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On Fatou’s and Beurling’s Theorems

By Zenjiro KuraMocHI
(Received December 2, 1981)

The purpose of the present paper is to give simple proofs for well
known Fatou and Beurling’s theorems for harmonic functions and to amelio-
rate the Beurling’s theorem for analytic functions given in a previous paper®.
Let R be a Riemann surface &0, and {R,}: n=0, 1, --- be its exhaustion.
We suppose a-Martin’s topology is defined on R=R+ 4%, where a=K or N.

Let U(z2): 2R be a harmonic function, i.e. U(z) is a mapping from
R into a real axis. Let 4f be the set of a-minimal points? of 4° The

fine cluster set A(U(p)) at pedf is defined as

A(U@p)=nTG): Gop
where G, is a fine neighbourhood of p with respect to a-Martin’s topology.
If A(U(p)) is a single point, we say U(z) has a fine limit denoted by (}(p)

Then the following Lemma is well known.

Lemma 1.2 Let G be an open set in R and v(p) be a neighbourhood
of p relative to a-Martin’s topology. Then

1) Let ped;. Then a) v(p) ép. b) There exists only one component
G of G such that G'Sp and GSp implies (CGPDp. If Giop (i=1,2, -,
2o), (H Gi) ép. Hence A(U(p)) is a point or continuum.

5; a) Let G'CGCR G and G be open sets and let F be a closed set
in 4F. If the H. M. (harmonic measure) of FNG' relative to G>O0:

w(FNG, 2z, G)>0,?

then there exists at least a point pF N 4K such that G gp. b) Let GG
and let F be a closed set in AY. If the C. P. (capacity) FNG' relative to
G>0: i.e. (FNG, 2 G)>0, then there exists at least a point pcFNA4Y

e
such that G=p.

If an open set (not necessarily connected) G has oG consisting of at
most enumerably infinite number of analytic curves clustering nowhere in

R, we call G a subdomain of R. Let G be a subdomain. Then K(z, p)
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(N(z, p)) is lower semicontinuous with respect to p=R and {péd‘f: G Bap}
is a G, set. We suppose E (on the real axis) is compact and U(z)EE. Let
It (i=1,2,---,i(n)<o0) be a system of intervals on the real axis such that

any closed interval with length < §1—n~ is contained in some I and that any
. 3 .
interval of length >~ contains at least one I?'. Let Tr={ped;: U I}

Sp), S=(pedr: dia A(U(p)>0).
Then
S=n AT
n=11{=1
and S is a G, set, where dia A(U(p)) is the diameter of A(U(p)).

3) If dia A(U(p)) >0y any component of U‘I(Iﬁ)%p for 8<d, where
15:(5, OO). ‘

4) If (a](p) exists, there exists a path L a-tending to p such that
U(z)—>(a](p) as z—p along L.

1. Fatouw’s theorem for bounded harmonic functions.

THEOREM 1. Let U(2) be a bounded harmonic function. Then U(z)
has fine limit UX(p): pE 4% except at most a set of harmonic measure zero.

Proor. Since H. M. of 4—4F is zero, it is sufficient to show that UX(p)
exists a.e. on 4. Without loss of generality, we can suppose inf U(2)=0,
sup U(z)=1. Let I'={u: (i—1)6<u<(i+1)d}, I'={u: (i—2) d<u<(i+2)d},

i=1,2, - n, 6=, and Gt ={zER; U €I?}, Gr={2R, U(x)€l?}). Then

n )
x o i(n)
G* and Gr are subdomains. Put T7={pcdF, p& Gy} and S=n N T7.

n=1i=1

Then the set of points p where UZ(p) does not exist is contained in .S. We
show S is a set of H. M. zero. Assume .S is of positive H.M. Then we

n—1
can find a number 7 and a closed set F of positive H. M. in N T?. Then

i=1

m—1
dia A(U(p))g;l; for any point pF. Let m=5n. Since U GI'=R,
i=1

"le(Fﬂ G, 2, R=w(FN LGP, 2, R = w(F, 2, R>0.

Hence the exists at least one 7 such that w(FNG?, 2, R)>0, where 1=:
<m™. Let s(2)=Ul(z) for U(g)<(i—1)4d : 5’:%, s(2)=(—1) & for (i—1) 4
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<U(2)<(i+1)§ and s(2)=(—1)¢ —{U(2)—(1+1)d"} for U(z)>(i+1)&. Then

s(z) is an S. P. H. (superharmonic function). Let a=min (0, 25’ —1) and

_ s(2)—a
t(2) = (G—-1)6 —a -
' N - (1—2)¢0 —a
Then ¢(2) is a positive S. P. H. such that #(2)=1 on G and t(z):m

=¢<1 on aG7. Since w(G™T, 2, R) is the least positive S.P. H. not smaller
than 1 on G, w(FNG}, 2, R)<¢ on dG™. This implies

w(FNGY, 2, R)—weep(FNGY, 2, R) = w(FNGP, 2, G >0.
By Lemma 1 there exists at least one point p in F such that péé;". Next
by sup U (2)—inf U(z)éi-l{ dia A(U(p))< »:7 < % This contradicts p<F.

