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1. Introduction.

In this paper, we investigate the automorphism group of a non-associ-
ative algebra V of the following type: the binary product is defined on its
basis elements x_{1} , . . . x_{n} satisfying

(i) x_{i}x_{i}=cx_{i}(c\neq 0) for all i
(ii) x_{i}x_{j}=-x_{j}x_{i} for i\neq j

and the product is extended linearly to general vectors. Let us call this an
almost alternating algebra, a . a . algebra for brevity. For simplicity we
assume that the characteristic of the base field of V is zero throughout. We
call an a . a . algebra non-trivial if x_{i}x_{j}\neq 0 for some distinct indices i and j.

There have been several works on the non-associative algebras. Some
showed that interesting finite groups appear as the automorphism groups of
non-associative algebras. In this paper, we consider the following question:
Can any finite group be an automorphism group of a certain non-associative
algebra ? (See Theorem 3. 7 and Theorem 3. 12 (D. Tambara).) We also
wish to give many such examples.

In section 2, the basic properties of a . a . algebras are discussed. It is
shown that the automorphism group of an a . a . algebra can be viewed as a
subgroup of a symmetric group of certain degree. In section 3, we construct
several examples of a . a . algebras and calculate their automorphism groups.
These are associated to finite graphs (Theorem 3. 1): sharply 2-transitive
groups (Theorem 3. 2) ; sharply 3-transitive groups (Theorem 3. 3) ;
orthogonal groups (Theorem 3. 6) : abstract groups (Theorem 3. 7). This
work is a part of the author’s dissertation [3] under the direction of Prof.
Harada at the Ohio State University.

2. Basic Properties.

In general, it is not easy to determine the group structure of Aut(V) for
an algebra V. However, for any a . a . algebra V the automorphism group
Aut(V) is of finite order. The following theorem is our starting point:
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THEOREM 2. 1. Let V be an a. a. algebra with a basis x_{1} , . . . x_{n} . The
automorphism group Aut(V) is isomorphic to a subgroup of the symmetric
group S_{n} of degree n.

PROOF. Since x_{i}x_{j}=-x_{j}x_{i} for i\neq j, a short computation shows that

(\Sigma r_{i}x_{i})^{2}=\Sigma c(r_{l}\cdot)^{2}x_{1}

For any element a in Aut(V), (x_{i})^{a}(x_{i})^{a}=c(Xi)a . In particular, we have

(x_{i})^{a}= \sum x_{k}

where k runs through A_{i} , a subset of the indices \{ 1, \ldots
n\} .

We must show that each A_{i} consists of one index and all A_{i} ’s are distinct.
It suffices to show that the intersection of A_{i} and A_{j} is empty whenever i is
different from j. Suppose that the assertion is false. We have

(x_{\iota}\cdot)^{a}(x_{j})^{a}=\Sigma cx_{k}+\Sigma x_{s}x_{t}+\Sigma x_{s}x_{k}+\Sigma x_{k}x_{t}

where k is in A_{\iota}\cdot\cap A_{j} , s is in A_{i}|A_{j} and t is in A_{j}|A_{i} . By the assumption,
the first summation is not zero. Unless A_{i}\cap A_{j} is empty, we get

(x_{i})^{a}(x_{j})^{a}\neq-(x_{j})^{a}(x_{i})^{a}

a contradiction.
Let (G, X) be a permutation group. The next theorem shows that G

admits at least one non-trivial a . a . algebra on the associated permutation
module.

THEOREM 2. 2. Let G act on X, a fifinite set. Let V be the permutation
module associated with the action of G on X. Let e_{1} , \ldots

e_{n} be the pcrmutat-
ion basis of V. There exists a G-homomorhism f from V\otimes V to V satisfying

f(e_{i}\otimes e_{i})=e_{i}

f(e_{i}\otimes e_{j})=-f(e_{j}\otimes e_{i}) if i\neq j,
f(e_{i}\otimes e_{j})\neq 0 for some pair i\neq j.

