On Fatou's and Beurling's Theorems

By Zenjiro Kuramochi
(Received December 2, 1981)

The purpose of the present paper is to give simple proofs for well known Fatou and Beurling's theorems for harmonic functions and to ameliorate the Beurling's theorem for analytic functions given in a previous paper ${ }^{11}$. Let R be a Riemann surface $\notin 0_{g}$ and $\left\{R_{n}\right\}: n=0,1, \cdots$ be its exhaustion. We suppose α-Martin's topology is defined on $\bar{R}=R+\Delta^{\alpha}$, where $\alpha=K$ or N.

Let $U(z): z \in R$ be a harmonic function, i. e. $U(z)$ is a mapping from R into a real axis. Let Δ_{1}^{α} be the set of α-minimal points ${ }^{2)}$ of Δ^{α}. The fine cluster set $\stackrel{\alpha}{A}(U(p))$ at $p \in \Delta_{1}^{\alpha}$ is defined as

$$
\stackrel{\alpha}{A}(U(p))=\bigcap_{\tau} \overline{U\left(G_{\tau}\right)}: \underset{\tau}{G} \stackrel{\alpha}{\ni} p,
$$

where G_{τ} is a fine neighbourhood of p with respect to α-Martin's topology. If $\stackrel{\alpha}{A}(U(p))$ is a single point, we say $U(z)$ has a fine limit denoted by $\stackrel{\alpha}{U}^{\alpha}(p)$. Then the following Lemma is well known.

Lemma 1. ${ }^{1)}$ Let G be an open set in R and $v(p)$ be a neighbourhood of p relative to α-Martin's topology. Then

1) Let $p \in \Delta_{1}^{\alpha}$. Then a) $v(p) \stackrel{\alpha}{\ni} p$. b) There exists only one component G^{\prime} of G such that $G^{\prime} \stackrel{\alpha}{\ni} p$ and $G \stackrel{\alpha}{\ni} p$ implies $(C G)^{0} \stackrel{\alpha}{\ni} p$. If $G_{i} \stackrel{\alpha}{\ni} p(i=1,2, \cdots$, $\left.i_{0}\right),\left(\bigcap_{i=1}^{i_{0}} G_{i}\right) \stackrel{\alpha}{\ni} p$. Hence $\stackrel{\alpha}{A}(U(p))$ is a point or continuum.
2) a) Let $G^{\prime} \subset G \subset R G^{\prime}$ and G be open sets and let F be a closed set in Δ_{1}^{K}. If the H. M. (harmonic measure) of $F \cap \bar{G}^{\prime}$ relative to $G>0$:

$$
w\left(F \cap G^{\prime}, z, G\right)>0,{ }^{(2)}
$$

then there exists at least a point $p \in F \cap \Delta_{1}^{K}$ such that $G \stackrel{K}{\ni} p$. b) Let $G^{\prime} \subset G$ and let F be a closed set in Δ_{1}^{N}. If the C. P. (capacity) $F \cap G^{\prime}$ relative to $G>0$: i.e. $\omega\left(F \cap G^{\prime}, z, G\right)>0$, then there exists at least a point $p \in F \cap \Delta_{1}^{N}$ such that $G \stackrel{N}{\ni} p$.

If an open set (not necessarily connected) G has ∂G consisting of at most enumerably infinite number of analytic curves clustering nowhere in R, we call G a subdomain of R. Let G be a subdomain. Then $K(z, p)$
$(N(z, p))$ is lower semicontinuous with respect to $p \in \bar{R}$ and $\left\{p \stackrel{\alpha}{\in} \Delta_{1}^{\alpha}: G \stackrel{\alpha}{\ni} p\right\}$ is a $G_{\dot{\delta}}$ set. We suppose E (on the real axis) is compact and $U(z) \in E$. Let $I_{i}^{n}(i=1,2, \cdots, i(n)<\infty)$ be a system of intervals on the real axis such that any closed interval with length $<\frac{1}{3 n}$ is contained in some I_{i}^{n} and that any interval of length $>\frac{3}{n}$ contains at least one I_{i}^{n}. Let $T_{i}^{n}=\left\{p \in \Delta_{1}^{\alpha}: U^{-1}\left(I_{i}^{n}\right)\right.$ $\stackrel{\alpha}{\nexists} p\}, S=\left\{p \in \Delta_{1}^{\alpha}: \operatorname{dia} \stackrel{\alpha}{A}(U(p))>0\right\}$.
Then

$$
S=\bigcap_{n=1}^{\infty} \bigcap_{i=1}^{i(n)} T_{i}^{n}
$$

and S is a $G_{\delta \sigma}$ set, where dia $\stackrel{\alpha}{A}(U(p))$ is the diameter of $\stackrel{\alpha}{A}(U(p))$.
3) If $\operatorname{dia} A(U(p))>\delta_{0}$, any component of $U^{-1}\left(I_{0}\right) \stackrel{\alpha}{Ð} p$ for $\delta<\delta_{0}$ where $I_{\delta}=(\delta, \infty)$.
4) If $\stackrel{\alpha}{U}(p)$ exists, there exists a path L-tending to p such that $U(z) \rightarrow \stackrel{\alpha}{U}(p)$ as $z \rightarrow p$ along L.

1. Fatou's theorem for bounded harmonic functions.

Theorem 1. Let $U(z)$ be a bounded harmonic function. Then $U(z)$ has fine limit $U^{K}(p): p \in \Delta^{K}$ except at most a set of harmonic measure zero.

Proof. Since H. M. of $\Delta-\Delta_{1}^{K}$ is zero, it is sufficient to show that $U^{K}(p)$ exists a.e. on Δ_{1}^{K}. Without loss of generality, we can suppose $\inf U(z)=0$, $\sup U(z)=1$. Let $I_{i}^{n}=\{u:(i-1) \delta<u<(i+1) \delta\}, \tilde{I}_{i}^{n}=\{u:(i-2) \delta<u<(i+2) \delta\}$, $i=1,2, \cdots, n, \delta=\frac{1}{n}$, and $G_{i}^{n}=\left\{z \in R ; U(z) \in I_{i}^{n}\right\}, \tilde{G}_{i}^{n}=\left\{z \in R, U(z) \in \tilde{I}_{i}^{n}\right\}$. Then G_{i}^{n} and \tilde{G}_{i}^{n} are subdomains. Put $T_{i}^{n}=\left\{p \in \Delta_{1}^{K}, p \stackrel{K}{\oplus} G_{i}^{n}\right\}$ and $S=\bigcap_{n=1}^{\infty} \bigcap_{i=1}^{i(n)} T_{i}^{n}$. Then the set of points p where $U^{K}(p)$ does not exist is contained in S. We show S is a set of H. M. zero. Assume S is of positive H. M. Then we can find a number n and a closed set F of positive H. M. in $\bigcap_{i=1}^{n-1} T_{i}^{n}$. Then $\operatorname{dia} A(U(p)) \geqq \frac{1}{n}$ for any point $p \in F$. Let $m \geqq 5 n$. Since $\bigcup_{i=1}^{m-1} G_{i}^{m}=R$,

$$
\sum_{i=1}^{m-1} w\left(F \cap G_{i}^{m}, z, R\right) \geqq w\left(F \cap \sum G_{i}^{m}, z, R\right)=w(F, z, R)>0
$$

Hence the exists at least one i such that $w\left(F \cap G_{i}^{m}, z, R\right)>0$, where $1 \leqq i$ $\leqq m^{-1}$. Let $s(z)=U(z)$ for $U(z) \leqq(i-1) \delta^{\prime}: \delta^{\prime}=\frac{1}{m}, s(z)=(i-1) \delta^{\prime}$ for $(i-1) \delta^{\prime}$
$<U(z) \leqq(i+1) \delta^{\prime}$ and $s(z)=(i-1) \delta^{\prime}-\left\{U(z)-(i+1) \delta^{\prime}\right\}$ for $U(z)>(i+1) \delta^{\prime}$. Then $s(z)$ is an S. P. H. (superharmonic function). Let $\alpha=\min \left(0,2 i \delta^{\prime}-1\right)$ and

$$
t(z)=\frac{s(z)-\alpha}{(i-1) \delta^{\prime}-\alpha} .
$$

Then $t(z)$ is a positive S. P. H. such that $t(z)=1$ on \bar{G}_{i}^{n} and $t(z)=\frac{(i-2) \delta^{\prime}-\alpha}{(i-1) \bar{\delta}^{\prime}-\alpha}$ $=\varepsilon_{0}<1$ on $\partial \widetilde{G}_{1}^{m}$. Since $w\left(G_{i}^{m}, z, R\right)$ is the least positive S. P. H. not smaller than 1 on $\bar{G}_{i}^{m}, w\left(F \cap G_{i}^{m}, z, R\right) \leqq \varepsilon_{0}$ on $\partial \tilde{G}_{i}^{m}$. This implies

$$
w\left(F \cap G_{i}^{m}, z, R\right)-w_{c} \tilde{G}_{i}^{m}\left(F \cap G_{i}^{m}, z, R\right)=w\left(F \cap G_{i}^{m}, z, \tilde{G}_{i}^{m}\right)>0 .
$$

By Lemma 1 there exists at least one point p in F such that $p \stackrel{K}{\in} \widehat{G}_{i}^{m}$. Next by $\sup _{z \in \tilde{\sigma}_{i}^{n}} U(z)-\inf _{z \in \tilde{\sigma}_{i}^{n}} U(z) \leqq \frac{4}{m}$ dia $A(U(p))<\frac{4}{m}<\frac{1}{n}$. This contradicts $p \in F$. Thus we have the theorem.

