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On Fatou’s and Beurling’s Theorems

By Zenjiro KURAMOCHI
(Received December 2, 1981)

The purpose of the present paper is to give simple proofs for well
known Fatou and Beurling’s theorems for harmonic functions and to amelio \cdot

rate the Beurling’s theorem for analytic functions given in a previous paperO.
Let R be a Riemann surface \not\in 0_{g} and \{R_{n}\} : n=0,1 , \cdots be its exhaustion.
We suppose \alpha-Martin’s topology is defined on \overline{R}=R+\Delta^{a} , where \alpha=K or N.

Let U(z) : z\in R be a harmonic function, i . e . U(z) is a mapping from
R into a real axis. Let \Delta_{1}^{\alpha} be the set of \alpha-minimal points^{2)} of \Delta^{\alpha} . The
fine cluster set A(U(p))\alpha at p\in\Delta_{1}^{\alpha} is defined as

A^{\alpha}(U(p))= \bigcap_{\tau}\overline{U(G_{\tau}}):G, \ni pa,2)

where G_{\tau} is a fine neighbourhood of p with respect to \alpha-Martin’s topology.
If A^{\alpha}(U(p)) is a single point, we say U(z) has a fine limit denoted by U^{\alpha}(p) .
Then the following Lemma is well known.

Lemma 1.1) Let G be an open set in R and v(p) be a neighbourhood
of p relative to \alpha-Martin’s topology. Then

\alpha

1) Let p\in\Delta_{1}^{\alpha} . Then a) v(p)\ni p . b) There exists only one component

G’ of G such that G’\ni pa and G^{\alpha}\ni p implies (CG)^{0}\exists^{\alpha}\ni p . If G_{i}^{\alpha}\ni p(i=1,2,
\cdots ,

i_{0}) , (\begin{array}{l}\cap G_{i}i_{0}i=1\end{array})\ni p\alpha . Hence A^{a}(U(p)) is a point or continuum.
2) a) Let G’\subset G\subset RG’ and G be open sets and let F be a closed set

in \Delta_{1}^{K}. If the H. M. {harmonic measure) of F\cap\overline{G}’ relative to G>0 :

w(F\cap G’, z, G)>0,(2)

then there exists at least a point p\in F\cap\Delta_{1}^{K} such that G^{K}\ni p . b) Let G’\subset G

and let F be a closed set in \Delta_{1}^{N}. If the C. P. [capacity) F\cap G’ relative to
G>0 : i . e . \omega(F\cap G’, z, G)>0 , then there exists at least a point p\in F\cap\Delta_{1}^{N}

such that G^{N}\ni p .
If an open set [not necessarily connected) G has \partial G consisting of at

most enumerably infifinite number of analytic curves clustering nowhere in
R, we call G a subdomain of R. Let G be a subdomain. Then K(z, p)
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\alpha \alpha

(N(z,p)) is lower semicontinuous with respect to p\in\overline{R} and \{p\in\Delta_{1}^{\alpha} : G\ni p\}

is a G_{\delta} set. We suppose E (on the real axis) is compact and U(z)\in E. Let
I_{i}^{n}(i=1,2, \cdots, i(n)<\infty) be a system of intervals on the real axis such that

any closed interval with length < \frac{1}{3n} is contained in some I_{i}^{n} and that any

interval of length > \frac{3}{n} contains at least one I_{i}^{n} . Let T_{i}^{n}=\{p\in\Delta_{1}^{a} : U^{-1}(I_{i}^{n})

\yen \mbox{\boldmath $\alpha$}p}, S= {p\in\Delta_{1}^{a} : dia A^{\alpha}(U(p))>0}.
Then

S= \bigcap_{n=1}^{\infty}\bigcap_{i=1}^{i(n)}T_{i}^{n}

and S is a G_{\delta\sigma} set, where dia A(U(p))\alpha is the diameter of A^{\alpha}(U(p)) .
3) If dia A(U(p))>\delta_{0}, any component of U^{-1}(I_{\delta})\exists^{a}\ni p for \delta<\delta_{0} where

I_{\delta}=(\delta, \infty) .
4) If U(p)\alpha exists, there exists a path L\alpha-tending to p such that

U(z)arrow U^{a}(p) as zarrow p along L.

1. Fatou’s theorem for bounded harmonic functions.

THEOREM 1. Let U(z) be a bounded harmonic function. Then U(z)

has fifine limit U^{K}(p):p\in\Delta^{K} except at most a set of harmonic measure zero.

PROOF. Since H. M. of \Delta-\Delta_{1}^{K} is zero, it is sufficient to show that U^{K}(p)

exists a . e . on \Delta_{1}^{K}. Without loss of generality, we can suppose inf U(z)=0,
sup U(z)=1 . Let I_{i}^{n}=\{u : (i-1)\delta<u<(i+1)\delta\} , I_{i}^{n}=\{u : (i-2)\delta<u<(i+2)\delta\} ,

i=1,2, \cdots , n, \delta=\frac{1}{n} , and G_{i}^{n}=\{z\in R; U(z)\in I_{i}^{n}\} , G_{i}^{n}=\{z\in R, U(z)\in\tilde{I}_{i}^{n}\} . Then

G_{i}^{n} and G_{i}^{n} are subdomains. Put T_{i}^{n}=\{p\in\Delta_{1}^{K}, p\not\in G_{i}^{n}\}K and S= \bigcap_{n=1}^{\infty}\bigcap_{i=1}^{i(n)}T_{i}^{n} .
Then the set of points p where U^{K}(p) does not exist is contained in S. We
show S is a set of H. M. zero. Assume S is of positive H. M. Then we

can find a number n and a closed set F of positive H. M. in n1 \bigcap_{i=1}T_{i}^{n} . Then

dia A(U(p)) \geqq\frac{1}{n} for any point p\in F. Let m\geqq 5n . Since m1 \bigcup_{i=1}G_{i}^{m}=R ,

\sum_{i=1}^{m-1}w(F\cap G_{i}^{m}, z, R)\geqq w(F\cap\sum G_{i}^{m}, z, R)=w(F, z, R)>0 .

Hence the exists at least one i such that w(F\cap G_{i}^{m}, z, R)>0 , where 1\leqq i

\leqq m^{-1} . Let s(z)=U(z) for U(z)\leqq(i-1)\delta’ : \delta’=\frac{1}{m} , s(z)=(i-1)\delta’ for (i-1)\delta’
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<U(z)\leqq(i+1)\delta’ and s(z)=(i-1)\delta’-\{U(z)-(i+1)\delta’\} for U(z)>(i+1)\delta’ . Then
s(z) is an S. P. H. (superharmonic function). Let \alpha=\min(0, 2i\delta’-1) and

t(z)= \frac{s(z)-\alpha}{(i-1)\delta’-\alpha}

Then t(z) is a positive S. P. H. such that t(z)=1 on \overline{G}_{\acute{\acute{i}}}^{n} and t(z)= \frac{(i-2)\delta’-\alpha}{(i-1)\delta-\alpha},
=\epsilon_{0}<1 on \partial G_{1}^{m} . Since w(G_{i}^{m}, z, R) is the least positive S. P. H. not smaller
than 1 on \overline{G}_{i}^{m} , w(F\cap G_{i}^{m}, z, R)\leqq\epsilon_{0} on \partial G_{i}^{m} . This implies

w\{FnG_{i}^{m} ,z,R)-w_{c\tilde{a}_{i}^{m}}(F\cap G_{i}^{m}, z, R)=w(F\cap G_{i}^{m}, z, G_{i}^{m})>0

By Lemma 1 there exists at least one point p in F such that p^{K}\in G_{i}^{m} . Next
by \sup_{z\in\tilde{c}_{i}^{m}}U(z)-\inf_{z\epsilon\tilde{\sigma}_{i}^{m}}U(z)\leqq\frac{4}{m} dia A(U(p))< \frac{4}{m}<\frac{1}{n} . This contradicts p\in F.
Thus we have the theorem.

