3. Proof of the main results

3-1. Zeta functions of Ihara groups. Let the notation and assump-
tions be as in 1-1. In particular, B is a division quaternion algebra over
a totally real algebraic number field F. Let p be a prime ideal of F which
does not divide the discriminant D(B/F) of B. Let S be an element of
7 containing 0¥, and let ', =Gq.N(S-B;). We fix an isomorphism of
B, onto M,(F,), and regard s, as a subgroup of GL*(2, R)xGL(2, F)).
Let I's, be the image of I's, by the natural map of GL*(2, R)xGL(2, F,)
to PGL*(2, R)x PGL(2, F,). Then, by [Proposition 1 of Ihara [8], Vol. 1,
p. 174, Iy, is a discrete subgroup of PGL*(2, R)x PGL(2, F,) such that (i)
the quotient I's\PGL* (2, R)Xx PGL(2, F,) is compact and (ii) the projection
of I's, to each component of PGL*(2, R)x PGL(2, F,) contains a dense
subgroup of PSL(2,R) or PSL(2,F,. Hereafter we assume that I's, s
contained in PSL(2, R)x PSL(2, F,). Let I'=I, and I"=1Ig(=1s,N0;).
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Since I' is a subgroup of PSL(2, R), I" acts on § in the usual manner.
Let 2z be a point of 9, and let I, ={y&I'|yg=2}. If I, is an infinite group,
then we denote by {2}, the I'-equivalence class of z€9. Let Z(I") be the
set of all such I'-equivalence classes {2};.

Let z be a point of  with an infinite group I',, Then, by Ihara [8],
Vol. 1, p. 17, I', is the product of a finite group and an infinite
cyclic group. Let 7, be a generator of the infinite cyclic part of I',, and let
{0 07"} be the set of eigen values of 7,. Then p, belongs to F, and p, is
not a p-adic unit (cf. ibid., Vol. 1, p. 17, [Corollary). Hence we define the
degree deg {2}, of {2}, by the absolute value of the p-adic order of p,. Put

A w)= [] (1—ules?)1,
Pep(T)
Then the following theorem is a special case of of Thara [8],
Vol. 1, p. 21.

THEOREM Z. Let the notation and assumptions be as above. We
assume further that I' is torsion free. Then Z(I'; u) has the following
form :

(1—ps20) (1— gl )

Z([', u) = i=1(1_u) (]_—qzu) X(l_u)(q—l)(q—l) ,

where g is the number of the residue field of p (i.e. g=Np), g is the genus
of I'\9, and the p; and p} are algebraic integers satisfying p,0i=q% |pil,
il =¢* and p,#1, ¢

Let = be a prime element of p, and let

: 0

n.—-l

I =10 PSL(2, 12, (Z ) PSL(2, tz)
for each non-negative integer /. Then, by the theory of elementary divisors,
I' is the disjoint union of the I'* ([=0,1,2,--). Let {2}, be an element of
P(I'), and let y, be as before. We define the length [{z} of the I™-
equivalence class of 2 by the integer [ satisfying y,I™. Then, by Theorem
2 of Thara [8], Vol. 2, p. 27, P={z}, contains exactly deg P I™-equivalence
classes {2} with /{2g}o=deg P, and the degree of any other I"-equivalence
class is greater than deg P.

Let 2, 7,, p, be as before. Then M,=F(p,) is a totally imaginary quad-
ratic extension of F contained in C, and p is decomposed in M, Further
p:>7, Or p;'+>7, induces a normalized F-linear isomorphism of M, into B.
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Conversely, let M be a totally imaginary quadratic extension of F contained
in C, and let f be a normalized F-linear isomorphism of M into B such
that p is decomposed in M as p=qq. Since .S is an open subgroup of G,
containing G, +0;, there exist a positive integer d and an element 7 of
I'=Gq.N(SG, such that y is contained in f(M*) and f'(y) generates the
ideal (qq~9% Since any power of y fixes the unique common fixed point 2
of f(M*), I', is an infinite group. It is easy to see that deg{z}, is the
smallest integer d such that (qq7)¢=f"'(y) 1y with reF;(AM*)NSB;).
Furthermore, since /{z} is the smallest positive integer / satisfying =‘7,€0,
[{2}o=deg {2} holds iff f(q*)Co, This condition is satisfied iff f induces
an optimal embedding of Ty, =1s@1s, into o,

Let #(p) be as in 1-2. Hence #(p) is the set consisting of all points
z on O such that (i) there exist a totally imaginary quadratic extension M
of F contained in C, and a normalized F-linear embedding f of M into B
such that z is the unique common fixed point of f(M*), (ii) p is decomposed
in M as p=qq, and (iii) / induces an injection of Ty, =1sPrs, into o, Let
#(S,p) be the set of all I's-equivalence classes of all z€%(p). For every
P={z}r, of €(S,p), let deg P be the smallest positive integer d such that
there exists an element 7y of F,;(f(M*)NSBy) satisfying f(7) twy=(qq %%
Then we have proved :

