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Introduction. Let R be a hereditary noetherian prime ring (abbr.

HNP ring), and let I be an ideal of the form M_{1}\cap\cdots\cap M_{k} , where M_{1} , \cdots ,
M_{k} are distinct idempotent maximal ideals of R with O_{r}(M_{1})=O_{l}(M_{2}) , \cdots ,

O_{r}(M_{k-1})=O_{l}(M_{k}) . In the study of ideals of HNP rings, it is important

to consider such ideals (cf. \cdot[2] ). When M_{1} , \cdots , M_{k} form a cycle (i. e. , more0-

ver O_{r}(M_{k})=O_{l}(M_{1}) holds), I is an invertible ideal and the properties of
such ideals were broadly studied in [2, 6] . In this paper, we present some
properties of the ideal I when M_{1} , \cdots , M_{k} form an open cycle (i. e. , moreover
O_{r}(M_{k})\neq O_{l}(M_{1}) holds (Theorem 1. 3). We also give the structure of an
eventually idempotent ideal (Theorem 1. 4), and minimal idempotent ideals
provided R has finitely many idempotent maximal ideals (Theorem 1. 5).

We consider in section 2 an idealizer C of an HNP ring R and completely
determine all maximal ideals of C and their relations stated by their maximal
right (left) orders (Proposition 2. 2, Theorems 2. 4-6). By this we can give

an example of an HNP ring which has finitely arbitrary many strictly open
cycles of ‘arbitrary size’ (Corollary 2.8).

A part of Theorem 1. 3 has been independently obtained by S. Singh
[8], however, inasmuch as our proof is not only different from his but also
interesting itself, we shall present it in our context.

Throughout this paper, R is an HNP ring which is not artinian and
Q is its maximal quotient ring. For submodules A, B of Q, we put A’ .B=

{q\in Q ; AqdB), B. \cdot A=\{q\in Q; qA\subset B\} , O_{r}(A)=\{q\in Q; Aq\subset A\} , and
O_{l}(A)=\{q\in Q;qA\subset A\} . An ideal I of R is invertible (resp. idempotent)

if I(I. .R)=R=(R. \cdot I)I (resp. I=I^{2}). As concerns the properties of HNP
rings, the reader is referred to [2, 6, 7].

1. Idempotent ideals. A finite set of distinct idempotent maximal
ideals M_{1} , \cdots , M_{k} of an HNP ring R is called an open cycle (resp. cycle) if
O_{r}(M_{k})\neq O_{l}(M_{1}) (resp. O_{r}(M_{k})=O_{l}(M_{1}) ) and O_{r}(M_{i})=O_{l}(M_{i+1}) for i=1 , \cdots ,

k-l. An open cycle \{M_{1},\cdots ,M_{k}\} is right (resp. left) strictly open if O_{r}(M_{k})
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\neq O_{l}(M) (resp. O_{r}(M)\neq O_{l}(M_{1}) ) for any idempotent maximal ideal M. A
right and left strictly open cycle is said to be a strictly open cycle. We
begin with the following lemma in which one will see the importance of
strictly open cycles.

Lemma 1. 1. Each idempotent maximal ideal of R belongs to a unique
cycle or else a unique strictly open cycle. Cycles and strictly open cycles
either coincide or are disjoint each other.

PROOF. It follows from [6, Theorem 11 and Corollary 21] that each
idempotent maximal ideal belongs to a cycle or a strictly open cycle. Let
M, N be idempotent maximal ideals of R. Then M=R. \cdot(R. \cdot N) iff O_{r}(M)

=O_{l}(N) iff (M. .R)’ .R=N. Therefore, the uniqueness and the latter state-
ment hold.

Lemma 1. 2. (Robson [7]). Let M_{1} , \cdots , M_{k} be distinct idempotent maxi-
mal ideals of R. Then O_{r}(M_{i})\neq O_{l}(M_{j}) for any i, j\in\{1, \cdots, k\} iff M_{1}\cap\cdots\cap

M_{k} is idempotent iff M_{1}\cap\cdots\cap M_{k}=M_{\sigma(1)}\cdots M_{\sigma(k)} for any permutation \sigma of
\{1, \cdots, k\} .