PROOF. Let 1+\varphi be the character of the permutation module V

associated to (G, X) . The tensor product V\otimes V decomposes into the
symmetric part V_{S} and the alternating part V_{A} . As a constituent, V_{S}

contains the diagonal subspace \{v\otimes v|v\in V\} isomorphic to V. On the
other hand, V_{A} contains a submodule W which affords the character \varphi . Let
p be the composition of the projection maps one from V\otimes V onto V_{S} and one
from V_{S} onto V. Let q be the composition of the projection maps one from
V\otimes V onto V_{A} and one from V_{A} onto W. Note that p(e_{i}\otimes e_{i})=e_{i} and q(e_{i}
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\otimes e_{j})=-q(e_{j}\otimes e_{i}) . By a suitable identification, f=p+q satisfies the
assertion.

The mapping f in the previous theorem determines an a . a . algebra
structure on a permutation module V : we simply extend f linearly to V and
put

uv=f(u\otimes v)

for any elements u, v in V.
From now on, when we consider G acting on X, the action is supposed

to be faithful. So by the theorems 2. 1 and 2. 2, if G acts on X and we
construct a G-invariant a . a . algebra V, then G and Aut(V) are regarded as
subgroups of S_{n} where n is the cardinality of X.

Next we describe the structure constants of a G-invariant a . a . algebra
for a 2-transitive group. Let G act on X2-transitively. Let V be the
associated permutation module with a basis x_{1_{f}} .. x_{n} . Let P(i, j;t) and
P(i, j;t\gamma be a paired orbital for distinct indices i and j. We also write

\overline{Y}=\sum_{k\in Y}x_{k}

for a subset Y of X.

PROPOSITION 2. 3 Let G and V be as above. Then an a. a. algebra
structure defifined on V is G-invariant if and only if

x_{i}x_{i}=cx_{i} for all i and

x_{i}x_{j}=k(x_{i}-x_{j})+ \sum_{t=1}^{s}c_{t}(\overline{P(i,j.\cdot t})-\overline{P(i,j}\cdot, t0 ) for i\neq j,

where c\neq 0 , k, c_{1} , \ldots . c_{s} are constant numbers.

PROOF. We see that the multiplication stated is G-invariant.
Conversely, suppose that an a . a . algebra on V is G-invariant. Let a
point-wise stabilizer G_{1,2} act on x_{1}x_{2} . We see that the coefficients of any two
base elements are same if they belong to the same G_{1,2} -0rbit. Next, let a
global stabilizer G_{\{1,2\}} act on x_{1}\ . Since XiXi-x_{j}x_{i} , it is easy to obtain the
result.

We see that if G acts 3-transitively on X, then there is a unique
G-invariant a . a . algebra structure on the associated permutation module.
Let us complete the characterization of an a . a . algebra whose automorphism
group is S_{n} . Note that this result is analogous to [2].

THEOREM 2. 4. Let V be an a. a. algebra with a basis x_{1} , . x_{n} . Then
Aut(V) is isomorphic to S_{n} if and only if there exist constant numbers
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c(\neq 0) and k such that

x_{i}x_{l}\cdot=c\% i for all i,
x_{i}x_{j}=k(x_{i}-x_{j}) for any indices i\neq j.

PROOF. Suppose that an a . a . algebra V satisfies the conditions on
binary product. By theorem 2. 1, we only need to check that any permutat-
ion on x_{1_{5}} . .. x_{n} preserves the given binary product. For instance, a
permutation p sends x_{i} to x_{s} and x_{j} to x_{t} . Then we have

(x_{i})^{p}(x_{j})^{p}=x_{s}x_{t}=k(x_{s}-x_{t}) and
(x_{i}x_{j})^{p}=k(x_{i}-x_{j})^{p}=k(x_{s}-x_{t}) ,

which give (x_{i}x_{j})^{p}=(x_{i})^{p}(x_{j})^{p} .
Suppose that Aut(V) is isomorphic to S_{n} . By theorem 2. 1, Aut(V)

permutes x_{1} , . .. -x_{n} . When n=1 or 2, there is nothing to prove. When n is
greater than 2, Aut(V) acts 3-transitively on x_{1} , \ldots . x_{n} . By Proposition 2.
3, the binary product satisfies the conclusion.