ProOPOSITION 1. Let the notation and assumptions be as above. For
every positive integer m, let

N,= >, degP.
Peg (S,9)
deg Plm

Then we have
log Z(I's, ; u) = Z:_,“

CorROLLARY. Let N, be as in Proposition 1. We assume that s, is
torsion free. Then

} [T(1—p;u) (1—piu)

= N, 1]
> ™ m —(g-D(g—-» — =1
exp{m=1 m (=)= 2ot = (1—u)(1—q*u)

where ¢, q, p;, pi are as in Theorem Z.
3-2. Calculation of congruence zeta functions, I. Let the notation

and assumptions be as in §1. Hence K is a totally imaginary quadratic
extension of F contained in C, 7, ---,7, are extensions of g, -+, 7o, and
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L=BXrK. Let p be a prime ideal of F which does not divide D(B/F).
Let p be the prime number divisible by p, and let p=p¢---p% (p,=p) be the
factorization of p in F. Let B be an extension of p to a place of Q. We
assume hereafter that (a) each p; (i=1,---,¢) is decomposed in K as p;=
B;B;, (b) 7y=id. and none of the By (i=1, -+, ¢, v=1, -+, g) is contained in
B, (c) K has no root of unity other than +1, (d) K is generated over Q

by f, x> for all xeK if F#Q, and (e) there exists a prime ideal of F
y=2

which is ramified in K and which does not divide 2D(B/F). By the
proof of Shimura [22], Proposition 7.6, for a given natural number m, there
exist infinitely many (K, 7, -+, 7,) satisfying (a)~(e) and (f) all prime divisors
of m are completely decomposed in K/F. We note that (d) implies K=K
if F#Q (cf. Shimura [22], 5.14.7).

Let M=1xK).,,0, and let S(b,c) be as in 1-3. Hence we assume that
S(b, ¢) satisfies the conditions (i)~(iii) in 1-3. Since I™*(IM, b) is torsion
free, b=3. Hence the condition (iii) implies that I's (S=.S(b, ¢)) is torsion
free. We assume further that (iv) ¢ is prime to p and (v) I's, is contained
in PSL(2, R)xPSL(2,F,) (cf. [1]). Then the condition (iv) implies that
S(b, c)Do,;. Hence we can apply the result of 3-1 to the group I'p,(T=
x715(b, ¢) x) for any element x of G,, whose projection to G, belongs to oj.

Let K, be the class field over K which corresponds to K*«{heK}|h=1
mod, (c)} of K by class field theory. Let %, be the restriction of P to
K, let t, be the maximal order of K, let K, be the residue field of %,
and let f be the residue degree of %B,/p. Then K, is normal over F, P is
unramified in K,/F, and p” is generated by an element ¢ of F} satisfying
¢e=1 mod*c. Let K¥ be a quadratic extension of K, such that K¥ is normal
over F and B, remains prime in K¥/K,. Let Pr=P|KF¥, let rF be the
valuation ring of P¥*, and let K* be the residue field of P*.

Put U={xeG, ,|ox=0}. Let X={x,, ---, 24} be a set of representatives
of U\G,;/Gqs, and let F={f, -, fn} be a set of representatives of
{xeK}|ztx=1x} +F\K;/K. We assume that z, -+, Zn, f1, -**>[n are prime
to cp. Then f,Mx,/bf, Mx,=M/&IM for any f,€F and x;€X. For any
f.E€F and x,€X, let B, be a totally positive element of F satisfying

troia (B T(fu Mz, f,Mx)} =2 .

Put I'y={yea;'ox;|Npr(y) =1}, and let Z,(d) = {t mod Mzt L, b~ Mx,
=Mz, +Mx,t}/;. Let T(b) be the disjoint union of the T,(d)(1=1, -+, h).
Let {sy, -+-, so} be a Z-basis of W, let 2,,,=(Biw [, Mz, { f.5;2:8}) be as in 1-3
for any x,€X, f,€F and t&%,(b), and let X (b) be the union of all the
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families X(2,,). Then 2,, is not equivalent to Q,,, if (4, u, )+, ¢, ).
For every triple (4, ¢ t), we fix a set of representatives of {y&rl’Jr=1
mod, (z;' 0z, DI\E (p). Let %7.(b,p) be the subset of X(£2,. consisting
of all &, such that z belongs to the representatives, and let ¥*(b, p) be the
disjoint union of all €%,.(b, p) (A=1, ---, h, p=1, ---, I/, t EZ,(b)).