2eGT 2€G
Thus we have the theorem.
Lemma 2. Let U(z) be a bounded harmonic function. If UX(z)=C

(const) a.e. on 4%, then U(z)=C.

Proor. Suppose U(z)3const. Then we can suppose inf U(z) =0 and
sup U(z)=1. Let G,={z: U(2)>0}:0<d<1. By the maximum principle

Uz) < w(G,N(R—Ry), 2 R)+35.

Let n— oo, then

Ulr) =w(G,N4d, 2, R)+d.
If w(G,N4, 2z R)=0, U(z) <0<1. This is a contradiction. Hence

w(G,;ﬂA, 2, R) >0 for 0<o0<1.

Put s(z)=min <1’;U§z) ) Then s(z) is an S.P.H. and =1 on G,, s(z):%

on 0Gs,. By w(G;N 4, 2, R) Sw(G,, 2, R) <s(2) g—g— on Gy,
w(G;N 4, 2, R —Wes(G:N 4, 2, R) = w(G;N 4, 2, G)>O ,
where Gg;zé.

Now w(G;N 4, 2, R) is represented by a positive canonical mass g on G, 4,
such that w(G,N4, 2, R)={K(z, p) du(p)=<1.
By wos(GsN 4, 2, R)=§Kea(z, p) dp(p), we have

12 [(K(z £)— Kool 1) ditlp)>0.

This implies that there exists a positive restriction ¢/ of g on 4,(G)=
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{pedf:péé} and H.M. of 4,(G) is positive. Suppose UX(p): p € 4(G)
exists, then evidently UK(p)Z?" by pé@' Hence by [Theorem 1, U¥(p)=
2

w

6
Then H. M. of {p; UK(p)g—g—} is positive. Consider 1—U(z). Then H. M.

20 a.e. on 4,(G) and H.M. of {p; UX(p) = %i} is positive. Put d=-

of {p: UK(p)é—g} is positive. This contradicts U¥(p)=C a.e. on 4 and
we have the Lemma.

Lemma 3. Let G be a subdomian. Let U(z) be an S. P; H. such that
U(z2)=w(3G, 2, R—G) (H. M. of G relative to R—G) in R—G and U(z)=1
on G. Then UX(p)=0 a.e. on 4 (R—G).

Proor. Assume U(z) has not UX(p) at a set of positive H. M. in
4,(R—G). Then we can find a closed set F in 4,(R—G) such that dia
A(U(p))>8>0 for any point p in F and w(F,z R)>0. Let g be the
canonical distribution of w(F, 2, R). Then

w(F, 2, R—G) = w(F, 2, R)—ws(F, 2, R)
= [(K(z )= Kalz ) du(p) >0 (1)

by Kz(z, p)<K(z p): pEFCAH(R-G).
Let s< 0 and Gi={zER~C: (i—1)e<U(x)<(i+1)¢ and

G;={2eR-G: (i—2) e<UR<<(i+2 ¢}, (=12 ).
Consider w(FN G 2, R—G). Then similarly as the proof of
we can find a domain G; such that w(FNG, 2, G)>0 and a point p in F
such that pé@i. This implies dia A(U( p))<4s<~—§~5. This contradicts pE F.

Hence UX(p) exists a.e. on 4(R—G).
Next we show UX(p)=0 a.e. on 4,(R—G). Assume there exists a closed
set F in 4,(R—G) such that UX(p)>d>0 for any pF and w(F, 2, R)>0.

Then G,= {z: U(z)>%}£p for any pEF.: By Gyop (and (Va(p) N G)Dp),
K(z, p)=Kg,nr(2, p), whence

0<w(F, 2 R) = | Kz p) du(p) = | Kayns(z, p) du(p)

= wa, nr(F, 2, R) < w(GiF, 2, R)
<w(F, 2, R). Hence w(G;NF,z R>0.
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Consider G;NF instead of F in (1). Then we have similarly as above by
(FNGy)cd(R—G)

w(FNGs 2, R—G)>0. (2)
9
2

By U(z)=- on G, and by the definition of w(FNG;,z, R—G)

(w(z) =) U®)— 5 w(F N Gy z R—G)>0

and @(z)=1 on 0G. Hence by the definition of U(z), @(2)= U(z) and
w(FN Gy 2, R—G)=0. This contradicts (2). Thus we have the lemma.

LEMMA 4. Let G be a subdomain and Q=R—G. Then
H M. of (2N4)—4,2 £w(G, 2 R).

ProoF. Since G is a subdomain (G, 2, R)=w(G, 2, R). Let F bea closed
set in (2N 4)— 4,(9) such that w(F, 2, R) >0 and g be its canonical distribution.

