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1. Introduction

The aim of this paper is to give an expression of representations of the
Galois group for the maximal unramified extension of a field of positive
characteristic. In fact, we express the set of representations in a group
theoretic means.

To be more precise, let K be a field containing an algebraically closed
field k of positive characteristic p. Let T be the set of all equivalence
classes of discrete valuations of K trivial on k whose residue fields are
isomorphic to k. For each v of T, let K_{v} be the completion of K at v and
O_{v} the integer ring in K_{v} . Put

A= \prod_{v\in T}K_{v} , G_{n}(A)= \prod_{v\in T}GL_{n}(K_{v}) ,

and

O= \prod_{v\in T}O_{v} , C_{n}= \prod_{v\in T}GL_{n}(O_{v}) ,

where GL_{n} denotes the general linear group of degree n. Let K_{T} be the
maximal Galois extension of K which is unramified at every element of T.
Then there is an imbedding i_{v} of K_{T} into K_{v} because the residue field of O_{v}

is algebraically closed. Thus K_{T} and K can be imbedded into A diagonally:
hence, GL_{n}(K_{T}) and GL_{n}(K) can be regarded as subgroups of G_{n}(A) . We
use the same symbol i_{v} to denote the imbedding of GL_{n}(K_{T}) into GL_{n}(K_{v})

induced by i_{v} : K_{T}arrow K_{v} . Put

G_{n}=C_{n} 1G_{n}(A)/GL_{n}(K) .

For each element u of G_{n}(A) , we denote by [[u]] the double coset
C_{n}uGL_{n}(K) . For each commutative ring R of characteristic p, and for each
p-power q, we can define an endomorphism f_{q} of M_{n}(R) by (a_{lj}.)\mapsto(a_{:j}^{q}.) .
This endomorphism induces a map from G_{n} into itself, which will be again
denoted by f_{q} . We often write f=f_{q} if no confusion arises. We denote by
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G_{n}^{f} the set of all f-fixed points of G_{n} . For each group G, let Rep(G, GL_{n}

(F_{q})) be the set of all GL_{n}(k) -equivalence classes of representations of G

into GL_{n}(k) whose images are isomorphic to some subgroups of GL_{n}(F_{q}) .
Then our main result in this paper is

THEOREM 1. Assume that the intersection O\cap K in K coincides with k.
Then there exists a bijection \phi from Rep(Gal (K_{T}/K) , GLn(Fq) ) onto G_{n}^{f} .

We shall prove this theorem in \S 2. When K is a function field, we can
express Rep(Gat(K_{T}/K), GL_{n}(F_{q})) in terms of adeles using Theorem 1.
We shall explain this in more details. Let X be an algebraic variety over k.
Assume that X is complete and normal. We take as K the function field of
X over k. Then the set T can be regarded as the set of all equivalence
classes of valuations of prime divisors on X. Let GL_{n}(K)_{A} be the
adelization of GL_{n}(K) , and put

G_{n}’=C_{n} 1GL_{n}(K)_{A}/GL_{n}(K) .

Then the assumptions of Theorem 1 are verified, and we have

THEOREM 2. The bijection \phi in Theorem 1 induces a bijection from Rep
(Gal(K_{T}/K), GL_{n}(F_{q})) onto the set G_{\acute{n}}^{f} of all f-fixed points of G_{\acute{n}} .

Now let V_{n} be the set of all isomorphism classes of locally free sheaves
on X of rank n. Then the q -th power absolute Frobenius map on X induces
a map f from V_{n} into itself. Let \pi_{1}(X) be the algebraic fundamental group
of X. Then, as an equivalent statement to Theorem 2, we have

COROLLARY To THEOREM 2.*) There exists a bijection from Rep(\pi_{1}(X) ,

GL_{n}(F_{q})) onto the set V_{n}^{f} of all f-fixed points of V_{n} .

We shall prove these results in \S 3. We remark that this corollary is a
slight generalization of a result of H. Lange and U. Stuhler [5], \S 1.