Let B be as before. We extend B to a place of C and denote it by
the same . Let & be any element of X(b). If & has good reduction
at f, we denote by & reduction modulo B of &. Let #5,(b,p) be the
set consisting of all isomorphism classes of & (@€Y (£2,,1)) such that & can
be defined over a finite field, and let .#*(5, p) be the union of all .7}, (b, p).
Then, by the results of [13], (i) reduction modulo B induces an injection ¢ of
€*(b,p) to F*(b, ), and (ii) the number of elements of 7*(b, p)\¢c{¥*(b, p)}
is finite, and equal to ZZIF] |Z,(0)|(Ngo(P)—1) (95:— 1), where |*| denotes the

cardinality of * and ¢, is the genus of I'*(Mx,, b)\P={r&l"]r=1 mod®
(z7 oz, B)}\9. Further, (i) for any element & of Z*(b, p)\¢{¥*(b, )} and
for any totally imaginary quadratic extension M of F contained in C such
that p is not decomposed in M, there exists a triple (M,f, 2) such that (a)
f is a normalized F-linear isomorphism of M into B, (b) 2 is the unique
common fixed point of f(M*), (c), at least for one (4, t), the element
&,=3(2,,) has good reduction at P and &, modulo P is isomorphic to
2. Furthermore, (iv) for any totally imaginary quadratic extension M of
F contained in C, and for any such triple (M, f, 2), reduction modulo % of
&Z,€2(2,.) belongs to {€*(b, p)} (resp. Z*(b, P)\c{¥*(b,p)}) iff p is decom-
posed in M/F (resp. p is not decomposed in M/F).

Let £2,,, be as above. Since 5=3, we can apply to this
PEL type 2,, Let & (2, and S(2,,.) be as in [Theorem 1. Let I={i=
(b )I1=A<h, 1sp=sH, t€Z,(b)}, and put Q;=0,., ki=k,, 1,=1, ;=
&L (2;), $i=8(2;) and ¢;=¢,,. Then the k(i=I) are contained in K..

Let < be a linear order of I, let 1 be the smallest element of I, and,
for each i1, let & F* be the subset of &; consisting of all elements which
are isomorphic to some elements of &; with j&I, j=i. Since £; is not
equivalent to any £; (j#1i), <* contains no PEL-structure defined over
a field of characteristic 0. It is obvious that & }* is stable by 1,-operations
of discrete places and automorphisms. Hence ¢;(#F*) defines a closed t,-
subscheme S;** of S} =3, X speccep Spec (¥;). It is obvious that S;** N (S} X speccey
Spec (K,)) =¢ and ¢ =]]¢; induces a bijective map of [[(FL\FF*) to []

1

{geometric points of S$f\S¥*}. In particulai, ¢ induces an injective map of
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F*(b,p) to the set (b, p) of all F,-valued points of [](SF\SF*) X specc:,

Spec (K,). Since any F ,-valued point of .S; can lifted to a Q-valued point of
S; (cf. § 2 and Mumford [15], Chap. 2, § 8, [Theorem 1)), this map is surjective.
Hence ¢ : #*(b, p)— % (b, p) is bijective, and commutes with the actions of
Gal (F,/K,).

Let €*(b, p)= ]_] @r:(b,p) and ¢: €*(b, p)—F*(b,p) be as before. Let

&2 be an element of %%.(b,p). Let ¢ be an element of Gal(Q/K, which
belongs to the decomposition group of P, and let & be ¢ mod P=Gal (F,/K,).
Then & belongs to #j.(b,p) because K,2k; (i€I) and & and &’ are
conjugate over K,. It follows from the injectivity of ¢ and ¢ that the follow-
ing six condltlons are equlvalent (a}vgb(@’)":g,bv(@’); (lg)v (27 = ¢ (&2) ; (c)
& =a; (d) &= ; (&) P(@)=¢(@); () $(@)=¢(&). Hence (&)=
() iff gb( 2 gb(@’). As we noted in 1-3, there exists an isomorphism Ay
of the canonical model V; of I’T\fé (T x:S(b, ) x;) to S(25,1) X specty Spec(Ky)
defined over K,. Hence ¢(& ) =¢(&Z ) iff (hz'og)(€27)=(hz'o¢) (&2).