Clearly =0 on CF. pEF implies p&[) and K(z, p) = Koz, p) =Kz(2, p)=
K(z,p). Hence by w(F, 2, R) = [K(2, p) du(p), w(F, 2, R) = { Ka(z, p) dp(p)=
wg(F, 2, <15 =w(G, 2, R) =w(G, 2, R). Now F is arbitrarily. Hence we
have the lemma.

THEOREM 2. Let U(z) be a positive harmonic function. Then U(z)
is divided into two parts: quasibounded part V(z) and a singular part
S(z) and U(z) has fine limits a.e. on 4 such that UX(p)=VE(p) a.e. on 4.

Proor. Let Gy={z&R: U(z)>M}. Then by U(z)<oco, we have at
once w(Gy, 2, R) | 0 as M—oo. Let Uy y.ati(2) be a harmonic function in
Ruii—(GyN(R—R,)) such that Uy, nei(2)=M on (0R, N Gy)+0GyN (Ryys—
R,),=U(2) on 0R,+;—Gy. Then Uy pniis1(2) SU(2)=Uinnii(2) on R, ;—
Gy implies Uiy n44(2) | Unn(2) as i—oco. Similarly we have Uy ,(2) | Ux(2)
<U(z) as n—co and

Un(z),/V(2) <U(z) as M—co,

where V(z2) is quasibounded.

Since Ux(z) is a bounded harmonic function, U%(p) exists a.e. on 4.
We denote by E, the set in 4,(R—Gy) where both wX(Gy, 2, R) (=0) and
U%(2) exists. Then by Lemma 3, H.M. of 4,(R—Gy)—Ey=0. Since the
intersection of two fine neighbourhoods is also a fine neighbourhood and
since 0 = U(2)—Uxy(2) = Mw(Gy, 2, R) in R—Gy, UX(p) exists on Ey and
Uk(p)=Ui(p) on Ex. U(p)=V(p)ZUx(p) on Ey. Thus VE(p)=Uk(p) =

U=(p) on U Ey.
M
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Let 2,,=CGy. Then by Lemma 4
H M. of AN2y—Ey<w(Gy, 2, R) | 0 as M—co. (3)
On the other hand,
w24 2 RZ1-wGyNd 2z R 21-w(GnzuR  (4)
w(

w(QyN4d, 2z, R—1 as M—oco and by. (3) w2, R)—1 as M—oco and
VE(p)=U%(p) a.e. on 4 and UX(p) exists a.e. on 4.

Put Sy(2)=U(2)—Uy(2). Then Sy(2) | S(z) and S(z) is harmonic. Let
t(z) be a bounded positive harmonic function <.S5(2). Then t*(p)=0 a.e.
on 4. By Lemma 2 we have t(z)=0. Hence S(2) is singular. The unique-
ness V(z) and S(2) is well known.

ReEMARK. If R is a unit circle |2/ <1, ¢’ is a minimal point. Let V(z)

be the conjugate harmonic function of U(z). Put g(z)= U _& V" Then

Re ¢(2) and Im g(2) are bounded. There exists a set E on [2|=1 such that
mes E=2r and both of them have fine limits and there exists a curve L(e¥)
terminating at ¢ along which they converge to the fine limits. Hence by
Lindel6f’s theorem ¢(z) has angular limits at ¢ in E. This implies U(z2)
has angular limits a.e. on |2|=1.

2. Beurling’s theorem for harmonic functions.

Let U(z) be a Dirichlet bounded harmonic function. Then V(z) =
—é—(%)—l——l— is Dirichlet bounded and 0< V(2)<1. In fact, —aa;V(z)
0
la—x Ul Ul%z a
8

and D(V(2))

U| and similarly

1 0 0
<5 {10 Ha o UAEEE
=D(U(2)).

THEOREM 3. Let U(2) be a Dirichlet bounded harmonic function in
R. Then Ulz) has N-fine limt UY(p) on 4~ except at most a set of capacity
zero.

Proor. It is sufficient to show that the assertion holds for V(2) instead

of Uz Let Gi=(e: (i—1)3<V(@D<(i+1)d: 6=, Put Ti={pcd:

péG?} and S= G an T». Then S is the set of point p such that dia A(V(p))
=1 1

>0. Since 4¥—4¥ is of capacity zero, we shall show .S is of capacity zero.
If it were not so, we can find a number 6 and a closed set F in 4y such that

o(F, 2, R—R)>0 dia A(V(p))>6>0 for any pcF, where {R,} is an exhaus-
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tion of R and R, is a compact disk. Let m>~g—. Then by w(F, 2, R—R))

= }niw(Fﬂ G™, 2z, R— R,) there exists a number 7 such that
i=1

o(FNG?, 2, R—Ry) >0.