Lemma 2. Let $U(z)$ be a bounded harmonic function. If $U^{K}(z)=C$ (const) a.e. on Δ^{K}, then $U(z)=C$.

Proof. Suppose $U(z) \neq$ const. Then we can suppose $\inf U(z)=0$ and $\sup U(z)=1$. Let $G_{\delta}=\{z: U(z)>\delta\}: 0<\delta<1$. By the maximum principle

$$
U(z) \leqq w\left(G_{\delta} \cap\left(R-R_{n}\right), z, R\right)+\delta .
$$

Let $n \rightarrow \infty$, then

$$
U(z) \leqq w\left(G_{\delta} \cap \Delta, z, R\right)+\delta .
$$

If $w\left(G_{\partial} \cap \Delta, z, R\right)=0, U(z) \leqq \delta<1$. This is a contradiction. Hence

$$
w^{v}\left(G_{\delta} \cap \Delta, z, R\right)>0 \quad \text { for } 0<\delta<1 .
$$

Put $s(z)=\min \left(1, \frac{U(z)}{\delta}\right)$. Then $s(z)$ is an S. P. H. and $=1$ on $\bar{G}_{\dot{\delta}}, s(z)=\frac{5}{6}$ on $\partial G_{\frac{\delta_{\delta}}{}}$. By $w\left(G_{\delta} \cap \Delta, z, R\right) \leqq w\left(G_{\dot{\delta}}, z, R\right) \leqq s(z) \leqq \frac{5}{6}$ on $\partial G_{\frac{5}{\delta}}$,

$$
w\left(G_{\Delta} \cap \Delta, z, R\right)-W_{c \tilde{\sigma}}\left(G_{\delta} \cap \Delta, z, R\right)=w\left(G_{\delta} \cap \Delta, z, \tilde{G}\right)>0,
$$

where $G_{5_{8}}=\tilde{G}$.
Now $w\left(G_{\delta} \cap \Delta, z, R\right)$ is represented by a positive canonical mass μ on $\bar{G}_{\delta} \cap \Lambda_{1}$ such that $w\left(G_{o} \cap \Delta, z, R\right)=\int K(z, p) d \mu(p) \leqq 1$.
By $w_{T \tilde{G}}\left(G_{\dot{\jmath}} \cap \Delta, z, R\right)=\int K_{C \tilde{G}}(z, p) d \mu(p)$, we have

$$
1 \geqq \int\left(K(z, p)-K_{c \tilde{q}}(z, p)\right) d \mu(p)>0 .
$$

This implies that there exists a positive restriction μ^{\prime} of μ on $\Delta_{1}(\tilde{G})=$
$\left\{p \in \Delta_{1}^{K}: p{ }^{K} \tilde{G}\right\}$ and H. M. of $\Delta_{1}(\widetilde{G})$ is positive. Suppose $U^{K}(p): p \in \Delta_{1}(\tilde{G})$ exists, then evidently $U^{K}(p) \geqq \frac{5 \delta}{6}$ by $p \stackrel{K}{\in} \tilde{G}$. Hence by Theorem 1, $U^{K}(p) \geqq$ $\frac{5 \delta}{6}$ a. e. on $\Delta_{1}(\tilde{G})$ and H. M. of $\left\{p ; U^{K}(p) \geqq \frac{5 \delta}{6}\right\}$ is positive. Put $\delta=\frac{2}{3}$. Then H. M. of $\left\{p ; U^{K}(p) \geqq \frac{5}{9}\right\}$ is positive. Consider $1-U(z)$. Then H. M. of $\left\{p: U^{K}(p) \leqq \frac{4}{9}\right\}$ is positive. This contradicts $U^{K}(p)=C$ a. e. on Δ and we have the Lemma.

Lemma 3. Let G be a subdomian. Let $U(z)$ be an S.P.H. such that $U(z)=w(\partial G, z, R-\bar{G})(H$. M. of ∂G relative to $R-\bar{G})$ in $R-\bar{G}$ and $U(z)=1$ on G. Then $U^{K}(p)=0$ a.e. on $\Delta_{1}(R-\bar{G})$.

Proof. Assume $U(z)$ has not $U^{K}(p)$ at a set of positive H. M. in $\Delta_{1}(R-\bar{G})$. Then we can find a closed set F in $\Delta_{1}(R-\bar{G})$ such that dia $A(U(p))>\delta>0$ for any point p in F and $w(F, z, R)>0$. Let μ be the canonical distribution of $w(F, z, R)$. Then

$$
\begin{align*}
w(F, z, R-\bar{G}) & =w(F, z, R)-w_{\bar{a}}(F, z, R) \\
& =\int\left(K(z, p)-K_{\bar{G}}(z, p)\right) d \mu(p)>0 \tag{1}
\end{align*}
$$

by $K_{\bar{G}}(z, p)<K(z, p): p \in F \subset D_{1}(R-\bar{G})$.
Let $\varepsilon<\frac{\delta}{6}$ and $G_{i}=\{z \in R-\bar{G}:(i-1) \varepsilon<U(z)<(i+1) \varepsilon\}$ and

$$
\tilde{G}_{i}=\{z \in R-\bar{G}:(i-2) \varepsilon<U(z)<(i+2) \varepsilon\}, \quad(i=1,2, \cdots, n) .
$$

Consider $w\left(F \cap G_{i}, z, R-\bar{G}\right)$. Then similarly as the proof of Theorem 1 we can find a domain \tilde{G}_{i} such that $w\left(F \cap G_{i}, \boldsymbol{z}, \tilde{G}_{i}\right)>0$ and a point p in F such that $p \stackrel{K}{\in} \tilde{G}_{i}$. This implies dia $A(U(p))<4 \varepsilon<\frac{2}{3} \delta$. This contradicts $p \in F$. Hence $U^{K}(p)$ exists a. e. on $\Delta(R-\bar{G})$.

Next we show $U^{K}(p)=0$ a. e. on $\Delta_{1}(R-\bar{G})$. Assume there exists a closed set F in $\Delta_{1}(R-\bar{G})$ such that $U^{K}(p)>\delta>0$ for any $p \in F$ and $w(F, z, R)>0$. Then $G_{\delta}=\left\{z: U(z)>\frac{\delta}{2}\right\} \stackrel{K}{\ni} p$ for any $p \in F . \quad$ By $G_{\dot{\delta}} \stackrel{K}{\ni} p\left(\right.$ and $\left.\left(V_{n}(p) \cap G_{j}\right) \stackrel{K}{\ni} p\right)$, $K(z, p)=K_{\bar{G}_{\dot{\sigma}} \cap F}(z, p)$, whence

$$
\begin{aligned}
0<w(F, z, R) & =\int K(z, p) d \mu(p)=\int K_{\vec{\sigma}_{\dot{\partial}} \cap F}(z, p) d \mu(p) \\
& =w_{\vec{G}_{\dot{\delta}} \cap F}(F, z, R) \leqq w\left(G_{\delta \cap} F, z, R\right) \\
& \leqq w(F, z, R) . \quad \text { Hence } w\left(G_{\dot{\delta}} \cap F, z, R\right)>0
\end{aligned}
$$

Consider $G_{\diamond} \cap F$ instead of F in (1). Then we have similarly as above by $\left(F \cap G_{\partial}\right) \subset \Delta_{1}(R-\bar{G})$

$$
\begin{equation*}
w\left(F \cap G_{s}, z, R-\bar{G}\right)>0 . \tag{2}
\end{equation*}
$$

By $U(z) \geqq \frac{\delta}{2}$ on G_{δ} and by the definition of $w\left(F \cap G_{\delta}, z, \mathrm{R}-\bar{G}\right)$

$$
(\widetilde{w}(z)=) U(z)-\frac{\delta}{2} w\left(F \cap G_{\dot{\delta}}, z, R-\bar{G}\right)>0
$$

and $\widetilde{\sim}(z)=1$ on ∂G. Hence by the definition of $U(z), \widetilde{w}(z) \geqq U(z)$ and $w\left(F \cap G_{\dot{b}}, z, R-\bar{G}\right)=0$. This contradicts (2). Thus we have the lemma.

Lemma 4. Let G be a subdomain and $\Omega=R-\bar{G}$. Then

$$
\text { H. M. of }(\bar{\Omega} \cap \Delta)-\Lambda_{1}(\bar{\Omega}) \leqq w(G, z, R) \text {. }
$$

Proof. Since G is a subdomain $w(G, z, R)=w(\bar{G}, z, R)$. Let F bea closed set in $(\bar{\Omega} \cap \Delta)-\Delta_{1}(\Omega)$ such that $w(F, z, R)>0$ and μ be its canonical distribution. Clearly $\mu=0$ on $\mathrm{C} F$. $p \in F$ implies $p \notin \Omega$ and $K(z, p)=K_{\text {Co }}(z, p)=K_{\bar{\theta}}(z, p)=$ $K(z, p)$. Hence by $w(F, z, R)=\int K(z, p) d \mu(p), w(F, z, R)=\int K_{\bar{q}}(z, p) d \mu(p)=$ $w_{\bar{G}}(F, z, R) \leqq 1_{\bar{G}}=w(\bar{G}, z, R)=w(G, z, R)$. Now F is arbitrarily. Hence we have the lemma.

