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A special type of finite groups with an
automorphism of prime order

By Hiroshi MATSUYAMA
(Received January 14, 1982)

\S 0. Introduction and notation

In this paper, G denotes a finite group with an automorphism \sigma of
prime order r, where (r, |G|)=1 . Let H=G_{G}(\sigma) . We shall use the following
notation:

Let K be a \sigma-invariant subgroup of G.

\tilde{T}_{K}=\{x^{-1}x^{\sigma}|x\in K\}

For an element h\in K\cap H^{f} , where H^{g}=H-\{1\} ,

T_{K}(h)=\{y\in T_{K}|[y, h, \cdots, h]=1\} .

M_{K}(h)=hT_{K}(h)\prime r

L_{K}(h)= \bigcup_{g\in K}M_{K}(h)^{g}

Especially, we delete the suffix G in the case K=G. That is:

T =\tilde{T}_{G}

For h\in H^{\#} ,

T(h)=T_{G}(h) ,

M(h)=M_{G}(h) ,

L(h)=L_{G}(h)(

Furthermore, \sigma^{g} denotes g^{-1}\sigma g in the semidirect product G\langle\sigma\rangle .
If \tilde{T} is a subgroup of G, then we say G is of splitting type with respect

to \sigma. If T(h) is a subgroup of G for every element h of H^{\#} , then we say
G is of locally splitting type with respect to \sigma. Suppose G is of splitting
type (with respect to \sigma, then \tilde{T} is a nilpotent normal complement of H in
G by [3]. Hence by Lemma 1. 5, G is of locally splitting type. The con-
verse holds under the additional condition. More precisely, we shall show
the following :
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THEOREM A. Suppose G is a solvable group of locally splitting type
with respect to \sigma. Then G is of splitting type with respect to \sigma.

THEOREM B. Suppose G is of locally splitting type with respect to \sigma

and suppose G satisfies the following condition:
Whenever h\in H^{t} and g\in G, M(h)\cap M(h)^{g}=\phi or M(h) . Then G is of

splitting type with respect to \sigma.
All groups considered are assumed to be finite. Other notation is stand-

ard and taken from [1].

\S 1. Preliminary results and proof of Theorem A

Lemma 1. 1. Let P be a p-group and let Q be a subgroup of P, where
p is a prime. If Q is not normal in P, then there exists x\in P-N_{P}(Q)

such that both Q and Q^{x} are contained in N_{P}(Q)\cap NP\{QX) .
PROOF. Let Q^{*}=N_{P}(Q) and let x\in N_{P}(Q^{*})-Q^{*} . Then Q and Q^{x}

satisfy the assertion of Lemma 1. 1.
Now we restate the Definition in [2].

DEFINITION 1. 2. Let Y be a subgroup of a group X which controls
fusion in Y with respect to X. Let \Psi, \Gamma and \Delta be mappings from Y^{\#} to
the family of subsets of X. If \Psi, \Gamma and \Delta satisfy the following conditions,
then we say that (\Psi, \Gamma_{2}\Delta) is a complementary triple of Y in X.

(1. 2. 1) For every y\in Y^{t} ;
(i) \Psi(y) is a subgroup of X and \Psi(y)^{w}=\Psi(y^{w}) for w\in Y,
(ii) \Gamma(y)=y\Psi(y) ,
(iii) \Delta(y)=\cup\Gamma(y)^{x},

x\epsilon x

(iv) N_{X}(\Gamma(y))=\Psi(y)C_{Y}(y) .
(1. 2. 2) Whenever y\in Y^{\mathfrak{g}} and x\in X, \Gamma(y)\cap\Gamma(y)^{x}=\phi or \Gamma(y) .
(1. 2. 3) (X- \bigcup_{z\in Y\#}\Delta(z))\cap N_{X}(\Gamma(y))=\Psi(y) for every y\in Y^{u} .
(1. 2. 4) Whenever y_{1} and y_{2} are elements of Y^{p} which are not conjugate

in X, then \Delta(y_{1})\cap\Delta(y_{2})=\phi .
Lemma 1. 3. Let Y be a subgroup of a group X which controls fusion

in Y with respect to X. Suppose there exists a complementary triple (\Psi, \Gamma, \Delta)

of Y in X. Then X- \bigcup_{z\in Y\#}\Delta(z) is a normal complement of Y in X.