3. Examples.

In this section, several examples of a . a . algebras and their automor-
phism groups are discussed. First we consider a . a . algebras induced from
finite graphs. Let Y be a graph with a finite set of vertices \{ 1, \ldots

n\} . Let
E be the set of the edges of Y. The automorphism group Aut(Y) of Y is
defined as:

Aut(Y)={ p\in S_{Y}|(i^{p}, j^{p})\in E whenever (i, j)\in E.}

The corresponding a . a . algebra is defined as follows: Let 1, ... . n be the
vertices of Y. Let V be the permutation module of Aut(Y) with a basis x_{1_{J}}

. . . -x_{n} . We define a binary product on V by

x_{i}x_{i}=x_{i} for all i,

x_{i}x_{j}= \sum_{(i,k)\in E}x_{k}-\sum_{(j,m)\in E}x_{m} for i\neq j.

We obtain the following:

THEOREM 3. 1. Let Y be a fifinite graph. Then Aut(Y) is isomorphic to
Aut(V) for the corresponding a. a. algebra V defifined above.

PROOF. First, we show that Aut(Y) is contained in Aut(V). If an
element p in Aut(Y) acts on Y as i^{p}=j, then the action of p on V is defined
by (x_{l}\cdot)^{p}=x_{j} .

For any element p in Aut(Y), we have
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(x_{i}x_{j})^{p}= \sum_{(i,k)\in E}(x_{k})^{p}-\sum_{m(j,)\in E}(x_{m})^{p}

= \sum_{(i^{\rho},k\circ\in E}(x_{k})^{p}-\sum_{(j^{\rho},m^{p})\in E}(x_{m})^{p}

for i\neq j. On the other hand, we have

(x_{i})^{p}(x_{j})^{p}= \sum_{(i^{p},s)\in E}x_{s}-\sum_{(j^{p},t)\in E}x_{t} .

Since p permutes the vertices of Y, we see that the first claim holds.
Next we check that Aut(V) is contained in Aut(Y). For any element

a in Aut(V), we have

(x_{i}x_{j})^{a}= \sum_{(i,k)\in E}(x_{k})^{a}-\sum_{(j,m)\in E}(x_{m})^{a}

which is equal to

(x_{i})^{a}(x_{j})^{a}= \sum_{s(i^{a},)\in E}x_{s}-\sum_{t(j^{a})\in E}x_{t}

for i\neq j. Suppose that (z, j) is an edge. Then in the expression of (x_{l}\cdot x_{j})^{a} ,

the term (x_{j})^{a} appears only in the first summation once. This implies that in
the expression of (x_{i})^{a}(x_{j})^{a} , the same term (x_{j})^{a} must appear in the first
summation. Thus, we see that if (i, j) is an edge then (i^{a}, j^{a}) is also an
edge. This completes the proof of the theorem.

In section 2, we have characterized the a . a . algebras associated to
3-transitive groups. The next example handles sharply 2-transitive groups.

THEOREM 3. 2. Suppose that G acts sharply 2-tramitively on X, a set of
cardinality n. Let V be the associated permutation module with a basis
\{x_{1} , . . . \wedge x_{n}\} . Let t be the unique element in G such that (x_{1})^{t}=x_{2} and
(x_{2})^{t}=x_{1} . Let m be the greatest integer not exceeding n/2 .