Theorem 2. Let $U(z)$ be a positive harmonic function. Then $U(z)$ is divided into two parts: quasibounded part $V(z)$ and a singular part $S(z)$ and $U(z)$ has fine limits a.e. on Δ such that $U^{K}(p)=V^{K}(p)$ a.e. on Δ.

Proof. Let $G_{M}=\{z \in R: U(z)>M\}$. Then by $U(z)<\infty$, we have at once $w\left(G_{M}, z, R\right) \downarrow 0$ as $M \rightarrow \infty$. Let $U_{M, n, n+i}(z)$ be a harmonic function in $R_{n+i}-\left(G_{\mathcal{M}} \cap\left(R-R_{n}\right)\right)$ such that $U_{M, n, n+i}(z)=M$ on $\left(\partial R_{n} \cap G_{M}\right)+\partial G_{M} \cap\left(R_{n+i}-\right.$ $\left.R_{n}\right),=U(z)$ on $\partial R_{n+i}-G_{M}$. Then $U_{M, n, n+i+1}(z) \leqq U(z)=U_{M, n, n+i}(z)$ on $\partial R_{n+i}-$ G_{M} implies $U_{M, n, n+i}(z) \downarrow U_{M, n}(z)$ as $i \rightarrow \infty$. Similarly we have $U_{M, n}(z) \downarrow U_{M}(z)$ $\leqq U(z)$ as $n \rightarrow \infty$ and

$$
U_{M}(z) \nearrow V(z) \leqq U(z) \text { as } M \rightarrow \infty,
$$

where $V(z)$ is quasibounded.
Since $U_{M}(z)$ is a bounded harmonic function, $U_{M}^{K}(p)$ exists a. e. on Δ. We denote by E_{M} the set in $\Delta_{1}\left(R-\bar{G}_{M}\right)$ where both $w^{K}\left(G_{M}, z, R\right)(=0)$ and $U^{K}(z)$ exists. Then by Lemma 3, H. M. of $\Delta_{1}\left(R-\bar{G}_{M}\right)-E_{M}=0$. Since the intersection of two fine neighbourhoods is also a fine neighbourhood and since $0 \leqq U(z)-U_{M}(z) \leqq M r v\left(G_{M}, z, R\right)$ in $R-G_{M}, U^{K}(p)$ exists on E_{M} and $U^{K}(p)=U_{M}^{K}(p)$ on E_{M}. $U(p) \geqq V(p) \geqq U_{M}(p)$ on E_{M}. Thus $V^{K}(p)=U_{M}^{K}(p)=$ $U^{K}(p)$ on $\bigcup_{M}^{\infty} E_{M}$.

Let $\Omega_{M}=C G_{M}$. Then by Lemma 4

$$
\begin{equation*}
\text { H. M. of } \Delta \cap \Omega_{M}-E_{M} \leqq w\left(G_{M}, z, R\right) \downarrow 0 \text { as } M \rightarrow \infty \tag{3}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
w\left(\Omega_{M} \cap \Delta, z, R\right) \geqq 1-w\left(G_{M} \cap \Delta, z, R\right) \geqq 1-w\left(G_{M}, z, R\right) \tag{4}
\end{equation*}
$$

$w\left(\Omega_{M} \cap \Delta, z, R\right) \rightarrow 1$ as $M \rightarrow \infty$ and by (3) $w\left(E_{M}, z, R\right) \rightarrow 1$ as $M \rightarrow \infty$ and $V^{K}(p)=U^{K}(p)$ a. e. on Δ and $U^{K}(p)$ exists a. e. on Δ.

Put $S_{M}(z)=U(z)-U_{M}(z)$. Then $S_{M}(z) \downarrow S(z)$ and $S(z)$ is harmonic. Let $t(z)$ be a bounded positive harmonic function $\leqq S(z)$. Then $t^{K}(p)=0$ a. e. on Δ. By Lemma 2 we have $t(z)=0$. Hence $S(z)$ is singular. The uniqueness $V(z)$ and $S(z)$ is well known.

Remark. If R is a unit circle $|z|<1, e^{i \theta}$ is a minimal point. Let $V(z)$ be the conjugate harmonic function of $U(z)$. Put $g(z)=\frac{1}{U(z)+i V(z)}$. Then $\operatorname{Re} g(z)$ and $\operatorname{Im} g(z)$ are bounded. There exists a set E on $|\boldsymbol{z}|=1$ such that mes $E=2 \pi$ and both of them have fine limits and there exists a curve $L\left(e^{i \theta}\right)$ terminating at $e^{i \theta}$ along which they converge to the fine limits. Hence by Lindelöf's theorem $g(\boldsymbol{z})$ has angular limits at $e^{i \theta}$ in E. This implies $U(\boldsymbol{z})$ has angular limits a.e. on $|z|=1$.

2. Beurling's theorem for harmonic functions.

Let $U(z)$ be a Dirichlet bounded harmonic function. Then $V(z)=$ $\frac{1}{2}\left(\frac{U(z)}{1+|U(z)|}\right)+\frac{1}{2}$ is Dirichlet bounded and $0<V(z)<1$. In fact, $\left|\frac{\partial}{\partial x} V(z)\right|$ $\leqq \frac{1}{2}\left(\frac{\left|\frac{\partial}{\partial x} U\right|}{1+|U|}+\frac{|U| \frac{\partial}{\partial x} U}{(1+|U|)^{2}}\right) \leqq\left|\frac{\partial}{\partial x} U\right|$ and similarly $\left|\frac{\partial}{\partial y} V\right| \leqq\left|\frac{\partial}{\partial y} U\right|$ and $D(V(z))$ $\leqq D(U(z))$.

Theorem 3. Let $U(\boldsymbol{z})$ be a Dirichlet bounded harmonic function in R. Then $U(z)$ has N-fine limt $U^{N}(p)$ on Δ^{N} except at most a set of capacity zero.

Proof. It is sufficient to show that the assertion holds for $V(z)$ instead of $U(z)$. Let $G_{i}^{n}=\{z:(i-1) \delta<V(z)<(i+1) \delta\}: \delta=\frac{1}{n}$. Put $T_{i}^{n}=\left\{p \in \Delta_{1}^{N}\right.$: $\left.p \stackrel{N}{\notin} G_{i}^{n}\right\}$ and $S=\bigcup_{i=1}^{\infty} \bigcap_{i}^{n-1} T_{i}^{n}$. Then S is the set of point p such that dia $A(V(p))$ >0. Since $\Delta^{N}-\Delta_{1}^{N}$ is of capacity zero, we shall show S is of capacity zero. If it were not so, we can find a number δ and a closed set F in Δ_{1}^{N} such that $\omega\left(F, z, R-R_{0}\right)>0$ dia $A(V(p))>\delta>0$ for any $p \in F$, where $\left\{R_{n}\right\}$ is an exhaus-
tion of R and R_{0} is a compact disk. Let $m>\frac{\delta}{8}$. Then by $\omega\left(F, z, R-R_{0}\right)$ $\leqq \sum_{i=1}^{m} \omega\left(F \cap G_{i}^{m}, z, R-R_{0}\right)$ there exists a number i such that

$$
\omega\left(F \cap G_{i}^{m}, z, R-R_{0}\right)>0
$$

Let $s(z)=V(z)$ for $V(z) \leqq(i-1) \delta^{\prime}: \delta^{\prime}=\frac{1}{m}, s(z)=(i-1) \delta^{\prime}$ for $(i-1) \delta^{\prime} \leqq$ $V(z)<(i+1) \delta^{\prime}$ and $s(z)=(i-1) \delta^{\prime}-\left\{V(z)-\left((i+1) \delta^{\prime}\right\}\right.$ for $V(z) \geqq(i+1) \delta^{\prime}$. Then $t(z)=\frac{s(z)-(i-2) \delta^{\prime}}{\delta^{\prime}}$ satisfies $t(z)=1$ on $G_{i}^{m},=0$ on $\partial \widetilde{G}_{i}^{m}$ and $D(t(z))<\infty$, where $\tilde{G}_{i}^{m}=\left\{z:(i-2) \delta^{\prime}<V(z)<(i+2) \delta^{\prime}\right\}$. Since R_{0} and R_{1} are compact and G_{i}^{m} and \widetilde{G}_{i}^{m} are subdomains, we can easily contruct a Dirichlet function $\alpha(z)$ in R from $t(z)$ such that $\alpha(z)=1$ on $G_{i}^{\prime m},=0 \partial \mathcal{G}_{i}^{\prime m}$ and

$$
\begin{equation*}
D(\alpha(z))<\infty \tag{5}
\end{equation*}
$$

where $G_{i}^{\prime m}=\left(R-R_{1}\right) \cap G_{i}^{m}$ and $\tilde{G}_{i}^{\prime m}=\left(R-R_{0}\right) \cap \tilde{G}_{i}^{m}$.
Since $F \subset \Delta, \omega\left(F \cap G_{i}^{m}, z, R-R_{0}\right)=\omega\left(F \cap G_{i}^{\prime m}, z, R-R_{0}\right) . \quad$ By (5) $\omega\left(\mathrm{G}_{i}^{\prime m}, z, \mathcal{G}_{i}^{\prime m}\right)$ can be defined and by the Dirichlet principle

$$
\begin{gathered}
D\left(\omega\left(G_{i}^{\prime m}, z, \tilde{G}_{i}^{\prime m}\right)\right) \leqq D(\alpha(z))<\infty \\
0<D\left(\omega\left(G_{i}^{\prime m} \cap F, z, R-R_{0}\right)\right) \leqq D\left(\omega\left(G_{i}^{\prime m} \cap F, z, \widetilde{G}_{i}^{\prime m}\right)\right) \leqq D\left(\omega\left(G_{i}^{\prime m}, z, \widetilde{G}_{i}^{\prime m}\right)\right)
\end{gathered}
$$