PROOF. This follows from [7, Corollary 5. 5].

In the following theorem we give some properties of an open cycle
which are available to study idempotent ideals of HNP rings.

THEOREM 1. 3. Let \{M_{1^{ }},\cdots, M_{k}\}(k\geq 1) be an open cycle of idempotent
maximal ideals of R, and let I=M_{1}\cap\cdots\cap M_{k} . Then

(1) I(I_{ }..R)=M_{1} and (R. \cdot I) I=M_{k} .
(2) I=M_{1}\cdots M_{k} .
(3) IM_{i}=M_{i+1}I for i=1, \cdots , k-1 .
(4) I^{i}(I. .R)^{i}=M_{i}\cdots M_{1} and (R. \cdot I)^{i}I^{i}=M_{k}\cdots M_{k-i+1} for i=1 , \cdots , k . In

special, I^{k}=I^{k}(I. .R)^{k}=(R. \cdot I)^{k}I^{k}=M_{k}\cdots M_{1} is idempotent.
(5) I\supset I^{2}\supset\cdot\cdot\supset I^{k}=P^{+1}\infty\propto\cdot<=\cdots .
PROOF. (1) Since I is not invertible by [2, Proposition 2. 4], I(I. .R)\neq R

and (R. \cdot I) I\neq R from the proof of [7, Lemma 5.1]. When k=1 , the asser-
tion follows from [2, Lemma 1. 5]. Let k\geq 2 . For i=2, \cdots , k, let S=O_{l}(M_{i})

=O_{r}(M_{i-1}) and A=M_{1}\cdots M_{i-2}M_{i+1}\cdots M_{k} . Since M_{i}S=S and M_{i-1}S=M_{i-1}
.

by [2, Lemma 1. 5], we have

I(I. .R)\supset IS\supset AM_{i-1}M_{i}S=AM_{i-1} .
Therefore I(I. .R)\not\subset M_{i} for any i=2, \cdots , k, so that I(I_{ }..R)=M_{1} . Similarly
we have (R. \cdot I) I=M_{k} . (2) If k=1 , the assertion clearly holds. Let k\geq 2

and A=M_{2}\cap\cdots\cap M_{k} . Then by \langle 1), I=I(I. .R)I=M_{1}I\subset M_{1}A\subset M_{1}\cap A=I.
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Thus I=M_{1}A . Since \{M_{2}, \cdots, M_{k}\} is an open cycle, we have I=M_{1}\cdots M_{k}

by induction on k. (3) For k=2, I=M_{1}M_{2}\supset M_{2}M_{1} from (2). Hence IM_{1}=

M_{1}M_{2}M_{1}\supset M_{2}M_{1}\supset IM_{1} and M_{2}I=M_{2}M_{1}M_{2}\supset M_{2}M_{1}\supset M_{2}I. Thus IM_{1}=

M_{1}M_{2}M_{1}=M_{2}M_{1}=M_{2}M_{1}M_{2}=M_{2}I. Let k be arbitrary. Then we have
M_{j}M_{j+1}M_{j}=M_{j+1}M_{j}M_{j+1} for j=1 , \cdots , k-1 . Since O_{r}(M_{s})\neq O_{l}(M_{t}) for
\{s, t\}=\{j, i+1\}(1\leq j\leq i-1) or \{s, t\}=\{j, i\}(i+2\leq j\leq k) , M_{i+1}M_{j}=M_{j}M_{i+1}

(1\leq j\leq i-1) and M_{i}M_{j}=M_{j}M_{i}(i+2\leq j\leq k) by Lemma 1. 2. Thus we
conclude that M_{i+1}I=M_{i+1}M_{1}\cdots M_{k}=M_{1}\cdots M_{i-1}M_{i+1}M_{i}M_{i+1}\cdots M_{k}=M_{1}\cdots