PROOF. See the proof of Theorem in [2].
In the succeeding part of this section, we show some properties of G.
Lemma 1. 4. Let z=g^{-1}g^{\sigma} . Then Tz^{-1}=T^{g} .
PROOF. Since x^{-1}x^{\sigma}(g^{-1}g^{\sigma})^{-1}=g^{-1}gh^{-1}(hg^{-1})^{\sigma}g , Lemma 1. 4 is immediate.
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Lemma 1. 5. Suppose G is of splitting type. Then (T, M, L) is a
complementary triple of H in G.

PROOF. By [3], the result follows from Theorem (3. 3) in [2].

Lemma 1. 6. Let h\in H^{t} . Suppose T(h) is a subgroup of G. Then
tfie following hold:

(i) N_{G}(M(h))=T(h)C_{H}(h) .
(ii) If u is an element of H^{t} which is not conjugate to h in H, then

M(h)\neq M(u)^{g} for every element g of G.
PROOF. For (i), let K=N_{G}(M(h)) . Then K is a \sigma-invariant subgroup

of G. Let x\in\tilde{T}_{K} . As [x, h]\in T(h) , we get x\in T(h) . Hence, T_{K}\subseteqq T(h) ,
which implies that K is of splitting type. If y\in H\cap K, then [y, h]\in T(h)\cap

H=\{1\} , resulting H\cap K\subseteqq C_{H}(h) . Therefore K is contained in T(h)C_{H}(h) .
Since the converse inclusion is obvious, (i) is verified. Next, suppose (ii) is
false. Then there exists an element g of G with M(h)=M(u)^{g} . Because
M(h) is both \sigma-invariant and \sigma^{g}-invariant, there exists an element y of K
with \sigma^{y}=\sigma^{g} . It follows that H^{g}\cap M(h) contains h^{y} . Thus we have h^{y}=u^{g},
a contradiction. This proved Lemma 1. 6.

Lemma 1. 7. Let W= \bigcap_{g\in G}T^{g} . Then the following hold:

(i) W is a normal subgroup of G.
(ii) \tilde{T}W=WT=\tilde{T}

PROOF. To prove (i), since W is a \sigma-invariant normal subset of G, it
suffices to show that W is a subgroup. Let w\in W. Then w is contained
in \tilde{T}^{g} for every element g of G. By Lemma 1. 4, we get \emptyset w^{-1}=T^{z} for
some element z of G. Hence, Ww^{-1}= \bigcap_{g\in G}\tilde{T}^{g}w^{-1} is cotained in W. It follows

that Ww^{-1}=W from |Ww^{-1}|=|W| . Thus (i) is proved. For (ii), let x^{-1}x^{\sigma}\in

T and y\in W. Since W is a normal subgroup of G, there exists an element
u of W with (u^{-1}u^{\sigma})^{x}=y . Then, yx^{-1}x^{\sigma}=(ux)^{-1}(ux)^{\sigma} , which concludes \tilde{T}W=

W\tilde{T}=\tilde{T} Thus Lemma 1. 7 is proved.

Lemma 1. 8. Let K be a \sigma-invariant nilpotent subgroup of G. Suppose
G is of locally splitting type. Then K is of splitting type.

PROOF. Since \tilde{T}_{K} is contained in T_{K}(h) for every h\in K\cap H^{\gamma} , the con-
clusion is obvious.

Lemma 1. 9. Suppose G is of locally splitting type and F(G)\cap H\neq 1 ,

where F(G) is the Fitting subgroup of G. Then G is of splitting type.

PROOF. Let h\in H^{\#}\cap F(G) . Then [g, h, \cdots, h]=1 for every g\in G . Thus
we have \tilde{T}\subseteqq T(h) , which implies Lemma 1. 9.
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In the following Lemma 1. 10, let W= \bigcap_{g\in G}\tilde{T}^{g} and \overline{G}=G/W.

Lemma 1. 10. Suppose G is of locally splitting type and not of splitting
type. Assume furthermore, K is of splitting type for every a-invariant
proper subgroup K of G. Then T_{\overline{G}}(\overline{h})=\overline{T(h}) for every h\in H^{\#} . Especially,
\overline{G} is of locally splitting type.