By the maximum principle

$$
\omega\left(G_{i}^{\prime m} \cap F, z, R-R_{0}\right) \geqq \omega\left(G_{i}^{\prime m} \cap F, z, \tilde{G}_{i}^{\prime m}\right)>0
$$

Hence by Lemma 1 there exists at least a point $p \in F$ such that $p \stackrel{N}{\in} \widetilde{G}_{i}^{\prime m}$. Now dia $V(p) \leqq \operatorname{dia} V\left(\widetilde{G}_{i}^{\prime m}\right)<\frac{4}{m}<\delta$. This contradict $p \in F$. Hence we hve the theorem.

Remark. If R is a unit circle : $|\boldsymbol{z}|<1, e^{i \theta}$ is N-minimal. Let $V(\boldsymbol{z})$ be a conjugage harmonic function of $U(z)$. Then there exists a set E on $|z|=1$ such that both $U(\boldsymbol{z})$ and $V(\boldsymbol{z})$ have fine limits on $E, C E$ is a set of capacity zero. We can find a path $L\left(e^{i \theta}\right)$ tending to $e^{i \theta}$ for any $e^{i \theta} \in E$ along which both $U(z)$ and $V(z)$ converge. The area of $|z|<1$ by $f(z)=U(z)+i V(z)$ is finite and there exist 3 points not taken by $f(z)$ near $|z|=1$. Hence by Lindelöf's theorem we have the following.

Theorem. If $D(U(z))<\infty$ in $|z|<1$. Then $U(z)$ has angular limits on $|z|=1$ except a set of capacity zero.

Lemma 5.1) Let G be a subdomain in $R-R_{0}$ and $\Omega_{1}=\left\{z \in R-R_{0}\right.$:
$\left.\omega\left(G, z, R-R_{0}\right)>\frac{1}{3}\right\}$ and $\Omega_{2}=\left\{z \in R-R_{0}: \omega\left(G, z, R-R_{0}\right)<\frac{2}{3}\right\}$. Then $\left(\Lambda_{1}-\right.$ $\left.\Delta_{1}\left(\Omega_{1}\right)\right) \cap\left(\Delta_{1}-\Delta_{1}\left(\Omega_{2}\right)\right)$ is a set of capacity zero, where $\Delta_{1}\left(\Omega_{i}\right)=\left\{p{ }^{N} \Delta_{1}^{N}: \Omega_{i} \ni p\right\}:$ $i=1,2$.
2) Let G_{M} be a subdomain in $R-R_{0}$ such that G_{M} decreases as $M \rightarrow \infty$ and $\omega\left(G_{M}, z, R-R_{0}\right) \downarrow 0$ as $M \rightarrow \infty$. Then the capacity of $\left(\Lambda_{1}-\Lambda_{1}\left(\Omega^{M}\right)\right) \downarrow 0$ as $M \rightarrow \infty$, where $\Omega^{M}=\left\{z \in R-R_{0}: \omega\left(G^{M}, z, R-R_{0}\right)<\frac{2}{3}\right\}$.

Proof. Assume there exists a closed set F in $\left\{\left(\Lambda_{1}-\Lambda_{1}\left(\Omega_{1}\right)\right)\right\} \cap\left\{\Lambda_{1}-\Lambda_{1}\left(\Omega_{2}\right)\right\}$ such that $\omega\left(F, z, R-R_{0}\right)>0$. Put $\omega(G, z)=\omega\left(G, z, R-R_{0}\right), \Omega_{2}=\left\{z \in R-R_{0}\right.$: $\left.\omega(G, z)<\frac{2}{3}-\varepsilon\right\}$ and $\Omega_{\mathrm{i}}=\left\{z: \omega(G, z)>\frac{1}{3}+\varepsilon\right\}: 0 \leqq \varepsilon<\frac{1}{6}$ such that $C_{1}=\partial \Omega_{\mathrm{i}}$ and $C_{2}=\partial \Omega_{2}$ are regular level curves ${ }^{2}$ of $\omega(G, z)$, i. e.

$$
\int_{C_{1}} \frac{\partial}{\partial n} \omega(G, z) d s=\int_{C_{2}} \frac{\partial}{\partial n} \omega(G, z) d s=D(\omega(G, z)) .
$$

By $\Omega_{\mathrm{i}} \subset \Omega_{1}, F \cap \Delta_{1}\left(\Omega_{\mathrm{i}}^{\mathrm{i}}\right)=0$ and $p \notin \Delta_{1}\left(\Omega_{\mathrm{i}}^{\mathrm{i}}\right)$ for $p \in F$. Let $\omega\left(F, z, R-R_{0}\right)=U(z)$ and μ be its canonical distribution. Then $\mu=0$ on $C F$ and $N(z, p)=N_{Q a_{1}^{q}}(z, p)$ by $\stackrel{N}{\oplus} \Omega_{\mathrm{i}}$, whence

$$
U_{\partial p_{1}^{2}(z)}=U(z) .
$$

Hence $U(z)$ has minimal Dirichlet integral (M. D. I) over Ω_{i} among all functions with the same value as $U(z)$ on $\partial \Omega_{\mathrm{i}}$. Hence $U_{n}(z) \Rightarrow U(z)$, where $U_{n}(z)$ is a harmonic function in $\Omega_{\mathrm{i}} \cap R_{n}$ such that $U_{n}(z)=U(z)$ on $\partial \Omega_{\mathrm{i}} \cap R_{n}$ and $\frac{\partial}{\partial n} U_{n}(z)=0$ on $\Omega_{\mathrm{i}} \cap \partial R_{n}$ and \Rightarrow means mean convergence and convergencce. On the other hand $\omega(G, z)$ has M. D. I. over $\Omega_{2} \cap \Omega_{\mathrm{i}}$ and $\omega_{n}(z) \Rightarrow \omega(G, z)$, where $\omega_{n}(z)$ is a harmonic function in $\left(\Omega_{2}^{n} \cap \Omega_{\mathrm{i}}^{\mathrm{i}}\right) \cap R_{n}$ such that $\omega_{n}(z)=\frac{1}{3}+\varepsilon$ on $C_{1} \cap R_{n}$, $=\frac{2}{3}-\varepsilon$ on $C_{2} \cap R_{n}$ and $\frac{\partial}{\partial n} \omega_{n}(z)=0$ on $\partial R_{n} \cap\left(\Omega_{2} \cap \Omega_{\mathrm{i}}\right)$. Since $\int_{c_{1} \cap R_{n}} \frac{\partial}{\partial n} U_{n}(z) d s=\int_{\Omega_{\mathrm{i}} \cap \partial R_{n}} \frac{\partial}{\partial n} U_{n}(z) d s=0$ also $\int_{C_{2} \cap R_{n}} \frac{\partial}{\partial n} U_{n}(z) d s=0$, we have by Green's formula

$$
\int_{c_{1} \cap R_{n}} U_{n}(z) \frac{\partial}{\partial n} \omega_{n}(z) d s+\int_{c_{2} \cap R_{n}} U_{n}(z) \frac{\partial}{\partial n} \omega_{n}(z) d s=0 .
$$

By the regularity of C_{1} and C_{2} and $U_{n}(z) \rightarrow U(z)$ on $C_{1}+C_{2}$, we have by letting $n \rightarrow \infty^{2)}$

$$
\begin{equation*}
\int_{C_{1}} U(\boldsymbol{z}) \frac{\partial}{\partial n} \omega(G, z) d s+\int_{C_{2}} U(z) \frac{\partial}{\partial n} \omega(G, z) d s=0 \tag{6}
\end{equation*}
$$