Rearrange the numbering if necessary, we defifine an a. a. algebra on V as
follows :

x_{i}x_{i}=x_{i} for all i,
x_{1}x_{2}=\Sigma r( 1, 2; k)(x_{k}-(x_{k})^{t}) ,

where k runs from 1 through m,

x_{i}x_{j}=(x_{1}x_{2})^{p} for i\neq j

where p is a unique element in G such that (x_{1})^{p}=x_{i} and (x_{2})^{p}=x_{j} .
If all the coefficients r(1,2;k) ’s are non-zero and have different absolute

values, then Aut(V) is isomorphic to G.
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PROOF. We first determine the possible G invariant a . a . algebra
structures on V. We need to consider only x_{i}x_{j} for i\neq j. Put

x_{i}x_{j}=\Sigma r(i, j;k)x_{k} .

By comparing the coefficients of (x_{i}x_{j})^{g} and (x_{l}\cdot)^{g}(x_{j})^{g} for an element g in G,

we get

r(i^{g}, j^{g} : k^{g})=r(i, j;k) .

Since G acts sharply 2-transitively on X, it suffices to consider r(1,2;k) for
k=1 , \ldots . n . Namely, if a pair of indices i, j with i\neq j is given, then there
is a unique element g in G such that 1 g_{=}i and 2 g_{=j}. Therefore, the
coefficients satisfy

r (i, j ; k)=r(1,2 ; k^{h})

for k=1 , \ldots n, where h=g^{-1} .
Next we investigate the interrelation of the r ( 1, 2,\cdot k) ’s. Consider H=

G_{1,2\}}, , the global stabilizer of {1, 2} in G. The subgroup H is of order two;

let t be the generator. Comparing the coefficients of x_{1}\ and\ x_{1} , we get

r ( 1, 2,\cdot k)=-r(2,1,\cdot k^{t}) .

Rearrange the numbering if necessary, we get

x_{1}x_{2}=\Sigma r( 1, 2 ; k)(x_{k}-(x_{k})^{t}) ,

where k runs through a complete set of representatives of H- orbits of length
two.

Suppose that all r(1,2;k) ’s are none-zero and have different absolute
values. We show that Aut(V) is isomorphic to G itself.

For any element a in Aut(V), which induces a permutation on the basis
elements of V, we have (x_{1}\ )^{a}=x_{s}x_{u} where s=1^{a} and u=2^{a} . On the other
hand, there exists a unique element g in G such that 1 g_{=s} and 2 g_{=u} . We
want to show that i^{g}=i^{a} for all i. Compare the coefficients of

(x_{1}x_{2})^{a}=\Sigma r(1,2 ; k)((x_{k})^{a}-(x_{k}^{t})^{a}) and
(x_{1}x_{2})^{g}=\Sigma r(1,2;k)((x_{k})^{g}-(x_{k}^{t})^{g}) .

By the assumption on the r(1,2;k) ’s we get

(x_{i})^{a}=(x_{i})^{g} for all i.

This implies the result.
Next, suppose that G acts on X sharply 3-transitively. As we
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considered them in lemma 2. 3, an a . a . algebra V can not be defined on the
associated permutation module in order that Aut(V) is relatively small. So
we take a non-standard permutation module of G. The group G acts on the
ordered pairs of X naturally: for any element g in G and (i, j) in X\cross X,
define

(i, j)^{g}=(i^{g}, j^{g}) .

There are two G-0rbits in X\cross X : the diagonal set \{(i, i)|i\in X\} and the
off-diagonal set Y=\{(i, j)|i\neq j\} .

We define a permutation module V associated with the action of G on
the off-diagonal set Y. Let \{e(i, j)|(i, j)\in Y\} be a permutation basis of V.
Notice that

\dim(V)=|Y|=|X|(|X|-1) .