PROOF. First we show W is contained in Z(G) , the center of G.
Suppose false. Then we can choose a Sylow p subgroup V of W which
is not contained in Z(G) . Let K=C_{G}(V) . Since K is a \sigma-invariant proper
normal subgroup of G, K is of splitting type and F(K) is normal in G,
where F(K) is the Fitting subgroup of K. Suppose F(K)\cap H\neq 1 . Since
F(K)\subseteqq F(G) , we get F(G)\cap H\neq 1 . Applying Lemma 1. 9, we conclude
that G is of splitting type, a contradiction. So we may assume F(K)\cap H=1 .
On the other hand, as \tilde{T}_{K} is contained in F(K) , it follows that F(K)=\tilde{T}_{K}.
Now let q be a prime divisor of |G| distinct from p and Let Q be a \sigma-

invariant Sylow q-subgroup of G. Set Q^{*}=\tilde{T}_{Q} . Since Q^{*}V is nilpotent, we
get Q^{*}\subseteqq K. Let P be a \sigma-invariant Sylow p-subgroup of G and let P*=\tilde{T}_{P}.
Then \tilde{T}_{K}P* is a \sigma-invariant subgroup of G. However, as \tilde{T}_{K} contains Q^{*} ,
we have \tilde{T}_{K}P^{*}=\tilde{T} A contradiction. Thus we assert W\subseteqq Z(G) . Next,
let \overline{x}\in T_{\overline{G}}(\overline{h}) for h\in H^{t}. Since \tilde{T}_{\overline{G}}=T/W by Lemma 1. 7, we get x\in\tilde{T}_{r}

Then [x, h, \cdots, h] is contained in Z(G) , follows x\in T(h) , which implies
T_{\overline{G}}(\overline{h})\subseteqq\overline{T(h}) . Since the converse inclusion is immediate, Lemma 1. 10 is
proved.

PROPOSITION 1. 11. Suppose H is a Hall subgroup of G. Then G is
of splitting type.

PROOF. See Corollary (3. 5) in [2].

PROOF 0F THEOREM A. Let G be a minimal counterexzample. Since
G satisfies the assumption of Lemma 1. 10, we conclude \cap\tilde{T}^{g}=1 . Let

g\in G

F=F(G) . Then F\cap H=1 by Lemma 1. 9, which implies F \subseteqq\bigcap_{g\in G}Tg, a con-
tradiction. Thus we proved Theorem A.

\S 2. Proof of Theorem B

Let G be a minimal counterexample to Theorem B. We show that
(T, M, L) is a complementary triple of H in G, which yields a contradiction.

(2. 1) Let K be a \sigma-invariant proper subgroup of G. Then K is of
splitting type.

PROOF. Let h\in K\cap H^{\#} . Then obviously, T_{K}(h)\subseteqq T(h) . On the other
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hand, since \tilde{T}\cap K=\tilde{T}_{K} , we have T(h)\cap K\subseteqq T_{K}(h) , follows T_{K}(h)=T(h)\cap K.
Thus K is of locally splitting type. Now, suppose M_{K}(h)\cap M_{K}(h)^{y}\neq\phi for
h\in K\cap fH^{l} and y\in K. Then M(h)\cap M(h)^{y}\neq\phi it follows that M(h)=M(h)^{y}

by the assumption. As M_{K}(h)=M(h)\cap K, we conclude M_{K}(h)=MK(h)y .
But then K satisfies the assumption of Theorem B. Hence by the minimality
of G, K is of splitting type. This proves (2. 1).

(2. 2) \bigcap_{g\epsilon G}\tilde{T}^{g}=1 .

PROOF. Let W=\cap\tilde{T}^{g} and \overline{G}=G/W. Suppose W\neq 1 . Then by Lemma
gC.G

1. 10 and (2. 1), G is of locally splitting type. Assume M_{\overline{G}}(\overline{h})\cap M_{\overline{G}}(\overline{h})^{\overline{g}}\neq\phi

for h\in H^{\#} and g\in G . Since T_{\hat{G}}(\overline{h})=\overline{T(h}) , M_{\overline{\alpha}}(\overline{h})=\overline{M(h}) . Hence, \overline{M(h}) \cap

\overline{M(h)^{g}}\neq\phi . Let K=\langle h\rangle T(h)W. As K is of splitting type, M(h)W is con-
tained in L_{K}(h) by Lemma 1. 5. Therefore, we conclude M(h)^{z_{1}}\cap M(h)^{qz_{2}}\neq\phi

for some elements z_{1} and z_{2} of W. By the assumption of Theorem B, it
follows that M(h)^{z_{1}}=M(h)^{gz_{2}} . But then \overline{M(h}) =\overline{M(h})^{z_{1}}=\overline{M(h)^{gz_{2}}}=\overline{M(h)^{g}}, which
implies that \overline{G} satisfies the assumption of Theorem B. Then by the mini-
mality of G, we conclude \overline{G} is of splitting type, a contradiction. Thus (2. 2)
is verified.