By $F \cap \Delta_{1}\left(\Omega_{2}^{f}\right)=0$, we have $U_{C \Omega_{2}^{s}}(z)=U(z)$ and $U(z)$ has M. D. I. over Ω_{2}^{s} with the same value on $C_{2}+\partial R_{0}$. Let $U_{n}(z)$ be a harmonic function in $\left(R_{n}-R_{0}\right) \cap \Omega_{2}$ such that $U_{n}(z)=U(z)$ on $C_{2} \cap R_{n}+\partial R_{0}$ and $\frac{\partial}{\partial n} U_{n}(z)=0$ on $\Omega_{2} \cap \partial R_{n}$. Then $U_{n}(z) \Rightarrow U(z)$. Let $\omega_{n}(z)$ be the function as before. Apply Green's formula in $R_{n} \cap\left(\Omega_{2}^{\mathrm{f}} \cap \Omega_{\mathrm{i}}^{\mathrm{i}}\right)$. Then

$$
\begin{aligned}
& \int_{c_{1} \cap R_{n}} U_{n}(z) \frac{\partial}{\partial n} \omega_{n}(z) d s+\int_{C_{2} \cap R_{n}} U_{n}(z) \frac{\partial}{\partial n} \omega_{n}(z) d s \\
& =\left(\frac{2}{3}-\varepsilon\right) \int_{C_{2} \cap R_{n}} \frac{\partial}{\partial n} U_{n}(z) d s+\left(\frac{1}{3}+\varepsilon\right) \int_{C_{1} \cap R_{n}} \frac{\partial}{\partial n} U_{n}(z) d s .
\end{aligned}
$$

Now $\int_{C_{1} \cap R_{n}} \frac{\partial}{\partial n} U_{n}(z) d s=-\int_{R_{0}} \frac{\partial}{\partial n} U_{n}(z) d s, \int_{C_{2} \cap R_{n}} \frac{\partial}{\partial n} U_{n}(z) d s=\int_{\partial R_{0}} \frac{\partial}{\partial n} U_{n}(z) d s$ and both of them $\rightarrow \int_{n \rightarrow \infty} \frac{\partial}{\partial n} \omega(F, z) d s=D(\omega(F, z))>0$ as $n \rightarrow \infty$. Hence by letting
$n=1 R_{0}$

$$
\begin{align*}
\int_{C_{1}} U(z) & \frac{\partial}{\partial n} \omega(G, z) d s+\int_{C_{2}} U(z) \frac{\partial}{\partial n} \omega(G, z) d s \\
& =\left\{-\left(\frac{2}{3}-\varepsilon\right)+\left(\frac{1}{3}+\varepsilon\right)\right\} D(\omega(F, z))<0 \tag{7}
\end{align*}
$$

(7) contradicts (6). Hence we have (1).

Proof of (2) Let $G_{M}=G, \Omega_{1}$ and Ω_{2} be the domains defined in (1) with respect to G_{M}. Assume C. P. of $\left(\Lambda_{1}-\Lambda_{1}\left(\Omega_{2}\right)\right) \downarrow \delta>0$ as $M \rightarrow \infty$. By (1) there exists a closed set F in $\Delta_{1}\left(\Omega_{1}\right)$ such that

$$
\begin{equation*}
D\left(\omega\left(F, z, R-R_{0}\right)\right) \geqq \delta>0 \quad \text { for every } M \tag{8}
\end{equation*}
$$

Let $\omega(z)=\omega\left(F, z, R-R_{0}\right)$. Then $\omega(z)=\int N(z, p) d \mu(p)$ and by $p \in \Delta_{1}\left(\Omega_{1}\right)$, $N(z, p)=N_{\bar{a}_{1}}(z, p)$ and $\omega_{\bar{\Omega}_{1}}(z)=\omega(z)$.

$$
\begin{align*}
& \omega\left(\Omega_{1}, z, R-R_{0}\right)=1_{\bar{\Omega}_{1}} \geqq \omega_{\bar{\Omega}_{1}}(z)=\omega(z) \text { and } \\
& \quad \text { C. P. of } \Omega_{1}=D\left(\omega\left(\Omega_{1}, z, R-R_{0}\right)\right) \geqq D(\omega(z)) \geqq \delta>0 . \tag{9}
\end{align*}
$$

Since $\omega\left(\Omega_{1}, z, R-R_{0}\right)$ and $\omega\left(G, z, R-R_{0}\right)$ have M. D. I.s over $R-R_{0}-\Omega_{1}$ and $\omega\left(\Omega_{1}, z, R-R_{0}\right)=1$ and $\omega\left(G, z, R-R_{0}\right)=\frac{1}{3}+\varepsilon$ on $\partial \Omega_{1}, \omega\left(\Omega_{1}, z, R-R_{0}\right)=\frac{3}{1+3 \varepsilon}$ $\omega\left(G, z, R-R_{0}\right)$ in $R-R_{0}-\Omega_{1}$. Hence

$$
\begin{align*}
& \text { C. P. of } \Omega_{1}=\int_{\partial R_{0}} \frac{\partial}{\partial n} \omega\left(\Omega_{1}, z, R-R_{0}\right) d s \\
& \quad=\frac{3}{1+3 \varepsilon} \times \text { C. P. of } G_{M} \downarrow 0 \text { as } M \rightarrow \infty \tag{10}
\end{align*}
$$

(9) contradicts (10). Thus we have (2).

Lemma 6. Let G be a subdomain in $R-R_{0}$ and let F be a closed set of positive capacity in $\Delta_{1}(R-\bar{G})$. Then there exists a subdomain Ω in $R-G$ and a Dirichlet function $\alpha(z)$ in $R-\bar{G}$ such that $\alpha(z)=1$ on Ω and $\alpha(z)=0$ on ∂G and $\omega\left(F \cap \Omega, z, R-G_{0}\right)>0$.

Proof. $N(z, p)-N_{\bar{G}}(z, p)>0$ for $p \in \Delta_{1}(R-\bar{G})$. Let $\omega(z)=\omega\left(F, z, R-R_{0}\right)$ >0 and μ be its canonical mass. Then $\mu>0$ on F and

$$
\omega(z)-\omega_{\vec{q}}(z)=U(z)>0 .
$$

Let $\Omega=\left\{z \in R-R_{0}: U(z)>\frac{\delta}{2}\right\}: \delta=\sup U(z)(>0)$. Then

$$
\omega_{F \cap C \Omega}(z)+\omega_{F \cap \bar{\Omega}}(z) \geqq \omega_{F}(z)=\omega(z) . .^{2)}
$$

Assume $\omega_{F \cap \bar{a}}(z)=0$. Then

$$
\omega(z) \geqq \omega_{F \cap C \Omega+\bar{G}}(z) \geqq \omega_{F \cap C \Omega}(z)=\omega(z)
$$

Now $\omega(z) \leqq \omega_{\bar{G}}(z)+\frac{\delta}{2}$ on $C \Omega \supset G$ and

$$
\omega(z)=\omega_{F \cap C \Omega+\bar{G}}(z) \leqq\left(\frac{\delta}{2}\right)_{F \cap C \bar{a}+\bar{G}}+{ }_{F \cap C \Omega+\bar{G}}\left(\omega_{\bar{G}}(z)\right) \leqq \frac{\delta}{2}+\omega_{\bar{G}}(z)
$$

Hence $U(z) \leqq \frac{\delta}{2}$. This contradicts $\sup U(z)=\delta$. Hence

$$
0<\omega_{F \cap \bar{\Omega}}(z) \leqq \omega\left(F \cap \Omega, z, R-R_{0}\right)
$$

Since $D(U(z))<\infty, \omega(\Omega, z, R-\bar{G})$ can be defined and by the Dirichlet principle

$$
\begin{aligned}
0<D\left(\omega\left(\Omega \cap F, z, R-R_{0}\right)\right) & \leqq D(\omega(\Omega \cap F, z, R-\bar{G})) \\
& \leqq D(\omega(\Omega, z, R-\bar{G})) \\
& \leqq \frac{4}{\delta^{2}} D(U(z))<\infty
\end{aligned}
$$

Hence Ω is a domain required. Let $\alpha(z)=1$ on $\bar{\Omega}$ and $=\left(\frac{1}{\delta / 2}\right) U(z)$ in $R-\Omega$. Then $\alpha(z)$ is a required Dirichlet function.

Let $U(z)$ be a harmonic function in R. If there exists a closed set E in $[0,1]$ such that $\omega\left(G_{n}, z, R-R_{0}\right) \downarrow 0$ as $n \rightarrow \infty$ and $D_{R-G_{n}}(U(z))<\infty$ for any n, then we call $U(z)$ an almost Dirichlet bounded harmonic function where $G_{n}=\left\{z \in R: \operatorname{dist}\left\{E, \frac{1}{2}\left(\frac{U(z)}{1+|U(z)|}+\frac{1}{2}\right)<\frac{1}{n}\right\}\right.$. Then

Theorem 4. Let $U(z)$ be an almost Dirichlet bounded harmonic function. Then $U(z)$ has N-fine limit $U^{N}(p)$ on Δ except a set of capacity zero.