\S 2. Proof of Theorem 1

Let k be a field containing a finite field F_{q} and K a field containing k.
For a moment, we do not assume k to be algebraically closed as we have
done in \S 1. We use the same notations as in the introduction if otherwise
mentioned. We denote by \overline{K} the algebraic closure of K, and let K_{s} be the
separable algebraic closure of K. For a subfield L of \overline{K}, put

GL_{n}(L)’=\{a\in GL_{n}(L) ; a^{-1}f(a)\in GL_{n}(K)\} .
*) This was also announced in Katsurada [3] for the case where K is an algebraic function field

of one variable over k.
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For each element a=(a_{ij})_{1\leqq i,j\leqq n} of GL_{n}(\overline{K}) , let K(a) be the field generated
over K by all components of a. Then for each a\in GL_{n}(\overline{K})’ . we have K(a)^{q}

K=K(a) , where K(a)^{q} is the image of K(a) under the q-th power
homomorphism. Thus K(a) is a separable extension of K (cf. Proposition
1 of Lang [4] ) . Since a^{-1}f(a) belongs to GL_{n}(K) , we have

\sigma(a)^{-1}f(\sigma(a))=a^{-1}f(a) ,

where \sigma(a) denotes the matrix (\sigma(a_{ij}))_{1\leqq i,j\leqq n} for each element \sigma of the
Galois group Gal(K_{s}/K) . Hence we have

a\sigma(a)^{-1}=f(a\sigma(a)^{-1}) .

This shows that a \sigma(a)^{-1} belongs to GL_{n}(F_{q}) for each \sigma\in Gal(Ks/K\} .
Hence we can define a map \rho_{a} from Gal(K_{s}/K) into GL_{n}(F_{q}) by

\sigma\mapsto a\sigma(a)^{-1} .

We remark that K(a) is a Galois extension of K, and for each \sigma\in

Gal(K_{s}/K) ,

\rho_{a}(\sigma)=a\overline{\sigma}(a)^{-1} ,

where \overline{\sigma} denotes the image of \sigma under the natural surjection t:Gal(K_{s}/K)

arrow Gal(K(a)/K) . Now for all \sigma , \tau of Gal(K_{s}/K) , we have

\rho_{a}(\sigma\tau)=a(\sigma\tau(a))^{-1}=a(\sigma(\tau(a)))^{-1}=a(\sigma(\rho_{a}(\tau)^{-1}a))^{-1}

=a(\rho_{a}(\tau)^{-1}\sigma(a))^{-1}=a\sigma(a)^{-1}\rho_{a}(\tau)=\rho_{a}(\sigma)\rho_{a}(\tau) .

This implies that \beta a is a homomorphism from Gal(K_{s}/K) into GLn(Fq) .
Now for a subfield L of \overline{K} containing K, put

\overline{GL_{n}(L)}=GL_{n}(k)|GL_{n}(L)/GL_{n}(K) ,

and

\overline{GL_{n}(L)’}=\{GL_{n}(k)aGL_{n}(K) ; a\in GL_{n}(L)’\} .

For each element a of GL_{n}(L) , we denote by [a] the double coset GL_{n}(k)

aGL_{n}(K) . Moreover for each representation \rho of a group in GL_{n}(k) , we
denote by [\rho] the GL_{n}(k) -equivalence class of \rho . We note that two
elements a, b of GL_{n}(\overline{K})’ belong to the same double coset if and only if \rho_{a}

and \rho_{b} are GL_{n}(k) -equivalent. In fact, if a and b belong to the same double
coset, we have

b=uav

with u\in GL_{n}(k) , v\in GL_{n}(K) . Then, for each element \sigma of Gal (KslK).
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we have
\rho_{b}(\sigma)=b\sigma(b)^{-1}=uav\sigma(uav)^{-1}=ua\sigma(a)^{-1}u^{-1}

=u\rho_{a}(\sigma)u^{-1} .