Let s(z)=V(2) for V@=(i—-1d: 0=, s(z)=(i—1) & for (i—1)7 =
V(2)<(i+1)3 and s(2)=(i—1)5 —{V(z)—((i+1) 8) for V(z)2(i+1)9. Then

1) =P =27 tiches t(m)=1 on G, =0 on aCr and Dir(z))< oo,

where Gr={z: (i—2) 0 <V(2)<(i+2) &}. Since R, and R, are compact and
G and G7 are subdomains, we can easily contruct a Dirichlet function a(z)
in R from #(z) such that a(2)=1 on G'™,=0 oG'™ and

D(a(z)><oo , (5)

where G'm"=(R—R)NG™ and G'»=(R—R)NG™
Since FC 4, o FN G2, R—R)=w(FNG'?,2,R—R,). By (5) o(G'™,2,G'™
can be defined and by the Dirichlet principle :
D(w(G'T, 2, G < D(a(z))< oy

0<D(o(G'FNF, 2 R—R))<D(0(G7NF, 2 CM)<D(a(G'7, 2 G'P) .
By the maximum principle | |
o(G™NF, 2, R—R) = o(G'"NF,z2G™>0.
Hence by Lemma 1 there exists at least a point p=F such that péé’;ﬂ.
Now dia V(p)=dia V(G";")<%<5. This  contradict p&F. Hence we hve

the theorem.

REMARK. If R is a unit circle: [2]<1, ¢’ is N-minimal. Let V(z2) be
a conjugage harmonic function of U(z). Then there exists a set E on |2|=1
such that both U(z) and V(z2) have fine limits on E, CE is a set of capacity
zero. We can find a path L(¢¥) tending to ¢” for any e¢”cE along which
both U(z) and V(z) converge. The area of |2/|<1 by fl2)=U(2)+iV(2) is
finite and there exist 3 points not taken by f(z) near |z|=1. Hence by
Lindel6f’s theorem we have the following.

THEOREM. If D(U(2))<oo in |2|<1. Then Ulz) has angular limits
on |2|=1 except a set of capacity zero.

Lemma 5.1) Let G be a subdomain in R—R, and le{zeR——RO:
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(G, z,R—R0)>éA} and QZZ{zER—RO: o(G, 2, R—R)< %} Then (4,—

4,(2)) N (di— 4,(2,)) is a set of capacity zero, where Al(Qi):{péAf" 2 2,2p):
=1, 2.

2) Let Gy be a subdomain in R—R, such that Gy decreases as M— oo
and o(Gy, 2, R—R;) | 0 as M—oo. Then the capacity of (4,—4,(2%)) |0

as M— oo, where Q‘”———{zER—RO: o (GH, z,R—Ro)<%}.

PrROOF. Assume there exists a closed set F in {(d,—4,(2,))} N {d,— 4,(2y)}
such that o(F, 2z, R—R)>0. Put o(G,2)=w(G, 2, R—Ry), .Q{,:{zER—Ro:

0
(G, z)<:3;—s} and Q{:{z: (G, z)>%—|—s}: O§e<% such that C,=0%
and C,=0%; are regular level curves? of (G, 2), i.e.
on !
C, z,

By 2iCf, FN4,(21)=0 and p&4,(2) for peF. Let o(F, 2, R—R)=U(z)
and g be its canonical distribution. Then =0 on CF and N(z, P)=Nco(2, p)

S. % 0(G, 2) dszg‘aa;w@ 2)ds = D(o(G, ).

by p%.@{, whence
| Usafd) = Ulz).

Hence U(z) has minimal Dirichlet integral (M. D.I) over £; among all func-
tions with the same value as U(z) on 02;. Hence U,(2)=>U(z), where U,(2)
is a harmonic function in 2{N R, such that U,(2)=U(z) on 2N R, and

0
¥y U.(2)=0 on 25N dR, and => means mean convergence and convergencce.

On the other hand (G, 2z) has M. D.L. over 25N 2 and ,(2)> (G, 2),

where w,(2) is a harmonic function in (2502 N R, such that wn(z):%—l—s

on CiNR,, :—g——e on C,NR, and %wn(z)=0 on R, N(2N2%). Since

[ saU@d= [ SrU@d=0ak0 | L U@di=0, we have by
C.Nky, 2naRy, C.NERy
Green’s formula

S Un(z)—aa;wn(z)ds+ j Un(z)-a—aﬁwn(z)dszo.