Lemma 2. Let U(z) be a bounded harmonic function. If U^{K}(z)=C

(const) a. e. on \Delta^{K}, then U(z)=C.

PROOF. Suppose U(z)\neq const. Then we can suppose inf U(z)=0 and
sup U(z)=1 . Let G_{\delta}=\{z:U(z)>\delta\} : 0<\delta<1 . By the maximum principle

U(z)\leqq w(G_{\delta}\cap(R-R_{n}), z, R)+\delta .

Let narrow\infty , then
U(z)\leqq w(G_{\delta}\cap\Delta, z, R)+\delta

If w(G_{\delta}\cap\Delta, z, R)=0 , U(z)\leqq\delta<1 . This is a contradiction. Hence
w(G_{\delta}\cap\Delta, z, R)>0 for 0<\delta<1

Put s(z)= \min(1, \frac{U(z)}{\delta}) . Then s(z) is an S. P. H. and =1 on \overline{G}_{\delta} , s(z)= \frac{5}{6}

on \partial G_{5,\pi^{\delta}}, . By w(G_{\delta} \cap\Delta, z, R)\leqq w(G_{\delta}, z, R)\leqq s(z)\leqq\frac{5}{6} on \partial G_{\tau^{\delta}}5 ,

w(G_{\delta}\cap\Delta, z, R)-W_{C\tilde{G}\backslash }^{/}G_{\delta}\cap\Delta, z, R)=w(G_{\delta}\cap\Delta, z, G)>0 ,

where G_{\frac{5}{6}\delta}=G .
Now w(G_{\delta}\cap\Delta, z, R) is represented by a positive canonical mass \mu on \overline{G}_{\delta}\cap\Delta_{1}

such that w(G_{\delta}\cap\Delta, z, R)=.\uparrow K(z, p)d\mu(p)\leqq 1 .
By w_{C\tilde{G}}(G_{\delta}\cap\Delta, z, R)=.\uparrow K_{C\tilde{G}}(z, p)d\mu(p) , we have

1 \geqq\int(K(z, p)-K_{C\tilde{G}}(z, p))d\mu(p)>0 .

This implies that there exists a positive restriction \mu’ of \mu on \Delta_{1}(G)=
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\{p\in\Delta_{1}^{K }: _{p}\in\tilde{G}\}K and H. M. of \Delta_{1}(G) is positive. Suppose U^{K}(p) : p\in\Delta_{1}(\tilde{G})

exists, then evidently U^{K}(p) \geqq\frac{5\delta}{6} by p^{It^{-}}\in\tilde{G} . Hence by Theorem 1, U^{K}(p)\geqq

\frac{5\delta}{6}a . e . on \Delta_{1}(G) and H. M. of \{p;U^{K}(p)\geqq\frac{5\delta}{6}\} is positive. Put \delta=\frac{2}{3} .

Then H. M. of \{p;U^{K}(p)\geqq\frac{5}{9}\} is positive. Consider 1-U(z) . Then H. M.

of \{p:U^{K}(p)\leqq\frac{4}{9}\} is positive. This contradicts U^{K}(p)=Ca . e . on \Delta and

we have the Lemma.

Lemma 3. Let G be a subdomian. Let U(z) be an S. P. H. such that
U(z)=w(\partial G, z, R-\overline{G}) (H. M. of \partial G relative to R-\overline{G}) in R-\overline{G} and U(z)=1

on G. Then U^{K}(p)=0a . e . on \Delta_{1}(R-\overline{G}) .

PROOF. Assume U(z) has not U^{K}(p) at a set of positive H. M. in
\Delta_{1}(R-\overline{G}) . Then we can find a closed set F in \Delta_{1}(R-\overline{G}) such that dia
A(U(p))>\delta>0 for any point p in F and w(F, z, R)>0 . Let \mu be the
canonical distribution of w(F, z, R) . Then

w(F, z, R-\overline{G})=w(F, z, R)-w_{\overline{G}}(F, z, R)

= \int(K(z, p)-K_{\overline{G}}(z, p)^{\backslash })d\mu(p)>0 (1)

by K_{\overline{G}}(z, p)<K(z, p):p\in F\subset\Delta_{1}(R-\overline{G}) .

Let \epsilon<\frac{\delta}{6} and G_{i}=\{z\in R-\overline{G} : (i-1)\epsilon<U(z)<(i+1)\epsilon\} and

G_{i}=\{z\in R-\overline{G} : (i-2)\epsilon<U(z)<(i+2)\epsilon\}\prime r (i=1,2, \cdots, n)|

Consider w(F\cap G_{i}, z, R-\overline{G}) . Then similarly as the proof of Theorem 1

we can find a domain G_{i} such that w(F\cap G_{i}, z, G_{i})>0 and a point p in F

such that p\in G_{i}K . This implies dia A(U(p))<4 \epsilon<\frac{2}{3}\delta . This contradicts p\in F.

Hence U^{K}(p) exists a . e . on \Delta(R-\overline{G}) .
Next we show U^{K}(p)=0a . e . on \Delta_{1}(R-\overline{G}) . Assume there exists a closed

set F in \Delta_{1}(R-\overline{G}) such that U^{K}(p)>\delta>0 for any p\in F and w(F, z, R)>0 .

Then G_{\delta}= \{z:U(z)>\frac{\delta}{2}\}^{K}\ni p for any p\in F.: By G_{\delta}^{K}\ni p (and (V_{n}(p)\cap G_{\delta})\ni p)
K

,

K(z, p)=K_{\overline{G}_{\delta}\cap F}(z, p) , whence

0<w(F, z, R)= \int K(z, p)d\mu(p)=\int K_{\overline{G}_{\theta}\cap F},(z, p)d\mu(p)

=w_{\overline{G}_{\delta}\cap F}(F, z, R)\leqq w(G_{\delta\cap}F, z, R)

\leqq w(F, z, R) . Hence w(G_{\delta}\cap F, z, R)>0
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Consider G_{\delta}\cap F instead of F in (1). Then we have similarly as above by
(F\cap G_{\delta})\subset\Delta_{1}(R-\overline{G})

w(F\cap G_{\delta}, z, R-\overline{G})>0 (2)

By U(z) \geqq\frac{\delta}{2} on G_{\delta} and by the definition of w(F\cap G_{\delta},z, R-\overline{G})

( \Phi j(z)=)U(z)-\frac{\delta}{2}w(F\cap G_{\delta}, z, R-\overline{G})>0

and \emptyset(z)=1 on \partial G . Hence by the definition of U(z) , \varpi(z)\geqq U(z) and
w(F\cap G_{\delta}, z, R-\overline{G})=0 . This contradicts (2). Thus we have the lemma.

Lemma 4. Let G be a subdomain and \Omega=R-\overline{G} . Then

H. M. of (\overline{\Omega}\cap\Delta)-\Delta_{1}(\overline{\Omega}1\leqq w(G, z, R) .
PROOF. Since G is a subdomain w(G, z, R)=w(\overline{G}, z, R) . Let F bea closed

set in (\overline{\Omega}\cap\Delta)-\Delta_{1}(\Omega) such that w(F, z, R)>0 and \mu be its canonical distribution.
Clearly \mu=0 on CF. p\in F implies p^{K}\not\in\Omega and K(z, p)=K_{C\Omega}(z, p)=K_{\overline{G}}(z,p)=

K(z,p) . Hence by w(F, z, R)=.|K(z, p)d\mu(p) , w(F, z, R)=.|K_{\overline{G}}(z, p)d\mu(p)=

w_{\overline{\dot{G}}}(F, z, R)\leqq 1_{\overline{C\tau}}=w(\overline{G}, z, R)=w(G, z, R) . Now F is arbitrarily. Hence we
have the lemma.