Proop. It is sufficient to prove the assertion for $V(z)=\frac{1}{2}\left(\frac{U(z)}{1+|U(z)|}\right.$ $\left.+\frac{1}{2}\right)$. Suppose there exists a closed set E in $[0,1]$ satisfying the condition of the theorem. We show $V(z)$ has fine limit on $\Delta_{1}\left(R-\overline{G_{n}}\right)$ except a set of capacity zero. Assume $V(p)$ does not exist on a set of positive capacity in $\Delta_{1}\left(R-\overline{G_{n}}\right)$, then we can find a number $\delta>0$ and a closed set F of positive capacity in $\Delta_{1}\left(R-\overline{G_{n}}\right)$ such that $\operatorname{dia} A(V(p))>\delta$ for any p in F and $\omega(F, z$, $\left.R-R_{0}\right)>0$. Since we consider $V(z)$ near Δ, we can suppose without loss of generality that $\bar{G}_{n} \cap R_{0}=0$. Then by Lemma 6 there exists a domain Ω in $R-R_{0}-G_{n}$ and a Dirichlet function $\alpha(z)$ such that

$$
\omega\left(F \cap \Omega, z, R-R_{0}-G_{n}\right)>0 \text { and }
$$

$\alpha(z)=1$ on $\Omega,=0$ on $\partial R_{0}+\partial G_{n}$ (or $=0$ on $\left.\bar{R}_{0}+G_{n}\right)$.
Let $m>\frac{6}{\delta}$ and $G_{i}^{m}=\left\{z \in R: \frac{i-1}{m}<V(z)<\frac{i+1}{m}\right\}, \tilde{G}_{i}^{m}=\left\{z \in R: \frac{i-2}{m}\right.$ $\left.<V(z)<\frac{i+2}{m}\right\}$. Then there exists at least one i such that $\omega\left(F \cap \Omega \cap G_{i}^{m}, z\right.$, $\left.R-R_{0}-G_{n}\right)>0$.

Let $t(\boldsymbol{z})$ be the function in the proof of Theorem 3. Then $t(\boldsymbol{z})=1$ on $\bar{G}_{i}^{m},=0$ on $R-\tilde{G}_{i}^{m}$ and $\left.\underset{R-R_{0}-a_{n}}{D(t)}\right)<\infty$ by $\underset{R-R_{0}-\boldsymbol{\theta}_{n}}{D}(V(z))<\infty$.

Put $\beta(z)=\min (\alpha(z), t(z))$. $\stackrel{R-R_{0}-\theta_{n}}{T h e n ~} \beta(z)=1 \stackrel{R-R_{0}-\theta_{n}}{ }$ on $\Omega \cap \bar{G}_{i}^{m},=0$ on $\partial R_{0}+\partial G_{n}+$ $\left\{\partial \widetilde{G}_{i}^{m} \cap\left(R-R_{0}\right)\right\}$ and $D_{R}(\beta(z))<\infty$. Hence $\omega\left(F \cap \Omega \cap G_{i}^{m}, z,\left(R-R_{0}-G_{n}\right) \cap \widetilde{G}_{i}^{m}\right)$ can be defined. By the Dirichlet principle

$$
\begin{aligned}
& 0<D\left(\omega\left(\left(F \cap \Omega \cap G_{i}^{m}, z,\left(R-R_{0}-G_{n}\right)\right)\right)\right. \\
& \quad \leqq D\left(\omega\left(F \cap \Omega \cap G_{i}^{m}, z,\left(R-R_{0}-G_{n}\right) \cap \widetilde{G}_{i}^{m}\right)\right)
\end{aligned}
$$

Hence by Lemma 1, there exists a point p in F with $\left\{\left(R-R_{0}-G_{n}\right) \cap \widetilde{G}_{i}^{m}\right\}$ $\stackrel{N}{\ni} p$ i. e. $A(V(p)) \leqq \frac{4}{m}<\delta$. This contradicts $p \in F$. Whence $V(p)$ exists on
$\Delta_{1}\left(R-G_{n}\right)$ except a set of capacity zero. Let $\Omega_{n}^{1}=\left\{z \in R-R_{0}: \omega\left(G_{n}, z, R-R_{0}\right)\right.$ $<\frac{1}{3}$. Then $\Omega_{n}^{1} \subset\left(R-R_{0}-G_{n}\right)$ and $V(p)$ exists on $\Delta_{1}\left(\Omega_{n}^{1}\right)$ except capacity zero. $\Omega_{n}^{1} \nearrow$ as $n \rightarrow \infty$. By Lemma 5, capacity of $\left(\Delta_{1}-\Delta_{1}\left(\Omega_{n}^{1}\right)\right) \downarrow 0$ as $n \rightarrow \infty$. Thus $U^{N}(p)$ exists on Δ_{1} except a set of capacity zero.

3. Beurling's Theorem for analytic functions.

Suppose a metric d is given on $R+\Delta$ such that d is compactible in R to the one defined by local parameters and that $\bar{R}=R+\Delta$ and Δ are compact with respect to d. If d satisfies, for any $p \in \bar{R}$ and $r_{1}<r_{2}$ the condition 1) and 1^{\prime}), it is called H. B. separative and H. D. separative respectively.

Let $C\left(r_{2}, p\right) \supset C\left(r_{1}, p\right): r_{2}>r_{1}$ be two circles: $C(r, p)=\{z \in \bar{R}: d(z, p)<r\}$

1) Let $\Omega_{1-\varepsilon}=\left\{z: w_{C G}\left(C\left(r_{1}, p\right) \cap \Delta, z\right)>1-\varepsilon\right\}: G=C\left(r_{2}, p\right)$, then

$$
\lim _{r \rightarrow 0} w\left(\Omega_{1-\varepsilon} \cap C(r, p) \cap \Delta, z\right)=0
$$

$\left.1^{\prime}\right)$ Let $\Omega_{1-\mathrm{t}}=\left\{z \in R-R_{0}: \omega_{C G}\left(C\left(r_{1}, p\right) \cap \Delta, z, R-R_{0}\right)>1-\varepsilon\right\}$. Then

$$
\lim _{t \rightarrow 0} \omega\left(\Omega_{1-t} \cap C\left(r_{1}, p\right) \cap \Delta, z, R-R_{0}\right)=0
$$

We proved if d is H. D. separative, then it is H. B. separative. KMartin's topology is H. B. separative and N-Martin's is H. D. separative.
2) Let d be a metric. If for any two compact set F_{1} and $F_{2}: F_{1} \cap F_{2}=0$, there exists a continuous (in \bar{R}) Dirichlet function on $R, U(z)$ exists such that $U(z)=1$ on F_{1} and $U(z)=0$ on F_{2}. We call a metric satisfying the condition (2) a D-disjoint metric. Then we have.

Lemma 7. If d is D-disjoint, it is H. D. separative. N-Martin's is D-disjoint.

Proof. Let d be D-disjoint. Since H. D. separability depends on Δ, we can suppose $C\left(r_{2}, p\right) \cap \bar{R}_{0}=0$. Let $C(r, p)=C\left(r_{1}, p\right)$ and $G=C\left(r_{2}, p\right)$. Then by $\left\{\Omega_{1-\epsilon} \cap C(r, p)\right\} \subset C(r, p)$ and by the Dirichlet principle

$$
\begin{aligned}
D\left(\omega\left(\Omega_{1-\varepsilon} \cap C(r, p) \cap \Delta, z, R-R_{0}\right)\right. & \leqq D\left(\omega\left(\Omega_{1-\bullet} \cap C(r, p) \Delta, z, G\right)\right) \\
& \leqq D(\omega(C(r, p), z, G))<\infty
\end{aligned}
$$

Assume $\hat{\omega}(z)=\lim _{\epsilon \rightarrow 0} \omega\left(\Omega_{1-\varepsilon} \cap C(r, p) \cap \Delta, z, G\right)>0$. Let $\omega(z)=\omega(C(r, p) \cap \Delta, z$, $\left.R-R_{0}\right)$. Now since $\omega_{C G}(z) \geqq 1-\varepsilon$ on $\Omega_{1-\varepsilon}$,

$$
\begin{aligned}
\omega_{C G}(z) & \geqq(1-\varepsilon) \omega\left(\Omega_{1-\epsilon} ; z, R-R_{0}\right) \\
& \geqq(1-\varepsilon) \omega\left(\Omega_{1-\mathrm{c}} \cap C(r, p) \cap \Delta, z, G\right) .
\end{aligned}
$$

Let $\varepsilon \rightarrow 0$. Then

$$
\omega_{C G}(z) \geqq \hat{\omega}(z) .
$$

$\hat{\omega}(z)$ is a C. P. of $\left\{\Omega_{1-\varepsilon} \cap C(r, p) \cap \Delta\right\}: \varepsilon \rightarrow 0$ in G. Let $C_{1-\varepsilon}$ and C_{δ} be regular level curves of $\hat{\boldsymbol{\omega}}(\boldsymbol{z})$. Now $\omega_{C G}(\boldsymbol{z})$ has M. D. I. over G. By Green's formula

$$
\int_{C_{\dot{\delta}}} \omega_{C G}(z) \frac{\partial}{\partial n} \hat{\omega}(z) d s=\int_{C_{1-}} \omega_{C G}(z) \frac{\partial}{\partial n} \hat{\omega}(z) d s
$$

Since $\omega_{C G}(z)<1$ in R,

$$
\begin{aligned}
& D(\hat{\omega}(z))=\int_{C_{\delta}} \frac{\partial}{\partial n} \hat{\omega}(z) d s \ngtr \int_{C_{\delta}} \omega_{C G}(z) \frac{\partial}{\partial n} \hat{\omega}(z) d s=\int_{C_{1-\epsilon}} \omega_{C G}(z) \frac{\partial}{\partial n} \hat{\omega}(z) d s \\
& \quad \geqq(1-\varepsilon) \int_{C_{1-}} \frac{\partial}{\partial n} \hat{\omega}(z) d s=(1-\varepsilon) D(\hat{\omega}(z))
\end{aligned}
$$

Let $\varepsilon \rightarrow 0$, then we have a contradiction. Hence $\hat{\omega}(z)=0$ and d is H. D. separative.