Define a binary product on V as follows:

(1) e(i, j)e(i, j)=e(i, j) for all (/, j) in Y,

(2) e(1,2)e(1,3)=\Sigma r(1,2,1, 3;s, t)(e(s, t)-e(s^{g}, t^{g}))

where g is the unique element in G such that 1 g_{=1},2^{g}=3,3^{g}=2 and (s, t)
runs through a complete set of representatives of <g> -0rbits on Y. Since
g^{2}=1 , each <g> -0rbit consists of at most two elements. We see that (2) is
well-defined. Note that if (s, t)=(s^{g}, t^{g}) then r(1,2,1, 3;s, t)=0. And if
this happens, 1\in\{s, t\} .

(3) e(i, j)e(i, k)=(e(1,2)e(1,3))^{h} for j\neq k, where h is the unique
element in G such that 1^{h}=i, 2^{h}=j and 3^{h}=k.

(4) e(i, j)e(p, q)=0 if i\neq p.

Since we have defined the binary product on every G-0rbit on Y\cross Y, it is
easy to see that V has a G-invariant algebra structure. We now state the
theorem:

THEOREM 3. 3. On the algebra V defifined above, if
(5) |r(1,2, 1,3 ; s, t)|\neq|r(1,2,1, 3 ; p, q)| whenever (s, t)\neq(s^{g}. t^{g}) ,

(p, q)\neq(p^{g}, q^{g}) and (s, t)\neq(p, q) thcn Aut(V) is isomorphic to G.

PROOF. By theorem 2. 1, it suffices to show that G contains Aut(V).
Let a be any element in Aut(V), and suppose that j\neq k . We have

(e(i, j)e(i, k))^{a}=e(i, j)^{a}e(i, k)^{a}\neq 0 .

By (4) if (i, j)^{a}=(u, v) and (i, k)^{a}=(p, w) , then we must have u=p.
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Thus, (i, j)^{a}=(u, v) and (i, k)^{a}=(u, w) . Since G is sharply 3-transitive
on X, there exists a unique element h in G such that i^{h}=u, j^{h}=v and k^{h}=w .
To get the conclusion, we must show

(s, t)^{a}=(s^{h}. t^{h}) for all (s, t) in Y.

Compare the coefficients in (e(1,2)e(1,3))^{a} and (e(1,2)e(1,3))^{h} :

(e(1,2)e(1,3))^{a}=\Sigma r(1,2,1,3; s, t)(e(s, t)^{a}-e(s^{g}, t^{g})^{a})

and

(e(1,2)e(1,3))^{h}=\Sigma r(1,2,1,3 ; s, t)(e(s, t)^{h}-e(s^{g}, t^{g})^{h}) .

We have (s, t)^{a}=(s, t)^{h}=(s^{h}, t^{h}) if (s, t)\neq(s, gt^{g}) . As we mentioned,

unless 1\in\{s, t\} , we get (s, t)\neq(s^{g}, t^{g}) . Thus, we have to show

(s, t)^{a}=(s^{h}, t^{h}) for s=1 or t=1 .

Let us consider the coefficients in e(i, 1)e(i, 2) for 1\neq i\neq 2 . According to
(3), there exists a unique element x in G such that 1^{X}=i, 2^{X}=1 and 3^{X}=2 .
We have

e(i, 1)e(i, 2)=\Sigma r(1,2,1, 3; s, t)(e(s, t)^{X}-e(s^{g}, t^{g})^{X}) .

Now compare the coefficients in A=(e(i, 1)e(i, 2))^{a} and B=(e(i, 1)e(i, 2))^{h} :

A=\Sigma r(1, 2, 1, 3; s, t)(e(s^{X}, t^{X})^{a}-e(S^{gx}- t^{gx})^{a}) and
B=\Sigma r(1, 2, 1, 3 : s, t)(e(s^{X}. t^{X})^{h}-e(s^{gx}, t^{gx})^{h}) .

We see that (s^{X}, t^{X})^{a}=(s^{X}. t^{X})^{h} if the coefficient r(1,2,1, 3;s, t)\neq 0 , that is,

if (s, t)\neq(s^{g}, t^{g}) . Since (2, k)\neq(2^{g}, k^{g}) for any k\neq 2 , we have

(2^{X}, t^{X})^{a}=(2^{X}, t^{X})^{h}

for any t\neq 2 . Therefore, we have (1, t^{X})^{a}=(1, t^{X})^{h} . This completes the
proof.