THEOREM 2. Let U(z) be a positive harmonic function. Then U(z)
is divided into two parts: quasibounded part V(z) and a singular part
S(z) and U(z) has fifine limits a. e. on \Delta such that U^{K}(p)=V^{K}(p)a . e. on \Delta .

PROOF. Let G_{M}=\{z\in R : U(z)>M\} . Then by U(z)<\infty , we have at
once w(G_{M}, z, R)\downarrow 0 as Marrow\infty . Let U_{M,n,n+i}(z) be a harmonic function in
R_{n+i}-(G_{M}\cap(R-R_{n})) such that U_{M,n.n+i}(z)=M on (\partial R_{n}\cap G_{M})+\partial G_{M}\cap(R_{n+i}-

R_{n}),=U(z) on \partial R_{n+i}-G_{M}. Then U_{M,n,n+i+1}(z)\leqq U(z)=U_{M,n,n+i}(z) on \partial R_{n+i}-

G_{M} implies U_{M,n,n+i}(z)\downarrow UM,n\{z) as iarrow\infty . Similarly we have UM,n\{z)\downarrow U_{M}(z)

\leqq U(z) as narrow co and
U_{M}(z)\nearrow V(z)\leqq U(z) as Marrow\infty

,\cdot

where V(z) is quasibounded.
Since U_{M}(z) is a bounded harmonic function, U_{M}^{K}(p) exists a . e . on \Delta .

We denote by E_{M} the set in \Delta_{1}(R-\overline{G}_{M}) where both w^{K}(G_{M}, z, R)(=0) and
U^{K}(z) exists. Then by Lemma 3, H. M. of \Delta_{1}(R-\overline{G}_{M})-E_{M}=0 . Since the
intersection of two fine neighbourhoods is also a fine neighbourhood and
since 0\leqq U(z)-U_{M}(z)\leqq Mw(G_{M}, z, R) in R-G_{M}, U^{K}(p) exists on E_{M} and
U^{K}(p)=U_{M}^{K}(p) on E_{M} . U(p)\geqq V(p)\geqq U_{M}(p) on E_{M} . Thus VK(p)=UK\{p)=

U^{K}(p) on \bigcup_{M}E_{M}.
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Let \Omega_{M}=CG_{M} . Then by Lemma 4

H. M. of \Delta\cap\Omega_{M}-E_{M}\leqq w(G_{M}, z, R)\downarrow 0 as Marrow\infty (3)

On the other hand,

w(\Omega_{M}\cap\Delta, z, R)\geqq 1-w(G_{M}\cap\Delta, z, R)\geqq 1-w(G_{M}, z, R) (4)

w(\Omega_{M}\cap\Delta, z, R)arrow 1 as Marrow\infty and by (3) w(E_{M}, z, R)arrow 1 as Marrow\infty and
V^{K}(p)=U^{K}(p)a . e . on \Delta and U^{K}(p) exists a . e . on \Delta .

Put S_{M}(z)=U(z)-U_{M}(z) . Then S_{M}(z)\downarrow S(z) and S(z) is harmonic. Let
t(z) be a bounded positive harmonic function \leqq S(z) . Then t^{K}(p)=0a . e .
on \Delta . By Lemma 2 we have t(z)=0. Hence S(z) is singular. The unique-
me s V(z) and S(z) is well known.

REMARK. If R is a unit circle |z|<1 , e^{i\theta} is a minimal point. Let V(z)

be the conjugate harmonic function of U(z) . Put g(z)= \frac{1}{U(z)+iV(z)} . Then

Re g(z) and Im g(z) are bounded. There exists a set E on |z|=1 such that
mes E=2\pi and both of them have fine limits and there exists a curve L(e^{i\theta})

terminating at e^{i\theta} along which they converge to the fine limits. Hence by
Lindel\"of’s theorem g(z) has angular limits at e^{i\theta} in E. This implies U(z)

has angular limits a . e . on |z|=1 .

2. Beurling’s theorem for harmonic functions.

Let U(z) be a Dirichlet bounded harmonic function. Then V(z)=

\frac{1}{2}(\frac{U(z)}{1+|U(z)|})+\frac{1}{2} is Dirichlet bounded and 0<V(z)<1 . In fact, | \frac{\partial}{\partial x}V(z)|

\leqq\frac{1}{2}(\frac{|\frac{\partial}{\partial x}U|}{1+|U|}+\frac{|U|\frac{\partial}{\partial x}U}{(1+|U|)^{2}})\leqq|\frac{\partial}{\partial x}U|

and similarly | \frac{\partial}{\partial y}V|\leqq|\frac{\partial}{\partial y}U| and D(V(z))

\leqq D(U(z)) .
THEOREM 3. Let U(z) be a Dirichlet bounded harmonic function in

R. Then U(z)| has N fine limt U^{N}(p) on \Delta^{N} except at most a set of capacity
zero.

PROOF. It is sufficient to show that the assertion holds for V(z) instead

of U(z) . Let G_{i}^{n}=\{z : (i-1)\delta<V(z)<(i+1)\delta\} : \delta=\frac{1}{n} . Put T_{i}^{n}=\{p\in\Delta_{1}^{N} :

p\not\in G_{i}^{n}\}N and S=\cup\infty n1\cap T_{i}^{n} . Then S is the set of point p such that dia A(V(p))
i=1i

>0 . Since \Delta^{N}-\Delta_{1}^{N} is of capacity zero, we shall show S is of capacity zero.
If it were not so, we can find a number \delta and a closed set F in \Delta_{1}^{N} such that
\omega(F, z, R-R_{0})>0 dia A (V(p))>\delta>0 for any p\in F , where \{R_{n}\} is an exhaus-
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tion of R and R_{0} is a compact disk. Let m> \frac{\delta}{8} . Then by \omega(F, z, R-R_{0})

\leqq\sum_{i=1}^{m}\omega(F\cap G_{i}^{m}, z, R-R_{0}) there exists a number i such that

\omega(F\cap G_{\dot{t}}^{m}, z, R-R_{0})>0 .

Let s(z)=V(z) for V(z)\leqq(i-1)\delta’ : \delta’=\frac{1}{m} , s(z)=(i-1)\delta’ for (i-1)\delta’\leqq

V(z)<(i+1\rangle \delta’ and s(z)=(i-1)\delta’-\{V(z)-((i+1_{/}^{1}\delta’\} for V(z)\geqq(i+1)\delta’ . Then
t(z)= \frac{s(z)-(i-2)\delta’}{\delta}, satisfies t(z)=1 on G_{i}^{n\iota}, =0 on \partial G_{i}^{m} and D(t(z))<\infty ,

where G_{i}^{m}=\{z:(i-2)\delta’<V(z)<(i+2)\delta’\} . Since R_{0} and R_{1} are compact and
G_{i}^{m} and \tilde{G}_{i}^{m} are subdomains, we can easily contruct a Dirichlet function \alpha(z)

in R from t(z) such that \alpha(z)=1 on G_{i}^{\prime m}, =0\partial G_{i}^{\prime m} and

D(\alpha(z))<\infty , (5)

where G_{i}^{\prime m}=(R-Ril\cap G_{i}^{m} and G_{i}^{\prime m}=(R-R_{0})\cap G_{i}^{m} .
Since F\subset\Delta , \omega(F\cap G_{i}^{m},z, R-R_{0})=\omega(F\cap G_{i}^{\prime m},z,R-R_{0}) . By (5) \omega(G_{i}^{\prime m},z,G_{i}^{\prime m})

can be defined and by the Dirichlet principle

D(\omega(G_{i}^{\prime m}, z, G_{i}^{\prime m}))\leqq D(\alpha(z))<\infty t

0<D(\omega(G_{i}^{\prime m}\cap F, z, R-R_{0}))\leqq D(\omega(G_{i}^{\prime m}\cap F, z, G_{i}^{\prime m}))\leqq D(\omega(G_{i}^{\prime m}, z, G_{i}^{\prime m}))

By the maximum principle

\omega(G_{i}^{\prime m}\cap F, z, R-R_{0})\geqq\omega(G_{i}^{\prime m}\cap F, z, G_{i}^{\prime m})>0 .