We shall show N-Martin's topology is D-disjoint. At first we suppose F_{1} and F_{2} are contained in $\overline{R-R_{3}} . \quad F_{1} \cap F_{2}=0$ implies dist $\left(F_{1}, F_{2}\right)>0$ and $N(z, p) \neq N(z, q)$ for $p \in F_{1}$ and $q \in F_{2}$. Assume $N(z, q) \geqq N(z, p)$ on ∂R_{1} and there exists a point on ∂R_{1} with $N(z, q)>N(z, p)$, then

$$
2 \pi=\int_{\partial R_{0}} \frac{\partial}{\partial n} N(z, q) d s>\int_{\partial R_{0}} \frac{\partial}{\partial n} N(z, p) d s=2 \pi
$$

Also assume $N(z, p)=N(z, q)$ on ∂R_{1}, then by the harmonicity $N(z, p)=$ $N(z, q)$ these contradict dist $(p, q)>0$. Then there exists at least one point z^{\prime} on ∂R_{1} such that

$$
N\left(q, z^{\prime}\right)=N\left(z^{\prime}, q\right)<N\left(z^{\prime}, p\right)=N\left(p, z^{\prime}\right)
$$

Let $A_{p, q}(z)=\max \left(0, \min \left(1, \frac{N\left(z, z^{\prime}\right)-N\left(q, z^{\prime}\right)}{N\left(p, z^{\prime}\right)-N\left(q, z^{\prime}\right)}\right)\right.$. Then since $z^{\prime} \in \partial R_{1}, A_{p, q}(z)$ is continuous in $\bar{R}-R_{0}, D\left(A_{p, q}(z)\right)<\infty$ and $A_{p, q}(z)$ is a Dirichlet function in $R-R_{0}$ with $A_{p, q}(z)=0$ on ∂R_{0}. Now $A_{p, q}(p)=1, A_{p, q}(q)=0$, For any given point q in F_{2} and $\frac{1}{3}>\varepsilon>0$, there exists a neighbourhood $v(q)$ such that $A_{p, q}(z)<\varepsilon$ in $v(q)$. We cover F_{2} by $\sum_{i=1}^{i_{0}} v\left(q_{i}\right): i_{0}<\infty$ and put $A_{p}(z)=\min _{i}\left(A_{p, q_{i}}(z)\right)$. Then $A_{p}(p)=1$ and $A_{p}(z)<\varepsilon$ on F_{2}. Also we can cover F_{2} by $\sum_{j=1}^{j_{0}{ }^{i}} v\left(p_{j}\right)$ such that $A_{p_{j}}(z)>1-\varepsilon$ in $v\left(p_{j}\right)$. Let $A(z)=\max _{j}^{j_{0}}\left(A_{p_{j}}(z)\right)$. Then

$$
A(z)=\min \left(1, \max \left(0, \frac{A(z)-\varepsilon}{1-2 \varepsilon}\right)\right)
$$

is continuous in $\bar{R}-R_{0}, A(z)=1$ on $F_{1},=0$ on F_{2} and $D(A(z))<\infty$. Next let F_{1} and F_{2} be compact in \bar{R} such that $F_{1} \cap F_{2}=0$. Let $F_{i}^{\prime}=\left(\overline{R-R_{3}}\right) \cap F_{i}$ and $F_{i}^{\prime \prime}=F_{i} \cap \bar{R}_{3}: i=1,2$. Then since $F_{i}^{\prime \prime}$ is compact in R, evidently there exists a Dirichlet function $V_{1}(z)$ such that $V_{1}(z)=0$ on $F_{2}^{\prime \prime},=1$ on F_{1}. Similarly there exists a Dirichlet function $V_{2}(z)$ such that $V_{2}=1$ on $F_{1}^{\prime \prime},=0$ on F_{2}. Let $A(z)$ be a Dirichlet function such that $A(z)=1$ on $F_{1}^{\prime}=0$ on F_{2}^{\prime}. Then

$$
U(z)=\max \left(V_{2}(z), \min \left(A(z), V_{1}(z)\right)\right)
$$

is a Dirichlet function with value 1 on F_{1} and 0 on F_{2}. Hence N-Martin's topology is D-disjoint.

Let \tilde{R} be a Riemann surface and let $w=f(z)$ be an analytic function from $\tilde{R}\left(\notin 0_{g}\right)$ into $R: w \in R, z \in \tilde{R}$. For any point p of R there exists a local parameter disk $C(p)$ such that the area of \tilde{R} over $C(p)$ is fininite and there exists a number m such that $R-R_{m}$ is covered by \tilde{R} only a finite number of times, then we say \tilde{R} is an almost finitely sheeted covering surface, where $\left\{R_{m}\right\}$ is an exhaustion of R. Then we proved.

Theorem 5. Suppose on R N-Martin's topology is defined and an H. D. separative metric is given on R. If \tilde{R} is an almost finitely sheeted covering surface over R, then $w=f(z)$ has N-fine limits at Δ except a set of capacity zero.

In the following we shall extend this theorem but we suppose a D. disjoint metric rather than H. D. separative metrics.

Non thick-property at a point $\boldsymbol{p} \in \overline{\boldsymbol{R}}$.

Suppose a D-disjoint metric is given on \bar{R}. Then

$$
C_{n, n+i}(p)=\left\{w \in \bar{R}: \frac{1}{2^{n+i}}<\operatorname{dist}(w, p)<\frac{1}{2^{n}}\right\}
$$

is a ring. We can find a ring G which is a subdomain such that ∂G consists of $(\partial G)_{1}$ and $(\partial G)_{2}$ and

1) $(\partial G)_{1}$ separates $\partial C_{n}: C_{n}(p)=\left\{w \in \bar{R}: \operatorname{dist}(w, p)<\frac{1}{2^{n}}\right\}$ and $(\partial G)_{2}$.
2) $(\partial G)_{2}$ separates $\left(\partial G_{1}\right)$ and $\partial C_{n+i}(p)$ in every components of $C_{n, n+i}(p)$
3) $\operatorname{dist}\left((\partial G)_{1},(\partial G)_{2}\right)>0$.

Then there exists a Dirichlet function $H(w)$ in G such that $H(w)=0$ on $(\partial G)_{1}, H(w)=\alpha$ on $(\partial G)_{2}, H(w)$ has M. D. I. over G and $D(H(w))=2 \pi \alpha$, i. e.

$$
H(w)=\frac{2 \pi \omega\left((\partial G)_{2}, w, G\right)}{\left.D\left(\omega(\partial G)_{2}, z, G\right)\right)} \text { and } \alpha=\frac{2 \pi}{D\left(\omega(\partial G)_{2}, z, G\right)} .
$$

Let $J(w)$ be the conjugate harmonic function of $H(w)$. Put $\zeta=\zeta(w)=\exp$ $(-(H(w)+i J(w))): \zeta=\xi+i \eta$. Then $\zeta(w)$ maps G onto $1>|\zeta|>\exp (-\alpha)$ conformally with radial slits whose areal measure $=0$, because $H(w)$ has M. D. I. and $\int_{c_{\delta}} \frac{\partial}{\partial n} H(w) d s=2 \pi$ for almost $\delta: 0<\delta<\alpha$. Let Ω be a subdomain in \tilde{R} and let $n(w)$ be the number of times when w is covered by $f^{-1}(G)-\Omega$. Then the area of $f^{-1}(G)-\Omega$ over $1>|\zeta|>\exp (-\alpha)$ is given by

$$
A\left(f^{-1}(G)-\Omega\right)=\iint n(\zeta) d \xi d \eta: n(\zeta)=n(w)
$$

$(\partial G)_{1}$ divides R into two parts: E_{1} and E_{2} such that any component of E_{1} contains at least one comonent of $C_{n}(p)$ and any component of E_{2} contains at least one component of $C_{n+i}(p)$. Let $H(w)=0$ on E_{1}. Similarly $(\partial G)_{2}$ divides R into two parts E_{3} and E_{4} such that any component of E_{4} contains at least one component of $C_{n+i}(p)$. Let $H(w)=\alpha$ on E_{4}. Then $H(w)$ is a Dirichlet function in R. Let $U(z)=H(f(z))$. Then $U(z)$ is harmonic in $f^{-1}(G), U(z)=0$ on $f^{-1}\left((\partial G)_{1}\right), U(z)=\alpha$ on $f^{-1}\left((\partial G)_{2}\right)$ and continuous in R. Now in $f^{-1}(G)$

$$
U(z)=-\log |\zeta|: 1>|\zeta|>\exp (-\alpha), \xi=\zeta(f(z))
$$

$D_{f^{-1}(G)-\Omega}(U(z))$ is given by

$$
\begin{aligned}
\iint n(\zeta)\left(\frac{\partial}{\partial r} U(\zeta)\right)^{2} r d r d \theta & \leqq \sup _{1>|\zeta|>\exp (-\alpha)}\left(\frac{\partial}{\partial r} U(\zeta)\right)^{2} \iint n(\zeta) r d r d \theta \\
& \leqq \exp 2 \alpha A\left(f^{-1}(G)-\Omega\right) ; \zeta=r e^{i \theta}
\end{aligned}
$$

If we can find a ring G in $C_{n, n+i}(p)$ satisfying the conditions 1), 2) and 3) and the quantity $A\left(f^{-1}(G)-\Omega\right)$ (defined with respect to G) is finite, we say $C_{n, n+i}(p)$ is non thickly covered by $\tilde{R}-\Omega$. Further if there exists a sequence $n_{1}, n_{2}, \cdots ; \lim n_{i}=\infty$ such that $C_{n_{i}, n_{i+1}}(p)$ is non thickly covered, we say p is non thickly covered by $\tilde{R}-\Omega$.