M_{i}M_{i+1}M_{i}M_{i+2}\cdots M_{k}=M_{1}\cdots M_{k}M_{i}=IM_{i} . (4) We have already seen that
I(I. .R) =M_{1} . Thus I^{2}(I_{ }.. R)^{2}=IM_{1} (I. .R) =M_{2}I(I_{ }.. R)=M_{2}M_{1} by (3). By the
similar way we have I^{i}(I. .R)^{i}=M_{i}\cdots M_{1} and (R. \cdot I)^{i}I^{i}=M_{k}\cdots M_{k-i+1} for i=
1 , \cdots , k. Since I^{k} is idempotent from [2, Proposition 4. 3], I^{k}\subset I^{k}(I. .R)^{k}\subset

I^{k} (F. . R) =I^{k} . Therefore, I^{k}=I^{k}(I. .R)^{k}=(R. \cdot I)^{k}I^{k}=M_{k}\cdots M_{1} is idempotent.
(5) Since I^{k} is idempotent, I^{k}=I^{k\dagger 1}=\cdots . Assume that I^{i}=I^{i\dagger 1} for some 1\leq

i\leq k-1 . Then, by (4), M_{k}\supset IM_{i}\cdots M_{1}=I^{i\dagger 1}(I. .R)^{i}=I^{i}(I_{ }.. R)^{i}=M_{i}\cdots M_{1} and
so M_{k}=M_{f} for some 1\leq j\leq i, a contradiction.

REMARK. The fact that IM_{i}=M_{i+1} I is interesting in view of [6, TheO-
rem 14].

Let M_{1} , \cdots , M_{k}, N_{1} , \cdots , N_{l} be distinct idempotent maximal ideals of R.
Then we call M_{1} , \cdots , M_{k} and N_{1} , \cdots , N_{l} to be separated if O_{r}(M_{i})\neq O_{l}(N_{j})

and O_{r}(N_{j})\neq O_{l}(M_{i}) for all i=1 , \cdots , k and j=1, \cdots , l .
It is shown in [2] that every ideal of R is the product XA with X

an invertible ideal and A an eventually idempotent ideal, and that every
eventually idempotent ideal A satisfies that A^{k}=(M_{1}\cap\cdots\cap M_{k})^{k} is idempotent
where M_{1} , \cdots , M_{k} are the maximal ideals containing A. Thus we state the
structure of eventually idempotent ideals of the form M_{1}\cap\cdots\cap M_{k} .

THEOREM 1. 4. Let M_{1} , \cdots , M_{k} be distinct idempotent maximal ideals

of R such that I=M_{1}\cap\cdots\cap M_{k} is not contained in any invertible ideal.
Then I=I_{1}\cap\cdots\cap I_{n}=I_{1}\cdots I_{n} and I_{i}I_{j}=I_{j}I_{i} for all i, j\in\{1, \cdots, n\} , where
each I_{i}=M_{i1}\cap\cdots\cap M_{i,m(i)} such that all M_{ij}\in\{M_{1}, \cdots, M_{k}\} and hale {Mil9
\ldots , M_{i,m(i)}\}(i=1, \cdots, n) are open cycles which are disjoint and separated
each other.

PROOF. If I is idempotent, then the assertion clearly holds by Lemma
1. 2. Let I be not idempotent. Then k\geq 2 . By the proof of Lemma 1. 1
we have I=I_{1}\cap\cdots\cap I_{n} such that each I_{i}(i=1, \cdots, n) satisfies the condition
of the theorem. The fact that I_{i}I_{j}=I_{j}I_{i} follows from Lemma 1. 2 and
Theorem 1. 3 (2). Thus we only prove I=I_{1}\cdots I_{n} . It holds by the same
way as in the proof of Theorem 1. 3 (1) that I(I. .R)\not\subset M_{ih} for any i=1,
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\ldots , n and h=2, \cdots , m(i) . Thus the maximal ideals that can contain I(I_{ }..R)

are M_{11} , \cdots , M_{n1} . Renumberring if necessary, we put I(I. .R)=M_{11}\cap\cdots\cap M_{a1}

for some 1\leq a\leq n . We can conclude by the same way as in the proof of
[2, Proposition 4. 3] that I=M_{11}\cdots M_{a1}B, where B is the intersection of
all M_{i}’ s except M_{11} , \cdots , M_{a1} . By induction on k, we have B=J_{1}\cdots J_{a}I_{a+1}\cdots

I_{n} , where J_{i}=M_{i2}\cap\cdots\cap M_{i,m(i)} for i=1 , \cdots , a . Hence I=I_{1}\cdots I_{n} by Lemma
1. 2 and Theorem 1. 3 (2).