Next we consider the orthogonal groups of vector spaces over the finite
fields. We construct an a . a . algebra whose automorphism group is
isomorphic to a given orthogonal group. Let W be a vector space of finite
dimension over a finite field K. We need a pair of lemmas.

LEMMA 3. 4. The set A(n)=\{1,2,4, \ldots 2^{n-1}\} has the following
property : if

a-b=c-d\neq 0

for any elements a, b, c, d in A(n) , then
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a=c and b=d.

PROOF. Trivial.

LEMMA 3. 5. Let W be an n-dimensional vector space over a fifinite fifield
K. Let W have a non-degenerate inner product. Suppose that s is a
permutation on the vectors of W such that

(a^{s}, d^{s})=(a, d)

for any vectors a and d in W. Then s is a K-linear mapping.

PROOF. First we show that s is an additive mapping. By the
assumption, for any vector d in W, a short computation shows that

((a+b)^{s}, d^{s})=(a^{s}+b^{s}, d^{s}) .

Since the inner product is non-degenerate, we have

(a+b)^{s}=a^{s}+b^{s} .

Next we show that s is a K-mapping. For any element k in K and any
vectors a and d in W, a short computation shows that

((ka)^{s}, d^{s})=(ka^{s}, d^{s}) .

We obtain (ka)^{s}=ka^{s} .
This completes the proof.
In the previous lemma, the mapping s is a permutation (one-t0-0ne and

onto) on W. So s belongs to GL(W) . Since it preserves the inner product,
we see that s is in the orthogonal group of W with respect to the inner
product.

THEOREM 3. 6. Let W be an n-dimensional vector space over a fifinite
fifield K. Let W possess a non-degenerate inner product. We defifine an a. a.
algebra V over the complex number fifield as follows: V has a basis \{v_{a}|a\in

W\} such that

(v_{a})(v_{a})=v_{a} for all a in W,

(v_{a})(v_{b})= \Sigma r_{k}(\sum_{(a,c)=k}v_{c}-\sum_{(b,d)=k}v_{d})

for a\neq b, where k runs through K and the r_{k} ’s are complex numbers. Then
Aut(V) is isomorphic to the orthogonal group of W with respect to the inner
product.

PROOF. Note that (v_{b})(v_{a})=-(v_{a})(v_{b}) , so the binary product induces
an a . a . algebra structure on V. We also note the following:
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(v_{a})(v_{b})= \sum_{k\in K}\sum_{(a,c)=k}r_{k}v_{c}-\sum_{k\in K}\sum_{(b,d)=k}r_{k}v_{d}

= \sum_{c\in W}(r_{(a,c)}-r_{(b,C)})v_{c} .

After defining an order on K, choose the coefficients \{r_{k}\} to be

A(|K|)=\{1,2,4, \ldots, 2^{|K|-1}\}

as in lemma 3. 4. By Theorem 2. 1, Aut(V) is isomorphic to a subgroup of
S_{|W|} . For s in Aut(V) and v_{a} in V, define a^{s} in W by

v_{(a^{s})}=(v_{a})^{s} .

Similarly, if p is a permutation on the vectors of W, identify p as an element
in GL(V) by

(v_{a})^{p}=v_{(a\circ} .

Let p be an element of the orthogonal group of W : that is, (a^{p}, b^{p})=

(a, b) for any vectors a and b in W. It is easy to see that p preserves the a .
a . algebra structure of V.

Let s be an element of Aut(V). For two distinct elements a and b in W,

we have

(v_{a}v_{b})^{s}= \sum_{c\in W}(r_{(a,c)}-r_{(b,C)})V_{(c^{s})\prime}

v_{(a^{s})}v_{(b^{s})}= \sum_{d\in W}(r_{(a^{s},d)}-r_{(b^{s}d)})v_{d} .