Let (2, M,f) be the triple corresponding to an element of %j..(b, D).
Hence M is a totally imaginary quadratic extension of F contained in C, f
is a normalized F-linear embedding of M into B, and 2 is the unique com-
mon fixed point of f(M*) on 9. Let p=qq (a€P) be the factorization of
p in M, and let u be the idele of M} corresponding to q. Then [«] mod %3
generates the Galois group of F, over the residue field F' of p. Hence,
for any even power o=[u]™ of [u], & is trivial on K* and ¢(& Z) gb(@’)
iff [K* : F]=2f divides 2m and ¢r(2)"=¢r(2). By 3.5.1 (and 3.7) of Shimura
[24], this condition is satisfied iff f|m and f(«*™)=dt with d&f(M*) and
teT. Let ¢ be as before. Then y=e ™ d=f(e™ u?™)t*cf(M*)NTB;, and
FUn)te=(qq )™ Conversely, if there exists y&f(M*)N TBy such that f|m
and f(y) ty=(q Y™, then d=e""y=f(M*) and t=y"f(c™u*)&To,=T.
It follows from the definition of deg P=deg {2} (cf. 3-1) that [K* (gb(@’N)) : K#]
=deg P/(deg P, f).

If & is an element of Z*(b,p)\¢{¥*(b,p)}, then, for any totally
imaginary quadratic extension M of F contained in C such that p remains
prime in MJF, let (2, M,f) and &,€3(2,,,) be as before. Let o be the
f-th power of the Frobenius automorphism for pry. Then ¢ generates the
Galois group of ¥, over K} and p’ is generated by the element ¢ of FiNT.
Hence, by Theorem C, ¢y(2)°=¢;(2). Hence ¢(&Z)=¢(&Z). Therefore gb(@)
is rational over K¥. Since .#*(b, p)\¢{€*(b, )} contains exactly ZAIFI |Z,(6)]

(Nzo()—1) (9ss—1) elements, it follows from the bijectivity of ¢ : F*(b, p)—
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% (b,p) that the number N} of Fgm-rational points (f=[K,:F]) of
LTUSENST*) X specty Spec (K*) is given by

K4

Ni=%[ 5 degP+(Nmalp)—1)(gu—1)].

it = Peg (a7 8T ;,0)
degP/(degP,f)im

Hence, by the corollary of [Proposition 1, we have:

oo X

ProrosiTiON 2. The congruence zeta function Z(u)=exp { 2. n;" um} of
m=1
the algebraic set [[(SF\SF*) X specc:y Spec (K*) is

}h'm(b)l
H

({110 ot (1 (o) 1~ 1=

2=1\i=1

where the p,; and the py; are the roots of Z(I' oplszye > W) (cf. Theorem Z).

3-3. Calculation congruence zeta functions, II. Let r=1) be the
valuation ring of PN KF. Let S, =57 X gpeccey Spec (xdy) and S =57 X specte
Spec (tfy). It is obvious that [[ (ST\S7*)X specoy Spec (K*) is a Zariski open

K*.rational subset of a purely one dimensional K*-rational cycle in a pro-
jective space. Since p;; 05 =¢% the reduced denominator of Z(u) is a power
of (1—u)(1—¢¥u). It follows from the results of Weil that each geo-
metrically irreducible component of ] (S\Si*) X speccor Spec (R*) is rational

over K*. Since Z(u) is the congruence zeta function of a Zariski open sub-
set of a one dimensional cycle, p=p}; or (o};)’ satisfies (i) |p| =1, or (ii) |o| =¢’
or (iii) p=p¥. Since p;ps;=¢q% it follows that |p|=1 holds iff p=1. Hence
no root of the reduced numerator of Z(x) is a root of unity. It follows
that each connected component of |[(SI\S7*) X speccor Spec (K¥) is proper and

geometrically irreducible, and that no two connected components intersect.
Furthermore no root of the numerator of the congruence zeta function of
each component is a root of unity.

Since .S/ is quasi-projective, we can define the Zariski closure .S of .S
Since S} X gpecny Spec (K7) is a geometrically irreducible proper curve, it follows
from the Zariski connection theorem (cf. EGA, III, 4.3.1) that 5} X speees
Spec (K*) is connected. Since the (SI\S/*) X spoccor Spec (K¥) are open in
11 (SINS/) X speccr Spec (RE), each (SA\S/*) X gpeccor Spec (KF) is a disjoint union
of a finite number of proper geometrically irreducible curves. Hence (S}\.S/*)
X spectny Spec (K) is open and closed in .S} X gpeccny Spec (K). Therefore (S)\
SI%) X speeco Spec (KZ) is either ¢ or S, X speccor Spec (K). In particular, either
(SINST*) X gpecc Spec (K¥)=¢ or S*=4¢.
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Since Si*=¢, and since .S} X speccry Spec (K¥) # ¢ (because each & S@* (b, b)
has good reduction at P and determines a point of .5} X gpeccy Spec (K¥)), it
follows that S} X specco Spec (KF) =S, X speccry Spec (K¥). Hence S| is projective
and S| X gpeery Spec (K ) is geometrically irreducible. Furthermore, by chang-
ing the order of I, we observe that each .S, (&) has the same properties.
In particular, any &2 (b) has good reduction at .