ClﬂRn Cann

By the regularity of C, and C, and U,(2)—U(z) on C;+C, we have by

letting n—o00?
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SU@)% (G, 2) ds+SU<z)%w(G, 2 ds=0. (6)

C, C,
By F ﬂﬁl(Qﬁ)zo, we have Upggy(2)=U(2) and U(z) has M. D.1. over Qs
with the same value on C,+dR, Let U,(2) be a harmonic function in
(R,—R)N 2 such that U,(2)=U(z) on C;NR,+0R, and %Un(z)ZO on

2%N06R,. Then U,(2)=>U(2). Let w,(2) be the function as before. Apply
Green’s fofmula in R,N(2N%2%). Then

N N y
Un(z)gh' @, (2) ds = ) wn(z)~a7 Un(2) ds.
(C,+C,)N Ry +3R,N(25NRY) (C+C)NRy+0R,N(2502])
0 0
S U,,(z)—a;z—wn(z)ds + S Un(z)%wn(z) ds
c.\Ry, C.ORy,
2 0 ., 1 0
:-(? —e> S *%Un(z)ds-l—(ig——i—e) S -a—nUn(z)ds.
C,OR, C.O\Ry,
Now | 2 Ugdsi= — (-2 tugds | L uswds={2 Uneds and
Now an W(2) ds = — an (2) ds, 3 Jo(2) ds = o .(2)ds an
C,ORy R, C,N\Ry, iR,
both of them——>S aa o(F, 2) ds D(w(F, 2)) >0 as n—oco. Hence by letting
iR,

n— oo,

1 .
{ (——)+ §+e>} o(F, 2))<0. (7)
(7) contradicts (6). Hence we have (1). |
Proof of (2) Let Gy=G, 2, and 2, be the domains defined in (1) with

respect to Gy. Assume C.P. of (4,—4,(2y)) | §>0 as M—oo. By (1) there
exists a closed set F in 4,(2,) such that

D(w(F, %, R—R))24>0  for every M. (8)

Let w(2)= w.(F, 2, R—R)). Then o(z)= § N(z, p) dp(p) and by ped(2),
N(z, p)=Nj (2, p) and w5 (2)=w(2).
(2, 2, R—R) =15 = w3, (2) = 0(2) and
C. P. of 2, =D(w(2, z,R—R0>)gD(w(z))ga>o. (9)
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Since o(2;, 2, R—R;) and (G, 2, R—R,;) have M. D.ILs over R—R,— £, and

o(@, % R—R)=1and (G, 2 R—R)=5 +¢ on 32, o(2y 2 R—Ro)zﬁ
Q)(G, z,R"“Ro) in R—RO—QI. Hence
C. P. of QIZS%(D(QI, z,R_Ro) ds
iR,
3 C.P.of Gyl O M- 10
_1+3E><..o w0 as M—co . (10)

(9) contradicts (10). Thus we have (2).

LeEMMA 6. Let G be a subdomain in R—R, and let F be a closed set
of positive capacity in 4,(R—G). Then there exists a subdomain 2 in R—G
and a Dirichlet function a(z) in R—G such that a(2)=1 on Q and a(z)=0
on 0G and w(FNQ, 2, R—Gy)>0.

PROOF.  N(z, p)—Na(z, p) >0 for pe4;(R—G). Let w(2)=w(F, 2, R—R)
>0 and g be its canonical mass. Then ¢>0 on F and

w(2)—wz(2) = U(2) >0.

Let Q:{zER—RO: U(z)>%}: d0=sup U(2)(>0). Then

©rnea(2) + @pa(2) = 0p(2) = (2) 2

Assume wppn 3(2)=0. Then

0(2) Z wpneera(2) = wpnoa(2) = w(z)

Now w(z)gar(z)—l—% on C2DOG and

0

9 + Fnon+é<w§(z)> § 9 +wz(2) .

o(2) = fUFnon+§(z> Z (?

Hence U(z)é%. This contradicts sup U(2)=4. Hence

>m0§+é

0<wrz(2) S w(FNQ, 2, R—R,).
Since D(U(2)) < o0, @(£2, 2, R—G) can be defined and by the Dirichlet principle
0<D(w(2NF, 2, R—R.,)) <D(w(2NF, z R—G))
<D(w(2, 2 R—G))

<= D(U(®)<oo.



272 Z. Kuramochi

Hence 2 is a domain required. Let a(2)=1 on 2 and = ((3/%> U(z) in R—£.
Then a(z) is a required Dirichlet function.

Let U(z) be a harmonic function in R. If there exists a closed set E
in [0, 1] such that (G, 2, R—Ry) | 0 as n—o0 and Dg_g,(U(2))< o0 for any
n, then we call U(2) an almost Dirichlet bounded harmonic function where

. _ g dp LU 1) 1

TuEOREM 4. Let U(z) be an almost Dirichlet bounded harmonic func-
tion. Then U(2) has N-fine limit U¥(p) on 4 except a set of capacity zero.
1 ( U(z)

~ Proor. It is sufficient to prove the assertion for V(z):§ 1+ 0GR

1 . . . o "
+—2—>. Suppose there exists a closed set E in [0, 1] satisfying the condition

of the theorem. We show V(2) has fine limit on 4,(R—G,) except a set of
capacity zero. Assume V(p) does not exist on a set of positive capacity in
AI(R—G—,,), then we can find a number 6 >0 and a closed set F of positive
capacity in 4;(R—G,) such that dia A(V(p))>éd for any p in F and o(F, 2,
R—R)>0. Since we consider V(2) near 4, we can suppose without loss of
generality that G,N R,=0. Then by there exists a domain £ in
R—R,—G, and a Dirichlet function a(z) such that

o(FN%2, 2z, R—Ry—G,) >0 and
a(2)=1 on 2, =0 on dR,+9G, (or =0 on R,+G,).
Let m>% and GTZ{zER: z—f_nl<V(z)< z—I—l}’ G;"z{zER: 1=2

m m

<V(z)< z;;z } Then there exists at least one 7 such that o(FN2NGP, 2,
R—Ry,—G,)>0.