Next we state the structure of minimal idempotent ideals of an HNP
ring with finitely many idempotent maximal ideals (cf. [3, Proposition 9]).
It follows from Lemma 1. 1 that the idempotent maximal ideals of R are
separated into cycles and strictly open cycles.

THEOREM 1. 5. Let R have finitely many idempotent maximal ideals,
say \{M_{i1}, \cdots, M_{i,n(i)}\}(1\leq i\leq k) are cycles and \{P_{h1^{ }},\cdots, P_{h,m(h)}\}(1\leq h\leq l) are
strictly open cycles. Then the minimal idempotent ideals are I(j(1), \cdots ,
j(k))=I_{1,j(1)}\cdots I_{k,j(k)}J_{1}\cdots J_{l} where I_{i,j(i)}=M_{i,j(i)-1}\cdots M_{i1}M_{1,n(i)}\cdots M_{i,j(i)+1}(1\leq i\leq k,
1\leq j(i)\leq n(i) ; replace j(i)-1(j(i)+1) by n(i)(1) when j(i)=1(j(i)=n(i))) and
J_{h}=P_{h,m(h)}\cdots P_{h1}(1\leq h\leq l) . Therefore, the number of minimal idempotent
ideals is n(1)\cross\cdots\cross n(k) .

PROOF. Any I_{i,j(i)}(1\leq i\leq k, 1\leq j(i)\leq n(i)) and J_{h}(1\leq h\leq l) are idem-
potent by Theorem 1. 3. Hence each I(j(1), \cdots,j(k)) is idempotent by
Lemma 1. 2. The maximal ideals containing I(j(1), \cdots, j(k)) are all P_{hg}’s and
M_{ij}’s other than M_{1,j(1)} , \cdots , M_{k,j(k)} . Assume that there is an idempotent
ideal I which is strictly contained in I(j(1), \cdots, j(k)) . Then, by [2, Corollary
4. 6], I has to be contained in M_{i,j(i)} for some 1\leq i\leq k . Hence I is contained
in an invertible ideal M_{i1}\cap\cdots\cap M_{i,n(i)} . This contradicts to [2, Lemma 4. 1],
and then each I(j(1), \cdots, j(k)) is a minimal idempotent ideal. The converse
follows from Theorem 1. 4 and [2, Corollary 4. 6].

2. Idealizers and maximal ideals. Let R be an HNP ring, and let
A be a semimaximal right ideal (i. e., an intersection of finitely many maximal
right ideals) of R. Then the subring I_{R}(A)=\{r\in R;rA\subset A\} (called the
idealizer of A in R) is also an HNP ring, and which has very connected
structure with R (cf. [7]). Idealizer subrings are useful to construct more
complicated examples from a given one (cf. [5, 6, 7]). In this section, we
shall decide the maximal ideals of I_{R}(A) and the relations determined by
the right (left) orders of them (Proposition 2. 2, Theorems 2. 4, 2. 5, and
2. 6). From this, one will see that the indicated example for [5, p. 113 (b)]
is inadequate, however, a desired example will be given after Corollary 2. 7.

By [7, Proposition 1. 7] we can assume that RA=R. Let K_{1} , \cdots , K_{n}
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be maximal right ideals of R such that A=\cap i=1Kin . By [4, Lemma 4. 18]
we can assume that R/A\cong\oplus_{i=1}^{n}R/K_{i} canonically. Furthermore, let A_{1}=

K_{1}\cap\cdots\cap\kappa_{e}i_{1}\gamma^{\lrcorner^{ff}}\cdot\cdot,\cdot A_{k}\dot{\prime}=K_{i_{k-1}+1}**\cap\cdots\cap K_{i_{k}} , where 1<i_{1}<\cdots<i_{k}=n , such that
R/A_{j} is isomorphic to a homogeneous component of R/A(j=1, \cdots, k) . Put
C=I_{R}(A) , N_{j}=A_{j}\cap C an ideal of C, and U_{j}=R/K_{i_{j}} a simple right C-module
(j=1, \cdots, k) . Then it follows from [7, Theorem 1. 3] that U_{j} is a right
C-module of length 2 and that 0-arrow S_{j}-U_{j}arrow T_{j}arrow 0 is a nonsplit exact sequence
where S_{j}\cong(C+K_{i_{j}})/K_{i_{j}} and T_{j}\cong R/(C+K_{i_{j}}) . Note that S_{j}\otimes_{C}R=U_{j} and
T_{j}\otimes_{C}R=0 , since cR is flat.