Hence by Lemma 1 there exists at least a point p\in F such that p^{N}\in G_{i}^{\prime m} .
Now dia V(p) \leqq diaV(G_{i}^{\prime m})<\frac{4}{m}<\delta . This contradict p\in F. Hence we hve
the theorem.

REMARK. If R is a unit circle: |z|<1 , e^{i\theta} is N-minimal. Let V(z) be
a conjugage harmonic function of U(z) . Then there exists a set E on |z|=1
such that both U(z) and V(z) have fine limits on E, CE is a set of capacity
zero. We can find a path L(e^{i\theta}) tending to e^{i\theta} for any e^{i\theta}\in E along which
both U(z) and V(z) converge. The area of |z|<1 by f(z)=U(z)+iV(z) is
finite and there exist 3 points not taken by f(z) near |z|=1 . Hence by
Lindel\"of’s theorem we have the following.

THEOREM. If D(U(z))<\infty in |z|<1 . Then U(z) has angular limits
on |z|=1 except a set of capacity zero.

Lemma 5. 1) Let G be a subdomain in R-R_{0} and \Omega_{1}=\{z\in R-R_{0} :
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\omega(G, z, R-R_{0})>\frac{1}{3}\} and \Omega_{2}=\{z\in R-R_{0} : \omega(G, z, R-R_{0})<\frac{2}{3}\} . Then (\Delta_{1}-

N
\Delta_{1}(\Omega_{1}))\cap(\Delta_{1}-\Delta_{1}(\Omega_{2})) is a set of capacity zero, where \Delta_{1}(\Omega_{i})=\{p\in\Delta_{1}^{N}: \Omega_{i}\ni p\} :
i=1,2.

2) Let G_{M} be a subdomain in R-R_{0} such that G_{M} decreases as Marrow\infty

and \omega(G_{M}, z, R-R_{0})\downarrow 0 as Marrow\infty . Then the capacity of (\Delta_{1}-\Delta_{1}(\Omega^{M}))\downarrow 0

as Marrow\infty , where \Omega^{M}=\{z\in R-R_{0} : \omega(G^{M}, z, R-R_{0})<\frac{2}{3}\} .

PROOF. Assume there exists a closed set F in \{(\Delta_{1}-\Delta_{1}(\Omega j)\}\cap\{\Delta_{1}-\Delta_{1}(\Omega_{2})\}

such that \omega(F, z, R-R_{0})>0 . Put \omega(G, z)=\omega(G, z, R-R_{0}) , \Omega_{\dot{2}}=\{z\in R-R_{0} :

\omega(G, z)<^{\frac{\underline{9}}{3}}-\epsilon\} and \Omega_{1}^{e}=\{z:\omega(G, z)>\frac{1}{3}+\epsilon\}:0\leqq\epsilon<\frac{1}{6} such that C_{1}=\partial\Omega_{1}^{*}

and C_{2}=\partial\Omega_{2}^{\epsilon} are regular level curves^{2)} of \omega(G, z) , i . e .

\int_{C}\frac{\partial}{\partial n}\omega(G, z)ds=\int_{{}_{1}C2}\frac{\partial}{\partial n}\omega(G, z)ds=D(\omega(G, z)) .

By \Omega_{1}^{\text{\’{e}}}\subset\Omega_{1} , F\cap\Delta_{1}(\Omega i)=0 an dp\not\in\Delta_{1}(\Omega_{1}^{\epsilon}) for p\in F. Let \omega(F, z, R-R_{0})=U(z)

and \mu be its canonical distribution. Then \mu=0 on CF and N(z, p)=N_{C9}(iz, p)

by p\not\in\Omega_{1}^{\text{\’{e}}}N , whence
U_{C\Omega_{1}^{\text{\’{e}}}}(z)=U(z)

Hence U(z) has minimal Dirichlet integral (M. D. I) over \Omega_{1}^{\epsilon} among all func-
tions with the same value as U(z) on \partial\Omega i . Hence U_{n}(z)\Rightarrow U(z) , where U_{n}(z)

is a harmonic function in \Omega_{1}^{\epsilon}\cap R_{n} such that U_{n}(z)=U(z) on \partial\Omega_{1}^{\epsilon}\cap R_{n} and
\frac{\partial}{\partial n}U_{n}(z)=0 on \Omega_{1}^{\text{\’{e}}}\cap\partial R_{n} and\Rightarrow means mean convergence and convergencce.
On the other hand \omega(G, z) has M. D. I. over \Omega_{2}^{\epsilon}\cap\Omega_{1}^{\epsilon} and \omega_{n}(z)\Rightarrow\omega(G, z) ,

where \omega_{n}(z) is a harmonic function in (\Omega_{2}^{\epsilon}\cap\Omega_{1}^{\epsilon})\cap R_{n} such that \omega_{n}(z)=\frac{1}{3}+\epsilon

on C_{1}\cap R_{n}, = \frac{2}{3}-\epsilon on C_{2}\cap R_{n} and \frac{\partial}{\partial n}\omega_{n}(z)=0 on \partial R_{n}\cap(\Omega_{2}^{\epsilon}\cap\Omega_{1}^{\epsilon}) . Since

\int_{C_{1}\cap R_{n}}\frac{\partial}{\partial n}U_{n}(z)ds=\int_{\Omega_{1}^{\text{\’{e}}}\cap\partial R_{n}}\frac{\partial}{\partial n}U_{n}(z)ds=0 also \int_{C_{2}\cap R_{n}}\frac{\partial}{\partial n}U_{n}(z)ds=0 , we have by

Green’s formula

\int_{C_{1}\cap R_{n}}.U_{n}(z)\frac{\partial}{\partial n}\omega_{n}(z)ds+\int_{C_{2}\cap R_{n}}U_{n}(z)\frac{\partial}{\partial n}\omega_{n}(z)ds=0 .