Let ¢;:S7/—S] be the normalization of Si in the function field at the
generic point of S;. By EGA, II, 6.3.10, ¢; is a finite morphism. Hence
S7 is projective over Spec(x). It is obvious that the general fibre of S is
the complete non-singular model of the general fibre of .S;. Hence there
exists an isomorphism ji of VpX spew,y Spec(KZ) onto S X specr Spec (K7)
with T = z;'S(b, ¢) ;. Let 8%, ---, 8 be the irreducible components of
S/ =8V X specco Spec (K), and let &, -+, &, be the function fields at the generic
points of S, .-+, 8. Let ¢; (resp. JfiisTij) (resp. ry;) be the multiplicity of
S/, (resp. the separable degree of R, over the function field { at the generic
point S, =5 X speccy Spec (K¥)) (resp. the degree [R;NF,:RNF,]). Then
fiss is an integer. Let ¢(S}) be the genus of ®. Then, by the Hurwitz
formula, the genus ¢(S/) of R, satisfies g(S/)—1=f.;(9(S)—1). Further,
by the result of Popp [17],

2
> risei (08 —1) < gn—1.
J=1

b
(8

Hence we have
(Z rijeijfijs) <Q(Si) - 1> =0n—1.
=1

Since ¢y, —1>0, this implies ¢(5)—1=<g,,—1.
Let J be the set consisting of all i1 satisfying (S)\S/*) X spectsy Spec (K¥)
#¢. Then it follows from our calculation of Z(x) in 3-2 that

> (208)-2) = X(200.—-2) .

1€ (134
Since
> (9(3)—1) = X (gn—1)
1€J i€
= Y01~ 2 (=1 =2 () —1)= % (gu—1),
i€l i€\ 1€J 1€IN\J
we obtain ) (¢5,—1)<0. Since ¢,,=2, we obtain I\J=¢. Hence I=J.

e\
Hence, for any i1,

08)~1=gu—1 and Z(0(5)~1)= 2(on—1).

i€l i€l
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It follows that ¢(S)—1=g,—1>0. Hence

L
2 eijTiafis =1
]:

Therefore t=1, ey=ry=Ffus=1. Hence S/ =5/ X spects Spec (K) is geometri-
cally irreducible, the generic point of S/ is reduced, and ¢; induces a purely
inseparable morphism @;:8/—S.. Furthermore the genus ¢(S7) of the
function field at the generic point of S/ satisfies
0(5) = 9(87) = gus.

Hence the effective genus of the special fibre S/ =5/ X spescoy Spec (K¥) is equal
to the effective genus of the general fibre S} X gpeccy Spec (K¥). Since the
general fibre is non-singular, it is also equal to the arithmetic genus of the
general fibre. By the invariance of the Euler-Poincare characteristic (cf.
e.g. EGA, III, 7. 94), it follows that the effective genus of the special fibre
S is equal to the arithmetic genus of .S. Hence .S/ is an absolutely ir-
reducible projective non-singular curve defined over K} with genus ¢y,=g¢n.

Hence S/ is smooth and projective over Spec (). In particular, .S/ is a
stable curve over Spec (1)) (cf. Deligne-Mumford [3]).

Since ¢(S) =g, the numerator of Z(x) has Y, 2¢;, roots p with || =¢77.
el
Hence |p;| =|pk| =¢’. Furthermore the congruence zeta function Z;(x) of
each S, has the form

92

[T (A= psu) (1—pf;u)/(1—u) (1 —g*u)

j=1
with |p;| =1pi;l =¢', because Z(u)= ]_I[Z,- (w), S is geometrically irreducible and
i€

9(S)=g,. Since @;: S/ —S" is a purely inseparable morphism, the congruence
zeta function of S is also equal to Z;(x). Hence @; is one-to-one. In par-
ticular, ¢;'o¢; induces a bijective map of #7 (b, p) to the set of all F ,-valued
points of 7.

Since I=J, (S;\Si*) X speccy Spec (Kf)igb for each 7&1. Hence Sj*=¢ for
each i€1. Hence &;*=¢ for each iel. Therefore #;(b,p)NZ;(b,p)=¢
if 4#j. This shows that the results of [13], which we quoted in 3-2, hold
if we restrict to each PEL-type 2;. Therefore, by the bijectivity of ¢;'o¢;,
S and 7/ satisfy the conditions (ii)~(iii) of Main Theorem 1 for . There-
fore we have proved :

PropPoSITION 3. There exist a smooth projective scheme S, (i=(2 p, t)
1) over the valuation ring t of B|K; and an isomorphism ji' of VX spectip
Spec (K¥) (T=x7*S(b, ¢) x;) onto the general fibre S/ X spewy Spec (K7) of SY
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such that S} and ji satisfy the conditions (ii) and (iii) of Main Theorem 1.