LEMMA 2. 1. (T_{j})_{C} is unfaithful iff (U_{j})_{R} is unfaithful.
PROOF. If U_{jR} is unfaithful, ann cU_{j}=annRU_{j}\subset C\neq 0 and T_{j} (ann cU_{j})

=0. Conversely, if T_{jC} is unfaithful, V=R (ann cT_{j}) A is a nonzero ideal
of R and U_{j}B=0 .

Let 0\leq l\leq k , and suppose that U_{1} , \cdots , U_{l} are unfaithful and that U_{l+1} ,
\ldots , U_{k} are faithful. Note that if l=0 resp, l=k then all U_{j}’s are faithful
resp. unfaithful. For j=1 , \cdots , l, put M_{j}=ann RU_{j} and L_{j}=anncT_{j} . Set
\mathscr{M}= {M;M is a maximal ideal of R such that Hom_{R} (R/A, R/M)=0} and
\mathscr{M}\cap C=\{M\cap C;M\in \mathscr{M}\} . Then

PROPOSITION 2. 2. The set of maximal ideals of C is equal to \{N_{1} ,
\ldots , N_{k}, L_{1}, \cdots , L_{l}\}\cup(\mathscr{M}\cap C) .

PROOF. It follows from [7, Theorem 1. 3 (a)] that each element of
\mathscr{M}\cap C is a maximal ideal of C. By [7, Proposition 1. 1] C/A\cong End_{R}(R/A)

is a semisimple artinian ring. For j=1 , \cdots , k, since S_{j}\cong C/K_{i_{j}}\cap C, C/N_{j} is
isomorphic to a direct sum of finitely many copies of S_{j} . Since S_{j}=socU_{j}

and S_{j}\otimes_{C}R\cong U_{j}, S_{j}\neq S_{h} iff U_{j}\not\cong U_{k} , i . e. , j\neq h . Thus C/N_{j} is isomorphic
to a homogeneous component of C/A . Hence C/N_{j} is a simple artinian
ring and so N_{j} is a maximal ideal of C. For j=1 , \cdots , l, since T_{j} is an
unfaithful simple right C-module by Lemma 2. 1, L_{j} is a maximal ideal of
C. Conversely, let L be a maximal ideal of C. Then it follows from [7,
Corollary 2.4] that L\in \mathscr{M}\cap C or L=L_{j} or L=N_{j} . This completes the proof.

In the rest of this section, we shall fix the above notation except the
following lemma.

LEMMA 2. 3. Let C be a ring, and let Oarrow Uarrow W- Varrow 0 be an exact
sequence of right C-modules such that W_{C} is uniserial. Then

(1) For an epimorphism \alpha:U_{C}arrow T_{C}, there is an exact sequence 0-+
Tarrow X-arrow Varrow 0 such that X_{C} is uniserial.
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(2) For a monomorphism \gamma:S_{C}arrow V_{C}, there is an exact sequence 0-arrow

Uarrow Yarrow S-+0 such that Y_{C} is uniserial.

PROOF. (1) Consider the pushout diagram

0arrow Uarrow Warrow Varrow 0\alpha\downarrow\beta\downarrow||

0– Tarrow Xarrow Varrow 0 .
Since \alpha is an epimorphism, so is \beta . Thus X_{C} is uniserial. Using a pullbacl$
diagram (2) can be shown dually.