Comparing the coefficients, we have

r_{(a.c)}-r_{(b,C)}=r_{(a^{s}c^{s})}-r_{(b^{s}c^{s})}

for any vector c in W. By lemma 3. 5, we get

r_{(a,c)}=r_{(a^{s}c^{s})} if r_{(a,c\rangle}\neq r_{(b,C)} .

This implies that if a vector b exists in W such that

(a, c)\neq(b, c) then (a, c)=(a^{s}. c^{s}) .

Since the inner product is non-degenerate, such a vector b always exists in
W provided c\neq 0 . On the other hand, it is easy to see that 0^{s}=0 . So we
conclude that

(a, c)=(a^{s}, c^{s})

for any vectors a and c in W. By lemma 3. 5, we complete the proof.



Automorphism groups of certain non-associative non-commutative algebras 187

Next, we construct an a . a . algebra V associated to a given abstract
group G. We assume G\neq 1 for the rest of this section.

For a given finite group G, let V be a vector space over the complex
number field with a basis \{v_{g}|g\in G\} . Define an a . a . algebra structure on V

as follows:

(v_{g})(v_{g})=v_{g} ,

(v_{g})(v_{h})=v_{gh}-v_{hg} if g\neq h .

Let G act on V by conjugation;

(v_{g})^{x}=v_{(xgx)}l ,

the algebra structure on V is G-invariant.
We see that Aut(G) is isomorphic to a subgroup of Aut(V).

Conversely, any element a in Aut(V) induces a permutation on the basis
elements: for any element g in G, we define g^{a} by

v_{(g^{a})}=(v_{g})^{a} .

We consider that when Aut(V) induces automorphisms on G. Namely our
goal is to prove the following:

THEOREM 3. 7 If Z(G) is trivial then Aut(V) of the a. a. algebra V

defifined above is isomorphic to Aut(G) .
We start with a few basic properties of this algebra.

LEMMA 3. 8. Let a be an element in Aut(V). For any elements x and
y in G, x and y commute if and only if x^{a} and y^{a} commute. Moreover, if
x and y do not commute, then

(xy) a_{=x^{a}y^{a}} .

PROOF. Notice that x and y do not commute if and only if (v_{X})(v_{y})=

v_{\chi y}-v_{yx}\neq 0 . Apply a to the both sides and compare, we get the conclusions.

LEMMA 3. 9. Suppose that for an element z in G there exists an element
w which does not commute with z . Then for any element a in Aut(V) the
following holds :

(z^{-1})^{a}=(z^{a})^{-1} .

PROOF. The hypothesis implies that z^{-1} does not commute with zw.
By the previous lemma,

w^{a}=(z^{-1}zw)^{a}=(z^{-1})^{a}(zw)^{a}=(z^{-1})^{a}z^{a}w^{a} .
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Thus, we get the result.

LEMMA 3. 10 Let x and y be commutative elements of G. Suppose that
there exists z in G such that z does not commute with x, y and xy. Then for
any element a in Aut(V),

(xy) a_{=x^{a}y^{a}} .

PROOF. The hypothesis implies that y does not commute with z^{-1} . It
also implies that xz and z^{-1}y do not commute. By the previous lemmas, we
have

(xy) a_{=(xz)^{a}(z^{-1}y)^{a}=x^{a}z^{a}(z^{a})^{-1}y^{a}=x^{a}y^{a}} .

The next proposition is key to our theorem:

PROPOSITION 3. 11. Suppose that Z(G)=1 . If x and y in G commute,
then there exists z in G such that z does not commute with x, y and xy.

PROOF. Suppose that the assertion is false. Then G is the union of
C_{G}(x) , C_{G}(y) and CG(y) . Note that these three subgroups are all distinct
and proper subgroups of G. Put K=C_{G}(x)\cap C_{G}(y) . By counting elements,
we have

(1) |G|=|C_{G}(x)|+|C_{G}(y)|+|C_{G}(xy)|-2|K| .