3-4. Proof of Main Theorem 1. Let & and ¢ be positive integers
such that 6=3, b|c and the pair (b, ¢) satisfies the conditions (i)~(iii) in 1-3
for every divisor a of b and for every K such that K has no roots of
unity other than =£1 and there exists a prime ideal of F such that it is
ramified in K and does not divide 2D(B/F). Let S=S(b,¢) be as in 1-3,
and let Pg be as in 1-2.

Since S(b, c)&.S(o, b), an ideal q of kg belongs to Pg only if q does not
divide 6. In this case, {x&S(o, b)|v(x)=1} contains {x,E0,|v(x)=1}, where
»=qN Q. Hence S(b, c) 20, iff /b and v({x,=0;|0,(x,—1) C ¢0,}) =15, Let
p=aqNF. Since p/D(B/F), v({z,E0;|0,(x,—1)Sc0,}) =1}, iff p does not divide
¢. Therefore q=Py iff q does not divide cD(B/F). We note that q s
unramified in ky/F in this case.

Let q be an element of Ps, p=qNF, and let I's, be as in 3-1. We
assume that I'g, is contained in PSL(2, R)x PSL(2, F,). Then we claim that
there exist a smooth projective scheme Wy, over the valuation ring t,=1g,
of q and an isomorphism jg, of Vg onto Wgy= W, X specen Spec (ks) satisfying
the conditions (i)~(iii) of Main Theorem 1 for this q and for any extension
B of q to an place of Q.

Let K, 7y, 5575 L, by, o595 Ly, -+, By, etc. be as in 3-2. Hence we
assume that the conditions (a)~(e) are satisfied. Let X={xy, ---, 24}, F=
{fi - Sw)s Tb), T(B), I={i=(4 pt)}, the Q; etc. be as in 3-2. Let K,
be as before, and let K} be a quadratic extension of K, such that K} is
normal over F and B|K, remains prime in K}/K,. Let .S’ and j/ be as in
[Proposition 3 for S(b,c). We assume that x,=1 and f,=1 for 1=(4, & t).
Then S/ is a smooth projective scheme over the valuation ring t of the
restriction of P to K7, and ji’ is an isomorphism of VX specisr Spec (K5) onto
the general fibre Sj; of S. Furthermore, S} and j7 satisfy the conditions
(i) and (ili) of Main Theorem 1 for these q and P

Let ¢ be an element of Gal (K{/ks). Then there exists an isomorphism
Jo(o) of Si to (87)°, and these J,(s) satisfy the cocycle condition for descent.
Since the (S/)” are stable curves over 1, each J,(s) extends to an isomorphism
J(o) of S to (S) (cf. Deligne-Mumford [3]). Since Spec(x) is etale over
Spec (t,), these J(o) give a descent deta. Hence, by the result of Gro-
thendieck [6], 190, there exist a scheme Wy, over Spec(r,) and an iso-
morphism js of S to Wi, X speccsy Spec (x).  Since Spec (t)—Spec (t,) is faith-
fully flat and quasi-compact, and since S is smooth and proper over Spec (x),
W, is proper and smooth over Spec(x,). Since the general fibre of Wy, is an
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absolutely irreducible projective non-singular curve with genus gs, the special
fibre has the same property. Since the special fibre is projective, Wy, is
projective over Spec(t) (cf. EGA, III, 4.7.1). Hence Ws, and js,=jos!
satisfy the required conditions. Therefore the claim is proved.

Let T be any element of .Z. For each q&Py, let P be as in 1-2.
Since the problem is local, if, for each q, there exist a smooth projective
scheme W* over the valuation ring of q and an isomorphism j* of the
canonical model V, for T to the general fibre of W* satisfying the con-
ditions (i)~(iii) of Main Theorem 1 for B, then Main Theorem 1 holds for
T. Let xp, be as in 1-2. If W* and j* satisfy these conditions for zy,Tx7p
and g, then W* and j*oxy, satisfy the conditions for 7" and q. Hence we
assume that 7’20}, and prove the existence of such W* and j*.

Let U={z=G, ;| Mx=DY. Then U is an element of Z. Let R=
Naerx(TNU)zt (cf. [24], 3.11). Then R is a normal subgroup of T
satisfying TNU2R2 0}. Since R2o; and Re.Z, there exists a pair (b, ¢)
of positive integers such that (a) R2S(b, ) and (b) (b, c) satisfies the condi-
tions at the beginning of 3-4 for q (cf. [I]). It is obvious that S=.S5(b, c)
is a normal subgroup of R.