A maximal ideal of an HNP ring is either invertible or idempotent,
further, idempotent one belongs to either a cycle or a strictly open cycle
(Lemma 1. 1). In order to determine whether an idempotent maximal ideal
M belongs to a cycle or a strictly open cycle we need to calculate O_{r}(M)

and O_{l}(M) . Since Ext_{C}^{1}(T_{j}, S_{j})\neq 0 , it follows from [6, Theorem 8] that

(*) O_{r}(N_{j})=O_{l}(L_{j}) for all j=1, \cdots , l

By the following the remaining relations among maximal ideals of C=I_{R}(A)

will be completely determined. Firstly, we study maximal ideals in \mathscr{M}\cap C.

THEOREM 2. 4. Let M\in \mathscr{M} , and U be a simple right R-module such
that UM=0. Then

(1) M is invertible iff M\cap C is invertible.
(2) If M is idempotent with O_{r}(M)=O_{l}(N) for some N\in \mathscr{M} , then

O_{r}(M\cap C)=O_{l}(N\cap C) .
(3) If M is idempotent with O_{r}(M)\neq O_{l}(N) for all idempotent maxi-

mal ideals N of R and Ext_{R}^{1}(U_{j}, U)=0 for all j=1, \cdots , k, then O_{r}(M\cap C)

\neq O_{l}(L) for all idempotent maximal ideals L of C.
(4) If M is idempotent with O_{r}(N)\neq O_{l}(M) for all idempotent

maximal ideals N of R, then O_{r}(L)\neq O_{l}(M\cap C) for all idempotent maximal
ideals L of C.

PROOF. (1) Since M=(M\cap C)R=R(M\cap C) , if M\cap C is invertible (or
idempotent), so is M. Thus by [2, Proposition 2.2] M is invertible iff
M\cap C is invertible. (2) Let T be a simple right R-module such that TN=0.
Then U and T are also simple right C-modules by [7, Theorem 1. 3]. Since
O_{r}(M)=O_{l}(N) and Ext R^{1}(T, U)\cong Ext_{C}^{1}(T, U) , O_{r}(M\cap C)=O_{l}(N\cap C) by [6,
Theorem 8]. (3) It follows from [6, Corollary 9 (b)] that there is a faithful
simple right R-module V such that Ext_{R}^{1}(V, U)\neq 0 . By the assumption,
V\neq U_{j} for all j=1 , \cdots , k. Hence Hom_{R}(R/A, V)=0 . Thus V is a faithful
simple right C-module and Ext_{C}^{1}(V, U_{j})\cong Ext_{R}^{1}(V, U_{j})\neq 0 . Therefore, the
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assertion follows from [6, Corollary 9]. (4) Assume that O_{r}(L)=O_{l}(M\cap C)

for some idempotent maximal ideal L of C, and let S be a simple right C-
module with SL=0, so that Ext_{C}^{1}(U, S)\neq 0 . If S\cong S_{j} for some 1\leq j\leq k ,

then by [6, Theorems 7, 8] U_{C}\cong T_{j} and so U\cong U\otimes_{C}R\cong T_{j}\otimes_{C}R=0 which is
a contradiction. Assume that S\cong T_{j} for some 1\leq j\leq k . Since C is here-
ditary, the homomorphism Ext_{C}^{1}(U, U_{j})arrow Ext_{C}^{1}(U, T_{f}) induced by the epimor-
phism U_{j}arrow T_{j} is an epimorphism. So, since Ext_{C}^{1}(U, T_{j})\neq 0 , Ext_{R}^{1}(U, U_{j})\cong

Ext_{C}^{1}(U, U_{j})\neq 0 . Since U_{j} is unfaithful from Lemma 2. 1, Or(Lj)= O_{l}(M) ,
a contradiction. Thus it follows from [7, Corollary 2. 4] that S_{C}\cong V_{C} for some
simple right R-module V with Hom_{R}(R/A, V)=0 . Then V_{R} is unfaithful and
Ext_{R}^{1}(U, V)\cong Ext_{C}^{1}(U, V)\neq 0 . Hence O_{r}(ann_{R} V)=O_{l}(M) , a contradiction.

The following two theorems show how the new maximal ideals N_{j}’s
and L_{j}’s are connected. For L_{j}’s, it is enough to study O_{r}(L_{j}) according
to (^{*}) .