Remark. Let \tilde{R} be a covering surface of almost finitely sheeted over R, then it is easy to see every point of \bar{R} is non thickly covered by \tilde{R}, in this case Ω is empty.

Theorem 6. Let $\tilde{R}\left(\notin 0_{g}\right)$ and R the Riemann surface and $w=f(z)$ be an analytic function from \tilde{R} into R. Suppose on \bar{R} a D-disjoint metric is defined. Let $\left\{\Omega_{n}\right\}$ be a decreasing sequence of subdomains such that

$$
\omega\left(\Omega_{n} \cap\left(\tilde{R}-\tilde{R}_{0}\right), \tilde{R}-\tilde{R}_{0}\right) \downarrow 0 \text { as } n \rightarrow \infty
$$

and every point p of \bar{R} is non thickly covered by $\tilde{R}-\Omega_{n}$ for every n. Then $f(z)$ has N-fine limits at Δ of \tilde{R} except a set of capacity zero.

Proof. We consider the behaviour of $f(z)$ near Δ of \tilde{R}. We can suppose without loss of generality that Ω_{n} is contained in $\tilde{R}-\tilde{R}_{3}$. We show $f(z)$ has finite limit $f^{N}(p)$ in $\Delta_{1}\left(\tilde{R}-R_{0}-\Omega_{n}\right)$ except a set of capacity zero.

Assume dia ${ }_{N}^{N}(f(p))>0$ at a set of positive capacity in $\Delta_{1}\left(\tilde{R}-\tilde{R}_{0}-\Omega_{n}\right)$, then we can find a closed set F in $\Delta_{1}\left(\bar{R}-\bar{R}_{0}-\Omega_{n}\right)$ of positive capacity: $\omega\left(F, z, \tilde{R}-\tilde{R}_{0}\right)>0$ and $\operatorname{dia}{ }_{N}^{N}(f(p))>\delta: p \in F$. Fix $m_{0}: 2^{m_{0}}>\frac{2}{\delta}$. Since for any point $p \in \bar{R}$, there exists a ring $C_{m(p), m(p)+j(p)}(p): m(p) \geqq m_{0}$ such that $C_{m(p), m(p)+j(p)}(p)$ is non thickly covered by $\tilde{R}-\Omega_{n}$. Then we can find a finite number of $C_{m\left(p_{i}\right), m\left(p_{i}\right)+j\left(p_{i}\right)}\left(p_{i}\right)$ such that $\sum^{i_{0}} C_{m\left(p_{i}\right)+j\left(p_{i}\right)}\left(p_{i}\right) \supset \bar{R}$. Now $F \subset \Lambda_{1}(\tilde{R}$ $\left.-\tilde{R}_{0}-\Omega_{n}\right)$ and $\omega\left(F, z, \tilde{R}-\widetilde{R}_{0}\right)>0$. By Lemma 6 there exists a domain Ω in $\tilde{R}-\tilde{R}_{0}-\Omega_{n}$ such that $\omega\left(F \cap \Omega, z, \tilde{R}-\tilde{R}_{0}-\bar{\Omega}_{n}\right)>0$ and a Dirichlet function $V_{1}(z)$ in \tilde{R} with $V_{1}(z)=1$ on $\partial \Omega, V_{1}(z)=0$ on $\partial \tilde{R}_{0}+\partial \Omega_{n}$. Now $\sum^{i_{0}} \omega\left(F \cap \Omega \cap f^{-1}\right.$ $\left(C_{m\left(p_{i}\right)+j\left(p_{i}\right)}\left(p_{i}\right), z, \tilde{R}-\tilde{R}_{0}-\bar{\Omega}_{n}\right) \geqq \omega\left(F \cap \Omega, z, \tilde{R}-\widetilde{R}_{0}-\Omega_{n}\right)>0$. There exists at least one point p such that

$$
\begin{equation*}
\omega\left(F \cap \Omega \cap f^{-1}\left(C_{m(p)+j(p)}(p), \mathrm{z}, \tilde{R}-\vec{R}_{0}-\bar{\Omega}_{n}\right)\right)>0 . \tag{11}
\end{equation*}
$$

Let $m(p)=m$. Since $C_{m, m+j(p)}(p)$ is non thickly covered by $\tilde{R}-\tilde{R}_{0}-\Omega_{n}$, there exists a continuous function $U(z)$ in $\tilde{R}-\Omega_{n}$ such that $U(z)=0$ on $f^{-1}\left(\partial C_{m}(p)-\right.$ $\left.\Omega_{n}\right),=1$ on $f^{-1}\left(\partial C_{m+j(p)}(p)\right)-\Omega_{n}$ and $D(U(z))<\infty$. Let $V(z)=\min \left(V_{1}(z), U(z)\right)$. Then $V(z)=1$ on $\left\{\Omega \cap f^{-1}\left(C_{m+j(p)}(p)\right)\right\},=0$ on $\Omega_{n}+R-f^{-1}\left(C_{m(p)}\right)+R_{0}$ and $D(V(z))<\infty$. Hence $\omega\left(f^{-1}\left(C_{m+j}(p)(p) \cap \Omega, z, f^{-1}\left(C_{m}(p) \cap\left(\tilde{R}-\tilde{R}_{0}-\Omega_{n}\right)\right)\right.\right.$ can be considered. By the Dirichlet principle and by (11)

$$
\begin{aligned}
& D\left(\omega\left(F \cap f^{-1} C_{m+j(p)}(p)\right) \cap \Omega, z,\left(\tilde{R}-\tilde{R}_{0}-\bar{\Omega}_{n}\right) \cap f^{-1}\left(C_{m}(p)\right)\right) \\
& \quad \geqq D\left(\omega\left(F \cap f^{-1}\left(C_{m+j(p)}(p) \cap \Omega, z, \tilde{R}-\tilde{R}_{0}-\Omega_{n}\right)\right)\right)>0 .
\end{aligned}
$$

Hence there exists at least one point p such that

$$
\left\{\left(\tilde{R}-\tilde{R}_{0}-\bar{\Omega}_{n}\right) \cap f^{-1}\left(C_{m}(p)\right)\right\} \stackrel{N}{\ni} p: p \in F .
$$

Hence there exists at least one component of $f^{-1}\left(C_{m}(p)\right)$ which is a fine neighbourhood of p and dia $A(f(p)) \leqq \frac{1}{2^{m_{0}}}<\frac{\delta}{2}$. This contradicts $p \in F$. Hence $f(p)$ exists on $\Delta_{1}\left(\tilde{R}-\tilde{R}_{0}-\bar{\Omega}_{n}\right)$ except a set of capacity zero. Next by Lemma 4, similarly as Theorem 4, $f^{v}(p)$ exists on Δ of \tilde{R} except a set of capacity zero and we have Theorem 6.

Remark. In case we consider fine limits of $f(z)$ relative to a D-disjoint metric (or N-Martin's topology), Beurling's theorem holds under weaker condition than almost finitely sheeted. Especially in case \tilde{R} is a unit circle: $|z|<1$ and R is a Riemann sphere, every point $e^{i \theta}$ is N-minimal and N. Martin's topology is compactible to Euclidean metric on $|z|=1$. Then by Lindelöf's theorem and by Lemma 1, 4) we have the following.

Theorem 7. Let $w=f(z)$ be analytic function from $|z|<1$ into a wRiemann sphere R. If $w=f(z)$ does not take 3 points near $|z|=1$ and every point of R is non thickly covered by \tilde{R}. Then $w=f(z)$ has angular limits on $|z|=1$ except a set of capacity zero.

References

[1] Z. Kuramochi: On Beurling's and Fatou's theorems, Lecture Note in Math. 58, Springer (1968), 43-69.
[2] Z. Kuramochi: Potentials on Riemann surfaces, J. Fac. Sci. Hokkaido Univ., Sr. I, 16 (1962), 5-79.
[3] Z. Kuramochi: Singular points, Ibid., 16 (1962), 80-148.