By the regularity of C_{1} and C_{2} and U_{n}(z) -arrow U(z) on C_{1}+C_{2}, we have by
letting narrow\infty^{2)}
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\int_{c_{1}}U(z)\frac{\partial}{\partial n}\omega(G, z)ds+\int_{c2}U(z)\frac{\partial}{\partial n}\omega(G, z)ds=0 ( (6)

By F\cap\Delta_{1}(\Omega_{2}^{*})=0 , we have U_{C\Omega_{\dot{2}}}(z)=U(z) and U(z) has M. D. I. over \Omega_{2}^{\epsilon}

with the same value on C_{2}+\partial R_{0} . Let U_{n}(z) be a harmonic function in

(R_{n}-R_{0})\cap\Omega_{2}^{\text{\’{e}}} such that U_{n}(z)=U(z) on C_{2}\cap R_{n}+\partial R_{0} and \frac{\partial}{\partial n}U_{n}(z)=0 on

\Omega_{2}^{*}\cap\partial R_{n} . Then U_{n}(z)\Rightarrow U(z) . Let \omega_{n}(z) be the function as before. Apply
Green’s formula in R_{n}\cap(\Omega_{2}^{e}\cap\Omega_{1}^{\epsilon}) . Then

(C_{1}+C_{2}) \cap R+\partial R\cap(\Omega_{2}^{*}\cap 1?\int_{nn}U_{n}(z)\frac{\partial}{1^{)}*\partial n}\omega_{n}(z)ds=\int_{nn}\omega_{n}(z)\frac{\partial}{i)\partial n}U_{n}(z)ds(C_{1}+C_{2})\cap R+\partial R\cap(\Omega_{2}^{*}\cap\Omega^{\cdot}

\int_{C_{1}\cap R_{n}}U_{n}(z)\frac{\partial}{\partial n}\omega_{n}(z)ds+\int_{\prime}U_{n}(z)\frac{\partial}{\partial n}\omega_{n}(z)dsC_{2}\cap R_{n}

= (\frac{2}{3} -\epsilon c)\int_{2^{\cap R_{n}}}\frac{\partial}{\partial n}U_{n}(z)ds+(\frac{1}{3}+\epsilon)\int_{C_{1}\cap R_{n}}\frac{\partial}{\partial n}U_{n}(z)ds

N^{1}ow\int_{c_{l}nR_{n}}\frac{\partial}{\partial n}U_{n}(z)ds=-\int_{R0}.\frac{\partial}{\partial n}U_{n}(z)ds,\int_{c_{2}nR_{n}}\frac{\partial}{\partial n}U_{n}(z)ds=\int_{\partial R}\frac{\partial}{0\partial n}U_{n}(z)ds
and

both of themarrow\int_{\lambda R}\frac{\partial}{0\partial n}\omega(F, z)ds=D(\omega(F, z))>0 as narrow\infty . Hence by letting

narrow\infty ,

\int_{c_{1}}U(z)\frac{\partial}{\partial n}\omega(G, z)ds+\int_{c2}U(z)\frac{\partial}{\partial n}\omega(G, z)ds

= \{-(\frac{2}{3}-\epsilon)+(\frac{1}{3}+\epsilon)\}D(\omega(F, z))<0 (7)

(7) contradicts (6). Hence we have (1).

Proof of (2) Let G_{M}=G , \Omega_{1} and \Omega_{2} be the domains defined in (1) with
respect to G_{M}. Assume C. P. of (\Delta_{1}-\Delta_{1}(\Omega_{2}))\downarrow\delta>0 as Marrow\infty . By (1) there
exists a closed set F in \Delta_{1}(\Omega_{1}) such that

D(\omega(F, z, R-R_{0}))\geqq\delta>0 for every M (8)

Let \omega(z)=\omega(F, z, R-R_{0}) . Then \omega(z)=JN(z,p)d\mu(p) and by p\in\Delta_{1}(\Omega_{1}) ,
N(z, p)=N_{\overline{9}_{1}}(z,p) and \omega_{\overline{\Omega}_{1}}(z)=\omega(z) .

\omega(\Omega_{1}, z, R-R_{0})=1_{\overline{\Omega}_{1}}\geqq\omega_{\overline{J2}_{1}}(z)=\omega(z) and

C. P. of \Omega_{1}=D(\omega(\Omega_{1}, z, R-R_{0}))\geqq D(\omega(z))\geqq\delta>0 . (9)
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Since \omega(\Omega_{1}, z, R-R_{0}) and \omega(G, z, R-R_{0}) have M. D. I.s over R-R_{0}-\Omega_{1} and
\omega(\Omega_{1}, z, R-R_{0})=1 and \omega(G, z, R-R_{0})=\frac{1}{3}+\epsilon on \partial\Omega_{1}, \omega(\Omega_{1}, z, R-R_{0})=\frac{3}{1+3\epsilon}

\omega(G, z, R-R_{0}) in R-R_{0}-\Omega_{1} . Hence

C. P. of \Omega_{1}=\int_{\partial R}\frac{\partial}{0\partial n}\omega(\Omega_{1}, z, R-R_{0})ds

= \frac{3}{1+3\epsilon}\cross C. P. of G_{M}\downarrow 0 as Marrow\infty (10)

(9) contradicts (10). Thus we have (2).

LEMMA 6. Let G be a subdomain in R-R_{0} and let F be a closed set
of positive capacity in \Delta_{1}(R-\overline{G}) . Then there exists a subdomain \Omega in R–G
and a Dirichlet function \alpha(z) in R-\overline{G} such that \alpha(z)=1 on \Omega md \alpha(z)=0

on \partial G and \omega(F\cap\Omega, z, R-G_{0})>0 .
PROOF. N(z, p)-N_{\overline{G}}(z, p)>0 for p\in\Delta_{1}(R-\overline{G}) . Let \omega(z)=\omega(F, z, R-R_{0})

>0 and \mu be its canonical mass. Then \mu>0 on F and
\omega(z)-\omega_{\vec{G}}(z)=U(z)>0

Let \Omega=\{z\in R-R_{0} : U(z)> \frac{\delta}{2}\} : \delta=\sup U(z)(>0) . Then

\omega_{F\cap C\Omega}(z)+\omega_{F\cap\overline{\Omega}}(z)\geqq\omega_{F}(z)=\omega(z).2)

Assume \omega_{F\cap}\overline{\Omega}(z)=0 . Then
\omega(z)\geqq\omega_{F\cap C\Omega+\overline{G}}(z)\geqq\omega_{F\cap C\Omega}(z)=\omega(z)

Now \omega(z)\leqq\omega - (z)+ \frac{\delta}{2} on C\Omega\supset G and

\omega(z)=\omega_{F\cap C\Omega+\overline{G}}(z)\leqq(\frac{\delta}{2})_{fnc\overline{\Omega}+\overline{\sigma}}+_{F\cap C\Omega+\overline{G}(\omega_{\overline{G}}(z))\leqq\frac{\delta}{2}+\omega_{\overline{G}}(z)} .

Hence U(z) \leqq\frac{\delta}{2} . This contradicts sup U(z)=\delta . Hence

0<\omega_{F\cap\overline{\Omega}}(z)\leqq\omega(F\cap\Omega, z, R-R_{0})

Since D(U(z))<\infty , \omega(\Omega, z, R-\overline{G}) can be defined and by the Dirichlet principle

0<D(\omega(\Omega\cap F, z, R-R_{0}))\leqq D(\omega(\Omega\cap F, z, R-\overline{G}))

\leqq D(\omega(\Omega, z, R-\overline{G}))

\leqq\frac{4}{\delta^{2}}D(U(z))<\infty(
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Hence 12 is a domain required. Let \alpha(z)=1 on \overline{\Omega} and =( \frac{1}{\delta/2})U(z) in R-\Omega .
Then \alpha(z) is a required Dirichlet function.