THEOREM 2. 5. Let j be 1\leq j\leq l, that is, U_{j} be unfaithful with U_{j}M_{f}

=0. Then
(a) If M_{j} is invertible, then \{N_{f}, L_{f}\} is a cycle of C.
(b) If M_{j} is idempotent with V a simple right R-module such that

Ext_{R}^{1}(V, U_{j})\neq 0 . Then
(1) Suppose that Hom_{R}(R/A, V)=0 . Then

(i) If V_{R} is unfaithful, O_{r}(L_{j})=O_{l}(M\cap C) for M=ann_{R} V.
(ii) If V_{R} is faithful, O_{r}(L_{j})\neq O_{l}(L) for all idempotent maximal

ideals L of C.
(2) Suppose that Hom_{R}(R/A, V)\neq 0 . Then O_{r}(L_{j})=O_{l}(N_{h}) for some

h(1\leq h\leq k) and h\neq j .
PROOF. (a) It follows from [6, Theorem 11] that Ext_{R}^{1}(U_{f}, U_{j})\neq 0 .

Hence there is a nonsplit exact sequence 0- U_{j}arrow W-arrow U_{j}arrow 0 . Then W_{R} is
uniserial and by [7, Corollary 1.5] W_{C} is also uniserial. Using Lemma 2. 2
we obtain nonsplit exact sequences of right C-modules 0arrow T_{j}arrow X-arrow U_{j}arrow 0 and
0-arrow T_{j}arrow Yarrow S_{j}arrow 0 . Hence Ext_{C}^{1}(S_{j}, T_{j})\underline{\neq}0 and so Or(Lj) Ol(Nj). There-
fore, \{N_{j}, L_{j}\} is a cycle, (b) At first, note that a simple right R-module V
with Ext_{R}^{1}(V, U_{f})\neq 0 exists by [6, Theorem 7]. Thus there is a nonsplit
exact sequence 0-arrow U_{j}arrow W-Varrow 0 . Then W_{C} is uniserial. Using Lemma 2. 3
(1) we obtain an exact sequence of right C-modules 0-arrow T_{j}arrow Xarrow Varrow 0 with X_{C}

uniserial. Hence Ext_{C}^{1}(V, T_{j})\neq 0 . Now, for the case (1), since Hom_{R}(R/A, V)

=0, V_{C} is simple, (i) If V_{R} is unfaithful, so is V_{C} and hence O_{r}(L_{j})=

O_{l}(M\cap C) by [6, Theorem 8]. (ii) If V_{R} is faithful, so is V_{C} and hence
O_{r}(L_{j})\neq O_{l}(L) for all idempotent maximal ideals L of C by [6, Corollary 9].
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For the case (2), since Hom_{R}(R/A, V)\neq 0 , V\cong U_{j} for some 1\leq h\leq k . Since
M_{j} is idempotent and Ext_{R}^{1}(U_{h}, U_{f})\neq 0 , U_{h}\neq’U_{j} , i . e. , h\neq j . Using Lemma
2. 3 (2) we have Ext_{R}^{1}(S_{h}, T_{j})\neq 0 . Hence O_{r}(L_{j})=O_{l}(N_{h}) by [6,Theorem8] .

THEOREM 2. 6. (1) If U_{j} is faithful, that is, l+1\leq j\leq k, then O_{r}(N_{J})

\neq O_{l}(L) for all idempotent maximal ideals L of C.
(2) Suppose that Ext_{R}^{1}(U_{j}, V)\neq 0 for some unfaithful simple right R-

module V with M=ann_{R}V idempotent. Then
(i) O_{r}(M\cap C) Ol(Nj), whenever Hom_{R}(R/A, V)=0 .
(ii) O_{r}(L_{h})=O_{l}(N_{j}) for some 1\leq h\leq l and h\neq j, whenever Hom_{R}(R/A ,

V)\neq 0 .
(3) Suppose that Ext_{R}^{1}(U_{j}, V)=0 for any unfaithful simple right R-

module V. Then O_{r}(L)\neq O_{l}(N_{j}) for all idempotent maximal ideals L of C.
PROOF. (1) Since T_{f} is faithful by Lemma 2. 1 and Ext_{C}^{1}(T_{j}, S_{f})\neq 0 ,

the assertion follows from [6, Corollary 9]. (2) Using Lemma 2. 3 (2) we
have Ext_{C}^{1}(S_{j}, V)\neq 0 by assumption. Thus (i) is proved by the same way
as Theorem 2. 5 (b) (1) (i), while (ii) by the same way as Theorem 2. 5 (b) (2).
(3) is proved by the same way as Theorem 2. 4 (4).