Thus \rho_{a} and \rho_{b} are GL_{n}(k) -equivalent. Conversely, if \rho_{a} and \rho_{b} are GL_{n}(k)

-equivalent, there is an element u of GL_{n}(k) such that

\rho_{b}(\sigma)=u\rho_{a}(\sigma)u^{-1}

for all \sigma\in Gal(K_{s}/K) . Put v=a^{-1}u^{-1}b . Then for each \sigma of Gal(Ks/K) .
we have

\sigma(v)=\sigma(a^{-1}u^{-1}b)=\sigma(a)^{-1}u^{-1}\sigma(b)=a^{-1}\rho_{a}(\sigma)u^{-1}\rho_{b}(\sigma)^{-1}b

=a^{-1}u^{-1}b=v .

Hence, v belongs to GLn(KX . This implies that a and b belong to the same
double coset. Thus we can define an injective map \psi from GL_{n}(\overline{K})’ into Rep
(Gal(K_{s}/K), GL_{n}(F_{q})) by

[a]\mapsto[\rho_{a}] .

The following proposition is essentially obtained by Inaba [2], but the
formulation and the proof are slightly different.

PROPOSITION 3. \psi is bijective.

PROOF. It suffices to show that \psi is surjective. Let [\rho] be an element
of Rep(Gal (K_{s}/K) , GL_{n}(F_{q}) ) and L_{\rho} the field corresponding to the kernel of
\rho . Then \rho is factored through Gal(L_{\rho}/K) like

Gal(K_{s}/K)arrow Gal(L_{\rho}/K)arrow GL_{n}(F_{q})t\rho^{-} .

Since we have F_{q}\subset K,\overline{\rho} gives an element of the set of 1-cocycles Z^{1}

(Gal(L_{\rho}/K) , GL_{n}(L_{\rho})) . Since we have H^{1}(Gal(L_{\rho}/K), GL_{n}(L_{\rho}))--\{1\}

(for example, see Serre [6], Chp. X , \S 1), there is an element a of GL_{n}(L_{\rho})

such that \overline{\rho}(\sigma)=a\sigma(a)^{-1} for all \sigma\in Gal(L_{\rho}/K) . Put \alpha=a^{-1}f(a) . Then
we have \sigma(\alpha)=\alpha for all \sigma\in Gal(L_{\rho}/K) , that is, \alpha belongs to GLn(KX .
Moreover we have \psi([a])=[\rho] . This proves the surjectivity.

Now let k, K be as in \S 1. Let \phi’ be the inverse map of \psi . Let \delta:Gal

(K_{s}/K)arrow Gal(K_{T}/K) be the natural surjection. Then for each element
[\rho] of Rep(Gal(Ks/KXGL_{n}(F_{q}) ), we can take an element a of GL_{n}(K_{s})’

such that [a]=\phi’([\rho\circ\delta]) . (Recall GL_{n}(\overline{K})’=GL_{n}(K_{s})0 . Let \rho_{a} be the
homomorphism from Gal(K_{s}/K) into GL_{n}(F_{q}) defined above. Then by our
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construction, we have \psi([a])=[\rho_{a}] . Thus two representations \rho\circ\delta and \rho_{a}

are GL_{n}(k) -equivalent each other. Consequently, a belongs to GL_{n}(K_{T}) .
Thus a belongs to G_{n}(A) , and we have [[f(a)]]=[[a]] in G_{n} . Since k is
contained in O_{v} for each v \in T, we can define a map \phi from Rep
(Gal(K_{T}/K), GL_{n}(F_{q})) into G_{n}^{f} by

[\rho]\mapsto[[a]] .

Then to prove Theorem 1, it suffices to prove

THEOREM 1’ \phi is bijective.

To prove this, we need the following fact.

LEMMA 4. The rmp \xi from C_{n} into itself defined by u\mapsto f(u)u^{-1} is
surjective.