Let t(z) be the function in the proof of Theorem 3. Then #(z)=1
on G*=0 on R—G? and D(t(2))<o by D(V(2)<co.

R—Ry—@Qy —R,— @

Put §(2) = min (@(2),2(2). Then f(2)=1 on 2N G}, =0 on aR,+3G,+
{0G™N(R—Ry)} and Dr(f(2))< 0. Hence o(FN2NGT, 2, (R—R,—G,) NG
can be defined. By the Dirichlet principle

0<D(((FN2N G}, 2 (R—Ri—Gy)))
<D(w(FNQNGY, 2 (R—R—G)NGY)).
Hence by Lemma 1, there exists a point p in F with {(R—Ry,—G,)N Gm
gp i e. A(V(p))§%<5. This contradicts pF. Whence V(p) exists on
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4,(R—G,) except a set of capacity zero. Let 2,={zR—Ry: 0(G,, 2, R—R))
1
<3 Then 2, C(R—Ry—G,) and V(p) exists on 4,(2%) except capacity zero.

2,/ as n—co. By Lemma 5, capacity of (4,—4,(2%)) |0 as n—oo. Thus
U¥(p) exists on 4, except a set of capacity zero.

3. Beurling’s Theorem for analytic functions.

Suppose a metric d is given on R+4 such that d is compactible in R
to the one defined by local parameters and that R=R-+4 and 4 are compact
with respect to d. If d satisfies, for any pER and 7 <r, the condition 1)
and 1'), it is called H. B. separative and H. D. separative respectively.

Let C(ry, p)DC(ry, p): 13>7, be two circles: C(r, p)={2€R: d(z, p)<r}

1) Let 2_.={2: wee(C(r, p)N4,2)>1—¢} : G=C(ry, p), then

lim w(2,_.NC(r, p)N4,2) =0.

e—0

1) Let 2,_.={=R—R,: w¢c(C(ry, p)N4d,2, R—R)>1—¢}. Then
lim o(2;_.N C("l,.P) N4, 2z, R—Ry)=0.
s—0

We proved if d is H. D. separative, then it is H. B. separative. K-
Martin’s topology is H. B. separative and N-Martin’s is H. D. separative.

2) Let d be a metric. If for any two compact set F; and F,: F;N F,=0,
there exists a continuous (in R) Dirichlet function on R, U(z) exists such that
U(z)=1 on F; and U(2)=0 on F,, We call a metric satisfying the condition
(2) a D-disjoint metric. Then we have.

Lemma 7. If d is D-disjoint, it is H. D. separative. N-Martin’s is
D-disjoint.

Proor. Let d be D-disjoint. Since H. D. separability depends on 4,
we can suppose C(ry, p) N R,=0. Let C(r, p)=C(ry, p) and G=C(ry, ). Then
by {2,_.NC(r, p)} CC(r, p) and by the Dirichlet principle ‘

D(w(2:-.NC(r, p)N 4, 2 R—R) < D((@:_.N C(r, ) 4, 2, G))
| < D(w(C(r, p), 2 G))< 0.
Assume é(2)=lim o(2,_.C(r, p)N 4, 2, G)>0. Let o(2)=0(C(r, p)N 4, 2,
e—0
R—R,). Now since wgg(2)=1—¢ on 2,_,, :

e o(2,_, 2, R—Ry)
&

weg(2) = (1—
=(1— ) (-, n C(r, P) N4, =, G) .

Let e—0. Then
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woa(2) Z &(2) .

#(z) is a C.P. of {,_,NC(r,p)N4}: e—0in G. Let C,_, and C; be regular
level curves of @&(2). Now w¢g(z) has M. D. I. over G. By Green’s formula

chg(z)—é% o(2) ds = S 6(2) o 6(2) d

C& Ci—
Since wee(2)<1 in R,
. o . a J
D(w(z))zgﬁw(z) ds;SwCG@)Ww(z) ds = S woal(2) 5y 6(2) ds
Cs Cs C_,

> (1—5)558;1—(;,(2) ds=(1-9 D(6(z)).

Cis

Let ¢—0, then we have a contradiction. Hence é(2)=0 and 4 is H. D.
separative.