Let U(z) be a harmonic function in R. If there exists a closed set E

in [0, 1] such that \omega(G_{n}, z, R-R_{0})\vee|0 as narrow\infty and D_{R-G_{n}}(U(z))<\infty for any

n, then we call U(z) an almost Dirichlet bounded harmonic function where

G_{n}=\{z\in R : dist \{E, \frac{1}{2}(\frac{U(z)}{1+|U(z)|}+\frac{1}{2})<\frac{1}{n}\} . Then

THEOREM 4. Let U(z) be an almost Dirichlet bounded harmonic func-
tion. Then U(z) has N-fifine limit U^{N}(p) on \Delta except a set of cap

PROOF. It is sufficient to prove the assertion for V(z)= \frac{1}{2}\{

acity zero.
\frac{U(z)}{1+|U(z)|}

+ \frac{1}{2}) . Suppose there exists a closed set E in [0, ^{1}] satisfying the condition

of the theorem. We show V(z) has fine limit on \Delta_{1}(R-\overline{G_{n}}) except a set of
capacity zero. Assume V(p) does not exist on a set of positive capacity in
\Delta_{1}(R-\overline{G_{n}}) , then we can find a number \delta>0 and a closed set F of positive

capacity in \Delta_{1}(R-\overline{G_{n}}) such that dia A(V(p))>\delta for any p in F and \omega(F, z,

R-R_{0})>0 . Since we consider V(z) near \Delta , we can suppose without loss of
generality that \overline{G}_{n}\cap R_{0}=0 . Then by Lemma 6 there exists a domain \Omega in
R-R_{0}-G_{n} and a Dirichlet function \alpha(z) such that

\omega(F\cap\Omega, z, R-R_{0}-G_{n})>0 and

\alpha(z)=1 on \Omega , =0 on \partial R_{0}+\partial G_{n} (or =0 on \overline{R}_{0}+G_{n}).

Let m> \frac{6}{\delta} and G_{i}^{m}= \{z\in R:\frac{i-1}{m}<V(z)<\frac{i+1}{m}\}, G_{i}^{m}= \{z\in R:\frac{i-2}{m}

<V(z)< \frac{i+2}{m}\} . Then there exists at least one i such that \omega(F\cap\Omega\cap G_{i}^{m}, z,

R-R_{0}-G_{n})>0 .
Let t(z) be the function in the proof of Theorem 3. Then t(z)=1

on \overline{G}_{i}^{m},=0 on R-G_{i}^{m} and D(t(z))<\infty by D(V(z))<\infty .
R-R_{0}-G_{n} R-R_{0}-G_{n}

Put \beta(z)=\min(\alpha(z), t(z)) . Then \beta(z)=1 on \Omega\cap\overline{G}_{i}^{m}, =0 on \partial R_{0}+\partial G_{n}+

\{\partial G_{i}^{m}\cap(R-R_{0})\} and D_{R}(\beta(z))<\infty . Hence \omega(F\cap\Omega\cap G_{i}^{m}, z, (R-R_{0}-G_{n})nG_{i}^{m})

can be defined. By the Dirichlet principle

0<D(\omega((F\cap\Omega\cap G_{i}^{m}, z, (R-R_{0}-G_{n})))

\leqq D ( \omega (F\cap\Omega\cap G_{i}^{m} , z, (R-R_{0}-G_{n})nG_{i}^{m})).
Hence by Lemma 1, there exists a point p in F with \{(R-R_{0}-G_{n})\cap G_{i}^{\tau_{m}}\}

\ni pNi . e . A(V(p)) \leqq\frac{4}{m}<\delta . This contradicts p\in F. Whence V(p) exists on
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\Delta_{1}(R-G_{n}) except a set of capacity zero. Let \Omega_{n}^{1}=\{z\in R-R_{0} : \omega(G_{n}, z, R-R_{0})

< \frac{1}{3} . Then \Omega_{n}^{1}\subset(R-R_{0}-G_{n}) and V(p) exists on \Delta_{1}(\Omega_{n}^{1}) except capacity zero.
\Omega_{n}^{1}\nearrow asnarrow\infty . By Lemma 5, capacity of (\Delta_{1}-\Delta_{1}(\Omega_{n}^{1}))\downarrow 0 as narrow\infty . Thus
U^{N}(p) exists on \Delta_{1} except a set of capacity zero.

3. Beurling’s Theorem for analytic functions.

Suppose a metric d is given on R+\Delta such that d is compactible in R
to the one defined by local parameters and that \overline{R}=R+\Delta and \Delta are compact
with respect to d. If d satisfies, for any p\in\overline{R} and r_{1}<r_{2} the condition 1)
and 1’), it is called H. B. separative and H. D. separative respectively.

Let C(r_{2}, p)\supset C(r_{1}, p) : r_{2}>r_{1} be two circles : C(r, p)=\{z\in\overline{R} : d(z,p)<r\}

1) Let \Omega_{1-\epsilon}=\{z : w_{CG}(C(r_{1}, p)\cap\Delta, z)>1-\epsilon\} : G=C(r_{2}, p) , then

\lim_{\epsilonarrow 0}w(\Omega_{1-\epsilon}\cap C(r, p)\cap\Delta, z)=0 .

1’) Let \Omega_{1-\epsilon}=\{z\in R-R_{0} : \omega_{CG}(C(r_{1}, p)\cap\Delta, z, R-R_{0})>1-\epsilon\} . Then

\lim_{\text{\’{e}}arrow 0}\omega(\Omega_{1-\text{\’{e}}}\cap C(r_{1}, p)\cap\Delta, z, R-R_{0})=0

We proved if d is H. D. separative, then it is H. B. separative. K-
Martin’s topology is H. B. separative and N-Martin’s is H. D. separative.

2) Let d be a metric. If for any two compact set F_{1} and F_{2} : F_{1}\cap F_{2}=0 ,
there exists a continuous (in \overline{R}) Dirichlet function on R, U(z) exists such that
U(z)=1 on F_{1} and U(z)=0 on F_{2} . We call a metric satisfying the condition
(2) a D-disjoint metric. Then we have.

Lemma 7. If d is D-disjoint, it is H. D. separative. N-Martin’s is
D-disjoint.

PROOF. Let d be D-disjoint. Since H. D. separability depends on \Delta,
we can suppose C(r_{2}, p)\cap\overline{R}_{0}=0 . Let C(r, p)=C(r_{1}, p) and G=C(r_{2}, p) . Then
by \{\Omega_{1-\epsilon}\cap C(r, p)\}\subset C(r, p) and by the Dirichlet principle

D(\omega(\Omega_{1-\epsilon}\cap C(r, p)\cap\Delta, z, R-R_{0})\leqq D(\omega(\Omega_{1-\epsilon}\cap C(r, p)\Delta, z, G))

\leqq D ( \omega(C(r, p) , z, G))<\infty

Assume \hat{\omega}(z)=\lim\omega(\Omega_{1-\epsilon}\cap C(r, p)\cap\Delta, z, G)>0 . Let \omega(z)=\omega(C(r, p)\cap\Delta, z,
\epsilonarrow 0

R-R_{0}) . Now since \omega_{CG}(z)\geqq 1-\epsilon on \Omega_{1-\text{\’{e}}} ,

\omega_{CG}(z)\geqq(1-\epsilon)\omega(\Omega_{1-\text{\’{e}}}, z, R-R_{0})

\geqq(1-\epsilon)\omega(\Omega_{1-\epsilon}\cap C(r,p)\cap\Delta, z, G)

Let \epsilonarrow 0 . Then
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\omega_{CG}(z)\geqq\hat{\omega}(z)

\hat{\omega}(z) is a C. P. of \{\Omega_{1-\epsilon}\cap C(r, p)\cap\Delta\} : \epsilonarrow 0 in G. Let C_{1-\epsilon} and C_{\delta} be regular
level curves of \hat{\omega}(z) . Now \omega_{CG}(z) has M. D. I. over G. By Green’s formula

\int_{c_{\delta}}\omega_{CG}(z)\frac{\partial}{\partial n}\hat{\omega}(z)ds=\underline{\int_{c_{1}*}}\omega_{CG}(z)\frac{\partial}{\partial n}\hat{\omega}(z)ds .