PROOF. Since we have C_{n}-- \prod_{v\in T}GL_{n}(O_{v}) , it suffices to show that for

each v\in T, the map

GL_{n}(O_{v})\ni u\mapsto f(u)u^{-1}\in GL_{n}(O_{v})

is surjective. Let M be the maximal ideal of O_{v} . Let b be an element of
GLn(Ov) . We claim that we can take a sequence \{ a_{i}\} (i=0,1, \ldots) of M_{n}(O_{v})

such that

a_{j}\in GL_{n}(O_{v}) ,

f(a_{i})\equiv ba_{i} mod M^{\iota+1}

.
,

and
a_{i+1}\equiv a_{i} mod M^{i+1} .

In fact, since O_{v}/M is algebraically closed, there is an element a_{0} of GL_{n}(O_{v})

such that

b\equiv f(a_{0})a_{0}^{-1} mod M

(cf. Lang [4]). Assume that a_{0} , \ldots
a_{i} are elements of M_{n}(O_{v}) such that

f(a_{j})\equiv ba_{j} mod M^{j+1} .
and

a_{j}\equiv a_{j- 1} mod M^{j}

for 1\leqq j\leqq i. Put a_{i+1}=b^{-1}f(a_{i}) . Then we have

f(a_{i+1})-ba_{i+1}=f( b^{-1})fy(a_{i}))-bb^{-1}f(a_{i})

\equiv f(b^{-1})f(ba_{i})-f(a_{i})\equiv 0 mod M^{i+2} .
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and
a_{i+1}-a_{i}=b^{-1}(f(a_{i})-ba_{i})\equiv 0 mod M^{i+1} .

Thus by induction, we obtain a sequence \{ a_{i}\} with the required properties.
Since O_{v} is a complete ring, this sequence \{ a_{i}\} has a limit a in M_{n}(O_{v}) .

It follows from the construction that we have

a\equiv a_{O} mod M,

and
f(a)\equiv ba mod M^{i}

for i=1,2 , \ldots . Thus a belongs to GLn(Ov) , and we have b=f(a)a^{-1} . This
proves the lemma.

Proof of Theorem 1’ First we prove the injectivity of \phi . Let [\rho_{i}]

(i=1,2) be an element of Rep(GaKKT/K),GLn(Fq)) , and let a_{i} be an
element of GL_{n}(K_{T})’ such that [[a_{i}]]=\phi([\rho_{i}]) . Assume that we have

[[a_{1}]]=[[a_{2}]] .

Then we have
(1) a_{l}^{-1}.f(a_{i})\in K,

for i=1,2 , and we have
(2) a_{2}=aa_{1}b

with a\in C_{n} , and b\in GL_{n}(K) . Then by (1) and (2), there is an element \beta

of GL_{n}(K) such that
(3) a^{-1}f(a)=a_{1}\beta a_{1}^{-1} .

Now, as remarked at the beginning of this section, for each \sigma\in Gal

(K(a)/K) , there is an element \tau_{\sigma} of GL_{n}(F_{q}) such that
(4) \sigma(a_{1})=\tau_{\sigma}a_{1} .

Thus by (3) and (4), for each element \sigma of Gal(K(a_{1})/K) , we have
(5) \sigma(a_{1}\beta a_{1}^{-1})\in C_{n} .

Put a_{1}\beta a_{1}^{-1}=(u_{ij})_{1\leqq i,j\leqq n} . Let f_{ij}(X) be the irreducible polynomial of u_{ij}

over K. Then by (5), f_{ij}(X) belongs to O_{v}[X] for all v\in T Since we
have O\cap K=k, f_{zj}.(X) belongs to k[X] . Since k is algebraically closed,
u_{ij} belongs to k. This implies that a^{-1}f(a) belongs to GL_{n}(k) . Thus a
belongs to GL_{n}(k) by Corollary to Theorem 1 of [4]. Hence by Proposition
3, we have [\rho_{1}]=[\rho_{2}] . This shows that \phi is injective.

Now to prove the surjectivity of \phi , let [[a]] be an f-fixed point of G_{n} .
Then we have

f(a)=uad

with u\in C_{n} , d\in GL_{n}(K) . By Lemma 4, there is an element w of C_{n} such
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that

f(w)w^{-1}=u .