Since .S is normal in R, I's is normal in I';. Hence Vi=VzXspewp
Spec (ks) can be regarded as the quotient of Vs by G={Jss(y)lr €= modulo
I'sy. Let 13=1g. and tz be the valuation rings of g*=Plks and P|kx.
Then there exist a smooth projective scheme Wy, over Spec (ts) and an iso-
morphism jg. of Vs to the general fibre Wy of W, and these Wy, and
Jjse satisfy the conditions (i) and (iii) of Main Theorem 1. Since Wge 1s a
stable curve, the Jgs(7) (EIs/Is) can be extended to elements of Aut(Wjg,.)
Let W’* be the quotient of Wg. by this finite group G (cf. Mumford
and Grothendieck [6], 212).

Since Wy, is of finite type over Spec(ts), W75 is of finite type over
Spec (tg). Since Weu— W5 is surjective, W7 is proper over Spec (ts) (ct.
EGA, 1II, 5.53). Since Ws.— W7 is faithfully flat, and since Wg.—Spec (ts)
is flat, Wir—Spec (rs) is flat (cf. EGA, IV, 2.2.13). Since Wy, is smooth
over Spec(ts), Wge is normal. Hence W7 is normal. In particular, the
general fibore W7 of W% is non-singular. Furthermore, by the results of
Lamprecht (cf. Definition 3, Satz 2 and Korollar 5), and by the definition
of W’* the special fibre of W/ is non-singular. Hence all geometric fibres
of W/* are non-singular. Since W% is flat over Spec(rs)) W% is smooth
over Spec(ts). Therefore W’ is smooth and projective over Spec(rg). It
is obvious that there is an isomorphism j% of V% to the general fibre of
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7%

%, and that these V7%, ¢g, j% and W% satisfy the conditions (ii) and (iii)
of Main Theorem 1. ‘

Let ¢ be an element of Gal(kg/kz). Then there exists an isomorphism
Jo(g) of V% to V%, and these Jy(o) satisfy the cocycle condition for descent.
Since the (W73*)° are stable curves over Spec(rs), each Jy(s) extends to an
isomorphism J(s) of W% to (W7)°. Since FCEkSksC K,, Spec(ts) is etale
over Spec(tp). Hence the J(o) give a descent deta for Spec(rs)—Spec (tz).
Hence, by the result of Grothendieck [6], there exist a smooth projective
scheme W3 over Spec(rz) satistying Wi X speec,y Spec (xts) = W%, and an iso-
morphism j% of V3 to the general fibre of W5. It is obvious that W3 and
j» satisfy the conditions (ii) and (iii) of Main Theorem 1.

Since R is a normal subgroup of 7, and since FCk,SkrC K, we can
repeat the above arguments and construct W7 and j} from W3 and j}.

Then these Wj; and j; satisfy the required conditions. Therefore Main
holds in the general case.

3-5. Proof of Main Theorem 2. Let the notation and assumptions
be as in Main Theorem 2. Put R=x"'Tz. Then R2.S and Jp5(x) =Jrr(x)o
Jsr(1). Hence the proof of Main Theorem 2 is reduced to the cases (i)
x=1 and (i) xSz '="T.

We assume x=1 and SCT. Then jrodps(1l)ojs' induces a morphism of
the general fibre Wy, of Wy to the general fibre Wy, of W, Let G, be the
graph of this morphism. Since =1, q;=%|kr and v(z)=1. Since SCT,
q& Pg implies qy=q|krEPr.  We assume xg,=2r,. Let G be the Zariski clo-
sure of Gy in WX speccegp AWr X specp Spec (Ts,)}.  Put G=G X spectegy PeEC (Esy).
Then G is reduction moduloq of G, Since reduction modulo q preserves
intersection multiplicities, G (considered as a cycle) can be written as Gy+

N ~ A~
> G;, where G, is a graph of a rational map f and each G; has the form
i=1

us X {Wrp X gpectey SpeC (ks)}. Let v be any point of (izgojrops) (5% () such
that (ipgojpopr) ' (v)E9 is not fixed by ['y. Then, by (ii) of Main Theorem
1, there exist exactly p=[I'y: '] (the index as transformation groups) diff-
erent points wy, --+, w, of (ispojsos) (Xey @ (P)) which correspond to v by
the correspondence G. Since there exists such a point v, the separable
degree of f is at least p. Since the degree of the rational map Jps(1) is p,
and since reduction modulo q preserves intersection multiplicities, it follows
that G=G, and f is separable. Since Wy, is a complete non-singular curve,
f is a morphism.

Let g be the projection of G to Wg,. Then, by the above result, g7*(y)
is a finite set for any point ¥y of Wg,. It is obvious that ¢ is a birational
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morphism and Wy, is normal. Therefore, by EGA, III, 4.4.9, ¢ is an
isomorphism. Hence, by EGA, I, 5.3.11, G is a graph of a morphism.
Hence jroJrs(1)ojs' can be extended to a morphism of Wg, to WrX spectep
Spec (ts,).