(2. 3) Let P be a \sigma-invariant Sylow p-subgroup of G and let P^{*}=T_{P},
where p is a prime. Then P^{*} is weakly closed in P with respect to G.

PROOF. Suppose false. The by Lemma 1. 1, there exists some element
g of G with P^{*}\neq(P^{*})^{g}, (P^{*})^{g}\subseteqq P and P^{*}\subseteqq N_{G}((P^{*})^{g}) . Set K=P^{*}(P^{*})^{g} . Re-
placing g by another element if necessary, we may assume g\in N_{G}(K) .
Since p*\subseteqq K, we get K\cap H\neq 1 . Let h\in K\cap H^{g} . Then there exists an
element x of (P^{*})^{g} with x\in hP^{*} . On the other hand, as h^{g}\in K\cap(H^{g})^{\#} ,
there exists an element y of P^{*} with y\in h^{g}(P^{*})^{g} . Hence we conclude w\in
hP^{*}\cap(hP^{*})^{g}\subseteqq M(h)\cap M(h)^{g} . By the assumption, it follows that M(h)=
M(h)^{g} . But then T(h)=T(h)^{g} . However, as P^{*} is the Sylow p-subgroup
of T(h) and (P^{*})^{g} is the Sylow p-subgroup of T(h)^{g}, we obtain P*=(P^{*})^{g} .
A contradiction. Thus we proved (2. 3).

(2. 4) Let P* be as defined in (2. 3) and let K be a \sigma-invariant proper
subgroup of G which contains (P^{*})^{g} for some g\in G. Then (P^{*})^{g} is the
Sylow p-subgroup of \tilde{T}_{K} . Especially, (P^{*})^{g} is normal in K.

PROOF. Let P_{1} be a \sigma-invariant Sylow p-subgroup of K and let P_{2} be
a \sigma-invariant Sylow p subgroup of G which contains P_{1} . Then there exists
some x\in K with (P^{*})^{gx}\subseteqq P_{1} . Hence by (2. 3), we have (P^{*})^{gx}=P_{2}^{*}=T_{P_{2}} .
But then, P_{2}^{*} is contained in T_{K} and hence normal in K. It follows that
(P^{*})^{g}=P_{2}^{*}’ . This implies (2. 4).

(2. 5) Let K be a maximal \sigma-invariant subgroup of G with \tilde{T}_{K}\neq 1 .
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Let \tilde{T}_{K}=V_{1}\cross V_{2}\cross\cdots\cross V_{s}, where V_{i} is a Sylow p_{i} subgroup of \tilde{T}_{K} for a
prime p_{i}, i=1,2, \cdots , s . Let P_{i} be a Sylow p_{i} -subgroup of G which contains
V_{i} . Then V_{i}=\tilde{T}_{P_{i}} , i=1,2, \cdots , s .

PROOF. Let P_{i}^{*}=T_{P_{i}} , i=1,2, \cdots , s . Since V_{i}\subseteqq P_{i}^{*} and NG(Vi)=K, we
have N_{P_{i}}*(V_{i})\subseteqq \mathcal{T}_{K}^{\tau} . It follows that V_{i}=N_{P_{i}}*(V_{i}) , resulting V_{i}=P_{i}^{*} . This
concludes (2. 5).

(2. 6) (G- \bigcup_{\# z\epsilon H}L(z))\cap N_{G}(M(h))=T(h) for every element h of H^{\#} .