Since \omega_{CG}(z)<1 in R,

D( \hat{\omega}(z))=\int_{C_{\delta}}\frac{\partial}{\partial n}\hat{\omega}(z)ds>\int_{C_{\delta}}\fallingdotseq\omega_{CG}(z)\frac{\partial}{\partial n}\hat{\omega}(z)ds=\int_{C_{\iota-\epsilon}}\omega_{CG}(z)\frac{\partial}{\partial n}\hat{\omega}(z)ds

\geqq(1-\epsilon)\underline{\int}\frac{\partial}{\epsilon\partial n}\hat{\omega}(z)ds=(1-\epsilon)D(\hat{\omega}(z))c_{1}

Let \epsilonarrow 0 , then we have a contradiction. Hence \hat{\omega}(z)=0 and d is H. D.
separative.

We shall show N-Martin’s topology is D-disjoint. At first we suppose
F_{1} and F_{2} are contained in \overline{R-R_{3}} . F_{1}\cap F_{2}=0 implies dist (F_{1}, F_{2})>0 and
N(z, p)\neq N(z, q) for p\in F_{1} and q\in F_{2} . Assume N(z, q)\geqq N(z, p) on \partial R_{1} and
there exists a point on \partial R_{1} with N(z, q)>N(z,p),\mu then

2 \pi=\int_{\partial R0}\frac{\partial}{\partial n}N(z, q)ds>\int_{\partial R_{0}}\frac{\partial}{\partial n}N(z, p)ds=2\pi .

Also assume N(z,p)=N(z, q) on \partial R_{1} , then by the harmonicity N(z,p)=
N(z, q) these contradict dist (p, q)>0 . Then there exists at least one point
z^{f} on \partial R_{1} such that

N(q, z’)=N(z’, q)<N(z’, p)=N(p, z’)

Let A_{p,q}(z)= \max(0 , min (1,\acute{\acute{\frac{N(z,z)-N(q,z)}{N(p,z)-N(q,z)}},},) . Then since z’\in\partial R_{1} , A_{p,q}(z)

is continuous in \overline{R}-R_{0}, D(A_{p,q}(z))<\infty and A_{p,q}(z) is a Dirichlet function in

R-R_{0} with A_{p,q}(z)=0 on \partial R_{0} . Now A_{p,q}(p)=1 , A_{p,q}(q)=0 . For any given

point q in F_{2} and \frac{1}{3}>\epsilon>0 , there exists a.neighbourhood v(q) such that

A_{p,q}(z)<\epsilon in v(q) . We cover F_{2} by \sum_{i=1}^{i_{0}}v(q_{i}):i_{0}<\infty and put A_{p}(z)= \min(A_{p,q_{i}}(z)) .

Then A_{p}(p)=1 and A_{p}(z)<\epsilon on F_{2} . Also we can cover F_{2} by \sum_{j=1}^{j_{0}^{i}}v(p_{j}) such
j_{0}

that A_{p_{j}}(z)>1-\epsilon in v(p_{j}) . Let A(z)=maxj(A_{p_{j}}(z)) . Then
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A(z)= \min(1 , max (0, \frac{A(z)-\epsilon}{1-2\epsilon}) )

is continuous in \overline{R}-R_{0}, A(z)=1 on F_{1},=0 on F_{2} and D(A(z))<\infty . Next
let F_{1} and F_{2} be compact in \overline{R} such that F_{1}\cap F_{2}=0 . Let F_{i}’=(\overline{R-R_{3}})\cap F_{i}

and F_{i}’=F_{i}\cap\overline{R}_{3} : i=1,2. Then since F_{i}’ is compact in R, evidently there
exists a Dirichlet function V_{1}(z) such that V_{1}(z)=0 on F_{2}’, =1 on F_{1} . Simi-
larly there exists a Dirichlet function V_{2}(z) such that V_{2}=1 on F_{1}’,=0 on F_{2} .
Let A(z) be a Dirichlet function such that A(z)=1 on F_{1}’=0 on F_{2}’ . Then

U(z)= \max(V_{2}(z) , min (A(z), V_{1}(z)))

is a Dirichlet function with value 1 on F_{1} and 0 on F_{2} . Hence N-Martin’s
topology is D-disjoint.

Let \tilde{R} be a Riemann surface and let w=f(z) be an analytic function
from \tilde{R}(\oplus 0_{g}) into R:w\in R, z\in\tilde{R} . For any point p of R there exists a
local parameter disk C(p) such that the area of R over C(p) is fininite and
there exists a number m such that R-R_{m} is covered by R only a finite
number of times, then we say \tilde{R} is an almost finitely sheeted covering sur-
face, where \{R_{m}\} is an exhaustion of R. Then we proved.

THEOREM 5. Suppose on RN-Marlin’s topology is defifined and an
H. D. separative metric is given on R. If \tilde{R} is an almost fifinitely sheeted
covering surface over R, then w=f(z) has N-fifine limits at \Delta except a set
of capacity zero.

In the following we shall extend this theorem but we suppose a D-
disjoint metric rather than H. D. separative metrics.

Non thick-property at a point p\in\overline{R} .
Suppose a D-disjoint metric is given on \overline{R} . Then

C_{n’ n+i}(p)=\{w\in\overline{R} : \frac{1}{2^{n+i}}<dist(w, p)<\frac{1}{2^{n}}\}

is a ring. We can find a ring G which is a subdomain such that \partial G con-
sists of (\partial G)_{1} and (\partial G)_{2} and

1) (\partial G)_{1} separates \partial C_{n} : C_{n}(p)=\{w\in\overline{R} : dist (w, p)< \frac{1}{2^{n}}\} and (\partial G)_{2} .
2) (\partial G)_{2} separates (\partial G_{1}) and \partial C_{n+i}(p) in every components of C_{n,n+i}(p)

3) dist ((\partial G)_{1}, (\partial G)_{2})>0 .
Then there exists a Dirichlet function H(w) in G such that H(w)=0 on
(\partial G)_{1} , H(w)=\alpha on (\partial G)_{2}, H(w) has M. D. I. over G and D(H(w))=2\pi\alpha, i . e .

H(w)= \frac{2\pi\omega((\partial G)_{2},w,G)}{D(\omega(\partial G)_{2},z,G))} and \alpha=\frac{2\pi}{D(\omega(\partial G)_{2},z,G)}
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Let J(w) be the conjugate harmonic function of H(w) . Put \zeta=\zeta(w)=\exp

(-(H(w)+iJ(w))) : \zeta=\xi+i\eta . Then \zeta(w) maps G onto 1>|\zeta|>\exp (-\alpha)

conformally with radial slits whose areal measure =0, because H(w) has

M. D. I. and \int_{c_{\delta}}\frac{\partial}{\partial n}H(w)ds=2\pi for almost \delta:0<\delta<\alpha . Let \Omega be a subdomain

in \tilde{R} and let n(w) be the number of times when w is covered by f^{-1}(G)-\Omega .
Then the area of f^{-1}(G)-\Omega over 1>|\zeta|>\exp (-\alpha) is given by

A(f^{-1}(G)- \Omega)=\int\int n(\zeta)d\xi d\eta:n(\zeta)=n(w) .