Then b=w^{-1}a satisfies

b^{-1}f(b)=d.

Now let c be an element of GL_{n}(\overline{K}) such that

c^{-1}f(c)=d.

Let T(L) be the set of all extensions of elements of T to the field L=K(c) .
For each element v of T(L) , let j_{v} be the imbedding of GL_{n}(L) into
GLn(K) . Then j_{v}(c)b^{-1} belongs to GL_{n}(F_{q}) . Thus j_{v}(c) belongs to
GL_{n}(K_{v}) , where v’ is the restriction of v to K. This implies that K(c)
is contained in K_{T} , and we have

[[c]]=[[a]]
in G_{n} . Put [\rho]=\psi([c]) . Then there is a homomorphism \overline{\rho} from Gal
(K_{T}/K) into GL_{n}(F_{q}) such that \rho=\overline{\rho}\circ\delta . Since we have [ c]=\phi’([\overline{\rho}\circ\delta]) ,

we have [[a]]=[[c]]=\phi([\overline{\rho}]) by our construction. This proves the
surjectivity of \phi .

\S 3. Proof of Theorem 2 and its corollary

Now let K be the function field of a complete normal irreducible
algebraic variety X over k. To prove Theorem 2, it suffices to show the
following fact.

PROPOSITION 5. Let G_{n}^{f} and G_{\acute{n}}^{f} be as in \S 1. Then we have G_{n}^{f}=G_{\acute{n}}^{f}.

PROOF. Clearly we have G_{n}^{rf}\subset G_{n}^{f} . We prove the converse inclusion.
Let [[a]] be an element of G_{n}^{f} . Then we have f(a)=md with u\in C_{n} , d\in

GLn(K) . Let c an element of GL_{n}(\overline{K}) such that c^{-1}f(c)=d. Then c

belongs to GL_{n}(K_{T}) , and we have [[c]]=[[a]] (see the proof of Theorem
1’). Since K(c) is a finite extension of the function field K of a normal
variety, we have i_{v}(c)\in GL_{n}(O_{v}) for all except finitely many elements v of
T. This shows that c belongs to GL_{n}(K)_{A} . Hence [[a]] belongs to G_{\acute{n}}^{f}.
This proves the assertion.

Proof of Corollary to Theorem 2. First we show that there exists a
bijection from G_{n}^{\prime f} onto V_{n}^{f} . We use the same symbol P to denote the
equivalence class of the valuation of a prime divisor P on X. Fix a vector
space V over k together with a basis e_{1} . \ldots

e_{n} . Let M_{O}=\{M_{O,P}\}_{P} be the
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family of O_{P} lattices in V \bigotimes_{K}K_{P} such that

M_{O,P}=O_{P}e_{1}\oplus\ldots\oplus O_{P}e_{n}

for all P\in T We use the same symbol i_{P} to denote the homomorphism from

V into V \bigotimes_{K}K_{P} induced by the imbedding i_{P} : K_{T}arrow K_{P} . Then for each a_{-}^{-}

(a_{P}) of GL_{n}(K)_{A} , we define a presheaf E(a) on X by \Gamma ( U, E(a))=\{x\in V ;
i_{P}(x)\in a_{P}^{-1}M_{O}

, P for all P\subset U }, where U is an open subset of X. It is easily
checked that E(a) is a locally free sheaf of rank n. Moreover we have E
(a)\cong E(b) if we have [[a]]=[[b]] in G_{\acute{n}} . Thus we can define a map \theta

from G_{\acute{n}} into V_{n} by

[[a]]\mapsto the isomorphism class of E(a) .

It is easily checked that \theta is a bijection (cf. \S 1 of G. Harder and D. A.
Kazhdan [1] ) . Now by our construction, we have \theta(G_{n}^{rf})=V_{n}^{f} . On the
other hand, we have Gal(K_{T}/K)\cong\pi_{1}(X) . Thus the assertion follows
immediately from Theorem 2.
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