For an HNP ring R, let D(R) denote the abelian group generated by the
maximal invertible ideals of R (see [2, Theorem 2. 9]). Then as an easy
consequence of the theorems, we have the following

c_{oROLLARY}2.7 . D(R)\cong D(C) .
We shall give an example of an HNP ring which has exactly three

idempotent maximal ideals M_{1} , M_{2}, M_{3} such that \{M_{1}, M_{2}\} is a cycle (see
[5, p. 113 (b)] ) . The indicated one in [5] is an iterated idealizer from a
simple HNP ring, and then it has no cycle by Corollary 2. 7.

EXAMPLE. Let D be a primitive Dedekind prime ring with a nonzero
maximal ideal M (for example see[1, p. 81(ii)(a)]). Let K and L be
maximal right ideals of D such that K\supset M and (D/L)_{D} is faithful. Let R

be the full 2\cross 2 matrix ring over D, and let K_{1}=(\begin{array}{ll}K KD D\end{array}) and K_{2}=(\begin{array}{ll}L LD D\end{array})

be maximal right ideals of R such that R/K_{1}(R/K_{2}) is an unfaithful (faithful)
simple right R-module. Then C=I_{R}(K_{1}\cap K_{2}) is an HNP ring, whose idem-
potent maximal ideals are K_{1}\cap C, L_{1} , K_{2}\cap C, where L_{1} is the idempotent
maximal ideal of C such that O_{r}(K_{1}\cap C)=O_{l}(LJ . Moreover, \{K_{1}\cap C, L_{1}\} is
a cycle and \{K_{2}\cap C\} is a strictly open cycle.

COROLLARY 2. 8. There exists an HNP ring which has strictly open
cycles \{M_{i1^{ }},\cdots, M_{i,m(i)}\} for arbitrary positive integers k and m(i)(1\leq i\leq k) .
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PROOF. Let R be a simple HNP ring which is not artinian and has
infinitely many nonisomorphic faithful simple right R-modules (the existence
of such a ring is well-known (cf. [6]) ) . Let A=K_{1}\cap\cdots\cap K_{k} be a semimaxi-
mal right ideal such that R/Kt’s are mutually nonisomorphic faithful simple
right R-modules and C_{1}=I_{R}(A) . Then by Theorem 2. 6 (1) \{K_{1}\cap C_{1}\} , \cdots ,
\{K_{k}\cap C_{1}\} are strictly open cycles of C_{1} . Assume that \{M_{1^{ }},\cdots, M_{t}\} is a strictly
open cycle of an HNP ring R’ and S_{t} , T are simple right R’ -modules such
that S_{t}M_{t}=0 and T=R’/K is faithful with Ext_{R’}^{1}(T, S_{t})\neq 0 (cf. [6, Corollary
9]). Since K is a maximal right ideal, I_{R’}(K)=D is an HNP ring and
\{M_{1}\cap D, \cdots. M_{t}\cap D, K\} is a strictly open cycle of D by Theorems 2. 4, 2. 6
(1) and (2) (i), while if \{N_{1}, \cdots, N_{q}\} is a strictly open cycle of R’ which is
different from \{M_{1}, \cdots, M_{t}\} then \{N_{1}\cap D, \cdots, N_{q}\cap D\} is also a strictly open
cycle of D by Theorem 2. 4. Hence we can constr\’uct the desired HNP
ring C as an iterated idealizer, that is, there is a chain of subrings C=C_{s}\subset

C_{s-1}\subset\cdots\subset C_{0}=R such that C_{i} is an idealizer of a semimaximal right ideal
in C_{i-1} for i=1 , \cdots , s .
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