We shall show N-Martin’s topology is D-disjoint. At first we suppose
F, and F, are contained in R— R—R,. F,NF,=0 implies dist (Fi, Fz) >0 and
N(z, p)+=N(z,q) for peF; and g=F,. Assume N(z, )= N(z, p) on R, and
there exists a point on 9R; with N(z, q)>N(z, p),. then

3 5 ;
o7 = SWN(z, g) ds> X 2 Nz p) ds =2z

R, 3R,

Also assume N(z,p) = N(z,q) on R, then by the harmonicity N(z,p)=
N (z, q) these contradict dist (p, g)>0. Then there exists at least one point
2 on 9R; such that

N<q’2,>:Nz”Q)<N(z’,P> N( )

Let A,,q(2 ( ( , E;’ z)) (< ,))) Then since 2 €dR,, A,,(2)
is continuous in R— Ry, D(A,,(2))<oco and A,,(2) is a Dirichlet function in

R—R, with Ap,q(z):0 on 0R,, Now Ap,q(P):l, Ap,q(Q)—_—O., For any given
point ¢ in F, and %->s>0, there exists a neighbourhood wv(g) such that

"o
A, (2)<ein v(g). We cover F; by 'Zv(qi): o< 0o and put A,(2)=min (A,(2)).
i=1 p i
Then A,(p)=1 and A,(2)<e on F,. Also we can cover F, by Zo:‘v(pj) such
Jo

that A, (2)>1—c¢ in v(p;). Let A(z)=max(A,/(z)). Then

J
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A(2) =min (1, max (O, Al(_z_)—z_ee—»
is continuous in R—R,, A(2)=1 on F,=0 on F, and D(A(2))<oo. Next
let F; and F, be compact in R such that FiNnF,=0. Let F,=(R—R)NF;
and F/=F;NRy: i=1, 2. Then since F/ is compact in R, evidently there
exists a Dirichlet function V) (z) such that Vi(2)=0 on F},=1 on F,. Simi-
larly there exists a Dirichlet function V,(2) such that V,=1 on F/,=0 on F,.
Let A(z) be a Dirichlet function such that A(2)=1 on F,=0 on F}. Then

U(z) = max <V2(z), min <A (2), V; (z)))

is a Dirichlet function with value 1 on F, and 0 on F,. Hence N-Martin’s
topology is D-disjoint.

Let R be a Riemann surface and let w=f(2) be an analytic function
from R(&0,) into R: weR, 2R. For any point p of R there exists a
local parameter disk C(p) such that the area of R over C(p) is fininite and
there exists a number m such that R—R, is covered by R only a finite
number of times, then we say R is an almost finitely sheeted covering sur-
face, where {R,} is an exhaustion of R. Then we proved.

THEOREM 5. Suppose on R N-Martin’s topology is defined and an
H. D. separative metric is given on R. If R is an almost finitely sheeted
covering surface over R, then w=f(z) has N-fine limits at 4 except a set
of capacity zero.

In the following we shall extend this theorem but we suppose a D-
disjoint metric rather than H. D. separative metrics.

Non thick-property at a point p= R.

Suppose a D-disjoint metric is given on R. Then

_ 1
Crynsi(p) = {wER : ~2—,};7<dist (w0, P)<ﬁ}

is a ring. We can find a ring G which is a subdomain such that G con-
sists of (8G); and (0G), and

1) (0G), separates 9C, : Cn(p):{wel?: dist (w,p)<71n~} and (9G), .

2) (0G), separates (dGy) and 6C,,;(p) in every components of C, ,.;(p)

3) dist ((0G)y, (6G),) >0. _
Then there exists a Dirichlet function H(w) in G such that H(w)=0 on

(0G);, H(w)=a on (0G),, H(w) has M. D. 1. over G and D(H(w))=2ra, i.e.

_ 270((0G),, w, G) dae 2r
~ D(0(0G)y, 2, G)) " *T D(w(@G) 2, G)
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Let J(w) be the conjugate harmonic function of H(w). Put {={(w)=-exp
(—(H(w)+iJ(w))): {=&+iy. Then {(w) maps G onto 1>[{| >exp(—a)

conformally with radial slits whose areal measure=0, because H(w) has

M.D.I. and Saa—nH(w) ds=2r for almost §: 0<6<a. Let 2 be a subdomain

C
in R and let"n(w) be the number of times when w is covered by f~}(G)—£.

Then the area of f1(G)—2 over 1>|{|>exp(—a) is given by

A(f1(G)~2) = SSn(C) dedy: n(g) = n(w).