PROOF. Let S= \bigcup_{\# z\in H}L(z) . Since N_{G}(M(h))-T(h) is contained in S, it

suffices to show S\cap T(h)=\phi . Suppose to the contrary that S\cap T(h)\neq\phi

for some element h of H^{\#} . Consequently, T(h)\neq 1 . Let K be a maximal
\sigma-invariant subgroup of G which contains T(h) . Set V=\tilde{7}_{K}^{\tau}. Then by (2. 5),
V=P_{1}^{*}\cross\cdots\chi P_{s}^{*} with P_{i}^{*}=\tilde{T}_{P_{i}} , where P_{i} is a \sigma-invariant Sylow p_{i} subgroup
of G for a prime p_{i} , 1\leqq i\leqq s . Let 1=V_{0}\subset V_{1}\subset\cdots\subset V_{t}=V be the upper
central series of V. Then there exists some m, 0\leqq m<t , with S\cap V_{m}=\phi

and S\cap V_{m+1}\neq\phi . Choose elements u\in H^{\#} and g\in G satisfying M(u)^{g}\cap

V_{m+1}\neq\phi . Fix an element w of M(u)^{g}\cap V_{m+1} . Let X=N_{G}(M(u)) and Y=^{r}\tilde{\Gamma}_{X}.
Now we show that V_{j} is contained in Y^{g}, 0\leqq j\leqq m , by induction on j. For
j=0, the assertion is obvious. Suppose V_{j-1} is contained in Y^{g} . Then
[V_{j}, w]\subseteqq V_{j-1}\subseteqq Y\emptyset . It follows that V_{j} is contained in X^{g}, hence we get
V_{j}\subseteqq Y^{g} by the choice of m. Thus the assertion is proved. Therefore,
V_{m}\subseteqq Y^{g} . But then, as [7, w]\subseteqq[V, V_{m+1}]\subseteqq V_{m}\subseteqq Y^{g} , follows V\subseteqq X^{g} . However
by (2. 4), we obtain P_{i}^{*}\subseteqq Y^{g}, 1\leqq i\leqq s . This implies w\in V\subseteqq Y^{g}, a contradicts
tion. Thus (2. 6) is proved.

(2. 7) Let h_{1} and h_{2} be elements of H^{\#} which are not conjugate in H.
Then L(h_{1})\cap L(h_{2})=\phi .

PROOF. Suppose false. Then there exists an element g of G with
M(h_{1})\cap M(h_{2})^{g}\neq\phi . Fix an element w of M(h_{1})\cap M(h_{2})^{g} . Let X_{i}=N_{G}(M(h_{i})) ,
i=1,2 . Since \langle h_{1}\rangle T(h_{1}) is nilpotent, there exists a central series 1=Z_{0}\subseteqq

Z_{1}\subseteqq\cdots\subseteqq Z_{t}\subseteqq Z_{t+1}=\langle h_{1}\rangle T(h_{1}) , with Z_{t}=T(h_{1}) . We show Z_{j}\subseteqq T(h_{2})^{g} , 0\leqq j\leqq t ,
by induction. For j=0, the result follows immediately. Assume Z_{j-1}\subseteqq

T(h_{2})^{g} . Then [Z_{j}, w]\subseteqq Z_{j-1}\subseteqq T(h_{2})^{g}, follows Z_{j}\subseteqq X_{2}^{g} . By (2. 6), Z_{j}\subseteqq T(h_{2})^{g} .
Therefore, we conclude the assertion. Whence we get Z_{t}=T(h_{1})\subseteqq T(h_{2})^{g} .
Conversely, exchanging T(h_{1}) for T(h_{2})^{g} and applying a similar argument,
we have T(h_{2})^{g}\subseteqq T(h_{1}) . Thus T(h_{1})=T(h_{2})^{g} . Consequently, M(h_{1})=M(h_{2})^{g} .
However, this contradicts (ii) of Lemma 1. 6. Hence we proved (2. 7).

(2. 8) (T, M, L) is a complementary triple of H in G.
PROOF. By the definition of T, M and L, (i), (ii) and (iii) of (1. 2. 1) is
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satisfied. From (i) of Lemma 1. 6, follows (iv) of (1. 2. 1). On the other
hand, (2. 6) and (2. 7) imply (1. 2. 3) and (1. 2. 4), respectively. Since (1. 2. 2)
is assumed, we conclude (2. 8).

(2. 9) A contradiction.
Let N=G-\cup L(z) . By Lemma 1. 3, N is a normal complement of

z\in H\#

H in G. Since L(h) is \sigma-invariant for h\in H^{\mathfrak{t}}, N is a \sigma-invariant subgroup
of G. Considering N\cap H=1 , we have N=\tilde{T}, contradictory to our assump-
tion. This completes the proof of Theorem B.

APPENDIX. The following question has been left unsolved.
QUESTION: Suppose G is of locally splitting type with respect to an

automorphism \sigma of prime order. Is G a group of splitting type .p
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