Divide both sides of (1) by |K| , we get

(2) |G|/|K|=|C_{G}(x)|/|K|+|C_{G}(y)|/|K|+|C_{G}(xy)|/|K|-2 .

Suppose that all the indices of C_{G}(x) , C_{G}(y) and C_{G}(xy) in G are
greater than 2, it contradicts to (1). So we may assume |G|/|C_{G}(x)|=2 .

Comparing the size of the conjugacy classes of x in G, in C_{G}(y) and in
CG(x) , we get

(3) |G|/|C_{G}(x)|\geq|C_{G}(xy)|/|K| and
(4) |G|/|C_{G}(x)|\geq|C_{G}(y)|/|K| .

By the assumption, we have

2=|C_{G}(xy)|/|K|=|C_{G}(y)|/|K| .

By (2), we have

|G|/|K|=|C_{G}(x)|/|K|+2 .

By (3), we have



Automorphism groups of certain non-associative non-commutative algebras 189

|G|/|K|\geq(|C_{G}(xy)|/|K|)\cdot(|C_{G}(x)|/|K|)=2|C_{G}(x)|/|K| .

So we get

2|C_{G}(x)|/|K|\leq|C_{G}(x)|/|K|+2 .

Thus, we obtain |C_{G}(x)|/|K|--2 . Therefore, the index of K in G is 4, and
the index of K in each of the three subgroups is 2. So K is a normal
subgroup of G. Then A=G/K is a four-group. By conjugation, A acts on
Z(K) , the center of K, which contains x, y and xJ’. If an element g in
Z(K) is fixed by A, then g must belong to Z(G) , which is a trivial group.
So A acts on Z(K) fixed-point-freely. A four-group can not act on a group
of even order fixed-point-freely (theorem 6. 2. 3 [1]), therefore Z(K) is of
odd order.

For any element h in C_{G}(xy)|K, we have that h acts on the normal
subgroups Z(C_{G}(x)) and Z(C_{G}(y)) . The quotient group G/C_{G}(\acute{x}) is of
order 2. The action of h on Z(C_{G}(x)) is fixed-point-free, as any fixed point

of Z(C_{G}(x)) is contained in Z(G) . Then by theorems 6. 2. 3 and 10. 1. 4 [1],

Z(C_{G}(x)) is abelian of odd order and h inverts every element of Z(C_{G}(x)) .
Namely, h inverts x and y. Since x and y commute, h inverts xy.

On the other hand, h belongs to C_{G}(xy) . This implies that xy is an
element of order 2. This contradicts to the fact that Z(K) is of odd order.
This completes the proof of the theorem.

The author thanks to Prof. D. Tambara who shows the following
theorem :

THEOREM 3. 12 (D. TAMBARA) Let G be any fifinite group. Defifine an a.
a. algebra V on G as follows:

v_{g}v_{g}=v_{g}

v_{g}v_{h}= \sum_{a\in G}(r(ga^{-1})-r(ha^{-1}))v_{a} for g\neq h,

where \{r(g)\} is a set as in lemma 3. 4, namely A(|G|) . Thcn Aut(V) is
isomorphic to G.

PROOF. First we show that Aut(V) contains G. Let x be any element
of G. The action on the basis element is as follows:

(v_{g})^{X}=v_{gx} .

It is easily verified that this action preserves the algebra operation.
Next we show that G contains Aut(V). Let s be any element of
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Aut (V), that is,

(v_{g}v_{h})^{s}=(v_{g})^{s}(v_{h})^{s} .

Comparing the coefficients of v_{X} for x in G, we obtain

gx^{-1}=g^{s}(x^{s})^{-1} .

In particular, putting g=1 , we have

x^{s}=x1^{s} for all x.

Thus we can identify the action of s on G by the right multiplication of 1 s.
This correspondence gives an isomorphism from Aut(V) to G.
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