(3G), divides R into two parts: E, and E, such that any component of E,
contains at least one comonent of C,(p) and any component of E, contains
at least one component of C,.;(p). Let H(w)=0 on E;, Similarly (9G),
divides R into two parts E; and E, such that any component of E, contains
at least one component of C,,;(p). Let H(w)=a on E, Then H(w) is
a Dirichlet function in R. Let U(2)=H(f(2)). Then U(z) is harmonic in
fYG), U()=0 on f((0G)), Uz)=a on f*((0G); and continuous in R.
Now in f4G)
Ue)= —log || : 1>|¢] >exp(—a), £ =L (A(2)

Dy-1r-o(Ul(2)) is given by

SS n(0) (% U<c>>2r drdi<  sup (—% U(Q)ZSS n(é) rdr d

1>¢[>exp(—a)

<exp 2« A(f‘l(G)——.Q) s {=reé’.
If we can find a ring G in Cn,nﬂ-(pj satisfyiﬁg the conditions 1), 2) and 3)
and the quantity A(fY(G)—92) (deﬁned Witll_respect to G) is finite, we
say C, n+i(p) is non thickly covered by. R—9. Further if there exists a
sequence 7y, 73, +-- ; lim n;=oco such that G, ., (p) is non thickly covered,
we say p is non thickly covered by R—'.Qt.‘ :

ReMARK. Let R be a covering surface of almost finitely sheeted over
R, then it is easy to see every point of R is non thickly covered by R, in
this case 2 is empty. L

THEOREM 6. Let R(€20,) and R the Riemann surface and w=f(2) be
an analytic function from R into R. Suppose on R a D-disjoint metric is
defined. Let {2,} be a decreasing sequence of subdomains such that

() <~Qn_ﬂ (R—Ry), ﬁ—RO }0 as n—oo
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and every point p of R is non thickly covered by R—Q, for every n. Then
F(2) has N-fine limits at 4 of R except a set of capacity zero.

- Proor. We consider the behaviour of (2) near 4-of R. We can
suppose without loss of generality that 2, is contained in R—R, We show
Ff(2) has finite limit /(p) in 4,(R—R,—0,) except a set of capacity zero.

N ~ ~
Assume dia A(f(p))>0 at a set of positive capacity in 4;(R—Ry—2n),
then we can find a closed set F in 4,(R—R,—,) of positive capacity :
~ o~ N ,
o(F, 2, R—Ry) >0 and dia A(f(p))>d: pcF. Fixm,: 2m°>~§~. Since for
any point pER, there exists a ring Cuip mp+ s (P): m(p)=m, such that
Coutp.mep + i (P) is non thickly covered by R—2,. Then we can find a finite

number of Crcpy mepo+ion(£d) such  that 3} Cuoppiyop (P) DR, Now FC4,(R

—R,—9,) and o(F, 2, R—R)>0. By there exists a domain £
in R—R,— 0, such that o(FN®, 2, R—Ry—2,)>0 and a Dirichlet function

Vi(2) in R with Vi(2)=1 on 92, V,(2)=0 on az?_0+a.on. Now va(Fﬂ Qnft
(Crnipp+iwy (Pi)s 25 R—R,—3) = o(FNQ, =2, R—R,—2,)>0. There exists at
least one point p such that

w(Fﬂ Qﬂf—l<cm(p)+j(p) (p), z, ﬁ—éo_gn> ) >0. (11)

Let m(p)=m. Since Cpmijm»(p) is non thickly covered by R—R,—2,, there
exists a continuous function U(z2) in R— @, such that U(2)=0 on f(aCn(p)—
2.),=1 on fYCn, jp () — 2, and D(U(2))<oo. Let V(2z)=min (Vi(z2), U(2)).
Then V(2)=1 on {2 NfCurjw(p))}, =0 on 22+ R — f(Cep) +Ry and
D(V(z))<co. Hence o(fCoysp(p)N12 2 f(Culp) 1 (R—Ro=2,) can be
considered. By the Dirichlet principle and by (11)

D(0(FNf*Crssin(9)) 0 2, 2 (R—Ro— Z) N £(Cu(P))
> D(@(F O (Cos i (81 2, 2 R— Ry 22)) ) >0.
Hence there exists at least one point p such that
(R—Ro— 20 f(Calp)} 2p: pEF.
Hence there exists at least one component of f(C,(p)) which is a fine

neighbourhood of p and dia A(f(p)) §‘2lm:<%- This contradicts pEF.

Hence f(p) exists on 4, (R—R,—3,) except a set of capacity zero. Next by
Lemma 4, similarly as [Theorem 4, f¥(p) exists on 4 of R except a set of
capacity zero and we have [Theorem 6.
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REMARK. In case we consider fine limits of f(2) relative to a D-disjoint
metric (or N-Martin’s topology), Beurling’s theorem holds under weaker con-
dition than almost finitely sheeted. Especially in case R is a unit circle:
|2/ <1 and R is a Riemann sphere, every point ¢ is N-minimal and N-
Martin’s topology is compactible to Euclidean metric on |z|=1. Then by
Lindel6f’s theorem and by Lemma 1, 4) we have the following.

THEOREM 7. Let w=f(2) be analytic function from |2|<1 into a w-
Riemann sphere R. If w=f(z) does not take 3 points near |2| =1 and every
point of R is non thickly covered by R. Then w= (2) has angular limits
on |2|=1 except a set of capacity zero.
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