Next we assume xSx'=T. Let q and v(zx) be as in the theorem.
Then o(x) belongs to the decomposition group of q=TP|ks. Since kr=*~ks in
this case, W5™ X speccgsan Spec (ts,) is well-defined. Since xSz™'=T, it follows
from Shimura [24], 2.6 that Jpg(x) is a biregular isomorphism defined over
ks. Since Wy and Wy are stable curves, the isomorphism j3%oJps(x)oj5" can
be extended to an isomorphism of W, to WF X speecsan Spec (vs,).  Therefore
we have completed the proof of Main Theorem 2.

3-6. Proof of Main Theorem 3. Let p, B, 2P, G® etc. be as in
1-2. Let Z® be the subset of Z® consisting of all .S such that there
exists xg, & G, satisfying SDxs,0, x5,. Then the assertions of Main Theo-
rem 3 concerning for this subfamily Z® follow immediately from Theo-
rem C and Main Theorems 1 and 2. Hence the main task of the proof
of Main Theorem 3 is in extending ZP to Z©.

Let (K, 7y, -+, 7,) be as in 3-2. Let p=p$---pit and p,=p be as in 3-2.
By our assumption, each p; is decomposed as p;=;B, B;#PB; in K/F.
Let &, ¢, S(b,¢), £2;, X(2;) etc. be as in 3-2. Let é:(ﬁ, %,5; Fiy o0y o)
be reduction of &3 (2;) moduloPB. Let A; be the P,-multiplication of
(4,8). Then, by the result of [13], 4, 4, ‘-, 2, are separable isogenies.

Let m be a positive integer such that the p%™ and the 4™ are principal
ideals. Put b=5Ppm---Pim, by=bps™..-piem, c=cPgm- P, co=cpgm . -pim,
Define S0y, ¢), T:(0), X®), Z®,p), #(b,p) etc. in the obvious manner.
Then, replacing b, ¢ and H, by b, ¢, and H,,m, the results of 1-3 hold.
Furthermore, replacing ¥,(6), X (b), %(b, p), Z(b,p) etc. by new objects, the
results of [13], which we quoted in 3-2, hold without any further cahnge
(cf. [13], the remark after Theorem 3).

Let T be the valuation ring of PB|K,m. Since the b-multiplication of
(4,8) is a separable isogeny, the group of the b-section points is etale.
Hence, repeating the arguments in § 2, we can construct a moduli scheme
for 9, over Spec(xr). Then, repeating the same arguments, the results in
3-2~3-3 hold. Let T=x15(by,¢) z (x=G,). Then there exist a smooth
projective scheme S7 over Spec(r) and an isomorphism j7 of VirXspewp
Spec (K,,m) to the general fibre Sy of Sy such that S; and j7 satisfy the
conditions (ii) and (ili) of Main Theorem 1.

Let T be an element of Z®. Then, repeating the arguments in 3-4,
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we can show that there exist a smooth projective scheme W4 over Spec (x)
and an isomorphism jr of Vi=VpX speep Spec (Kepm) satisfying the condi-
tions (i) and (iii) of Main Theorem 1. Furthermore, repeating the arguments
in 3-5, we see that j7®odp(x)ofs! (x€G®, T, S€2?, S 1CT) induces
a morphism of W% to W%®. Let K be the residue field of PBIK,m. Let
V1 =W})x sveccor Spec (K), I s(2) = (759 0 J ps(2) 0757 X spector Spec (K), and let @
be the composition of jpopy and reduction modulo B. Obviously V% is an
absolutely irreducible projective non-singular curve with genus ¢r.

For any o=Gal (K, m/k;), let Jy(s) be the conjugation map of V% to
V7. Then the Jy(o) satisfy the cocycle condition. Since W% and WY are
stable curves, each Jy(¢) can be extended to an isomorphism J(¢) of W5,
to (Wz). If ¢ is an element of the decomposition group of B, then J(o)
induces an isomorphism J(¢) of V} to (V%) Obviously such J(o) satisfy
the cocycle condition. Hence, by the result of Weil [26], there exist an
absolutely irreducible projective non-singular curve defined over kp and
an isomorphism jy of Vi to Vi defined over K. Let Gr=jpo@y and J ps(x)
=jhod pso(j4)"Y. Then the conditions (i) and (i) of Main Theorem 3 are
satisfied by V, and @r. Furthermore, it follows from Theorem C and our
construction of V', and @, that the condition (iii) of Main Theorem 3 is also
satisfied. Therefore we have completed the proof of Main Theorems 1, 2, 3.
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