(\partial G)_{1} divides R into two parts: E_{1} and E_{2} such that any component of E_{1}

contains at least one comonent of C_{n}(p) and any component of E_{2} contains
at least one component of C_{n+i}(p) . Let H(w)=0 on E_{1} . Similarly (\partial G)_{2}

divides R into two parts E3 and E_{4} such that any component of E_{4} contains
at least one component of C_{n+i}(p) . Let H(w)=\alpha on E_{4} . Then H(w) is
a Dirichlet function in R. Let U(z)=H(f(z)) . Then U(z) is harmonic in
f^{-1}(G) , U(z)=0 on f^{-1}((\partial G)_{1}) , U(z)=\alpha on f^{-1}((\partial G)_{2}) and continuous in R.
Now in f^{-1}(G)

U(z)=-\log|\zeta| : 1>|\zeta|>\exp(-\alpha) , \xi=\zeta(f(z))

D_{J^{-1}(G)-\Omega}(U(z)) is given by

\int\int n(\zeta)(\frac{\partial}{\partial r}U(\zeta))^{2}rdrd\theta\leqq\sup_{1>|\zeta|>\exp(-\alpha)}(\frac{\partial}{\partial r}U(\zeta))^{2}\int\int n(\zeta)rdrd\theta

\leqq\exp 2\alpha A(f^{-1}(G)-\Omega) ; \zeta=re^{i\theta}

If we can find a ring G in C_{n,n+i}(p) satisfying the conditions 1), 2) and 3)
and the quantity A(f^{-1}(G)-\Omega) (defined with respect to G) is finite, we
say C_{n,n+i}(p) is non thickly covered by \tilde{R}-\Omega . Further if there exists a
sequence n_{1} , n_{2}, \cdots ; \lim_{i}n_{i}=\infty such that C_{n_{i},n_{i+1}}(p) is non thickly covered,

we say p is non thickly covered by \tilde{R}-\Omega }.
REMARK. Let \tilde{R} be a covering surface of almost finitely sheeted over

R, then it is easy to see every point of \overline{R} is non thickly covered by \tilde{R} , in
this case f2 is empty.

THEOREM 6. Let \tilde{R}(\not\in 0_{g}) and R the Riemann surface and w=f(z) be
an analytic function from \tilde{R} into R. Suppose on \overline{R} a D-disjoint metric is
defifined. Let \{\Omega_{n}\} be a decreasing sequence of subdomains such that

\omega(\Omega_{n}\cap(\tilde{R}-\tilde{R}_{0}),\tilde{R}-R_{0})\downarrow 0 as narrow\infty
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and every point p of \overline{R} is non thickly covered by \tilde{R}-\Omega_{n} for every n. Then
f(z) has N-fifine limits at \Delta of \tilde{R} except a set of capacity zero.

PROOF. We consider the behaviour of f(z) near \Delta of \tilde{R} . We can
suppose without loss of generality that \Omega_{n} is contained in \tilde{R}-\tilde{R}_{3} . We show
f(z) has finite limit f^{N}(p) in \Delta_{1}(\tilde{R}-R_{0}-\Omega_{n}) except a set of capacity zero.

Assume dia A^{N}(f(p))>0 at a set of positive capacity in \Delta_{1}(\tilde{R}-\tilde{R}_{0}-\Omega_{n}) ,
then we can find a closed set F in \Delta_{1}(\overline{R}-\overline{R}_{0}-\Omega_{n}) of positive capacity :

\omega(F, z,\tilde{R}-\tilde{R}_{0})>0 and dia AN (f(p))>\delta : p\in F. Fix m_{0} : 2^{m_{0}}> \frac{2}{\delta} . Since for

any point p\in\overline{R} , there exists a ring C_{m(p),m(p)+j(p)}(p) : m(p)\geqq m_{0} such that
C_{m(p),m(p)+j(p)}(p) is non thickly covered by \tilde{R}-\Omega_{n} . Then we can find a finite

number of C_{m(p_{i}),m(p_{i})+j(p_{j})}(p_{i}\underline{)} such that [mathring]_{\sum}C_{m(p_{i})+j(p_{i})}i(p_{i})\supset\overline{R} . Now F\subset\Delta_{1}(\tilde{R}

-\tilde{R}_{0}-\Omega_{n}) and \omega(F, z,\tilde{R}-\tilde{R})>0 . By Lemma 6 there exists a domain \Omega

in \tilde{R}-\tilde{R}_{0}-\Omega_{n} such that \omega(F\cap\Omega, z,\tilde{R}-\tilde{R}_{0}-\overline{\Omega}_{n})>0 and a Dirichlet function

V_{1}(z) in \tilde{R} with V_{1}(z)=1 on \partial\Omega , V_{1}(z)=0 on \partial\tilde{R}_{0}+\partial\Omega_{n} . Now \sum\omega(F\cap\Omega\cap f^{-1}i_{v}

(C_{m(p_{i})+j(p_{i})}(p_{i}), z,\tilde{R}-\tilde{R}_{0}-\overline{\Omega}_{n})\geqq\omega(F\cap\Omega, z,\tilde{R}-\overline{\tilde{R}}_{0}-\Omega_{n})>0 . There exists at
least one point p such that

\omega (F\cap\Omega\cap f^{-1} (C_{m(p)+j(p)}(p) , z,\tilde{R}-\overline{\tilde{R}}_{0},-\overline{\Omega}_{n}) )>0 . (11)

Let m(p)=m. Since C_{m,m+j(p)}(p) is non thickly covered by \tilde{R}-\tilde{R}_{0}-\Omega_{n} , there
exists a continuous function U(z) in \tilde{R}-\Omega_{n} such that U(z)=0 on f^{-1}(\partial C_{m}(p)-

\Omega_{n}),=1 on f^{-1}(\partial C_{m+j(p)}(p))-\Omega_{n} and D(U(z))<\infty . Let V(z)= \min(V_{1}(z), U(z)) .
Then V(z)=1 on \{\Omega\cap f^{-1}(C_{m+j(p)}(p))\}, =0 on \Omega_{n}+R-f^{-1}(C_{m(p)})+R_{0} and
D(V(z))<\infty . Hence \omega(f^{-1}(C_{m+j(p)}(p)\cap\Omega, z,f^{-1}(C_{m}(p)\cap(\tilde{R}-\tilde{R}_{0}-\Omega_{n})) can be
considered. By the Dirichlet principle and by (11)

D(\omega(F\cap f^{-1}C_{m+j(p)}(p))\cap\Omega, z, (\tilde{R}-\tilde{R}_{0}-\overline{\Omega}_{n})\cap f^{-1}(C_{m}(p)))

\geqq D(\omega(F\cap f^{-1}(C_{m+j(p)}(p)\cap\Omega, z,\tilde{R}-\tilde{R}_{0}-\Omega_{n})))>0 .

Hence there exists at least one point p such that

\{(\tilde{R}-\tilde{R}_{0}-\overline{\Omega}_{n})\cap f^{-1}(C_{m}(p))\}^{N}\ni p:p\in F

Hence there exists at least one component of f^{-1}(C_{m}(p)) which is a fine

neighbourhood of p and dia A(f(p)) \leqq\frac{1}{2^{m_{0}}}<\frac{\delta}{2} . This contradicts p\in F.

Hence f(p) exists on \Delta_{1}(\tilde{R}-\tilde{R}_{0}-\overline{\Omega}_{n}) except a set of capacity zero. Next by
Lemma 4, similarly as Theorem 4, f^{v}\perp(p) exists on \Delta of \tilde{R} except a set of
capacity zero and we have Theorem 6.
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REMARK. In case we consider fine limits of f(z) relative to a D-disjoint
metric (or N-Martin’s topology), Beurling’s theorem holds under weaker con-
dition than almost finitely sheeted. Especially in case \tilde{R} is a unit circle :
|z|<1 and R is a Riemann sphere, every point e^{i\theta} is N-minimal and N-
Martin’s topology is compactible to Euclidean metric on |z|=1 . Then by
Lindel\"of’s theorem and by Lemma 1, 4) we have the following.

THEOREM 7. Let w=f(z) be analytic function from |z|<1 into a w-
Riemann sphere R. If w=f(z) does not take 3 points near |z|=1 and every
point of R is non thickly covered by \tilde{R} . Then w=f(z) has angular limits
on |z|=1 except a set of capacity zero.
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