On representations of the maximal unramified Galois extension of a field of positive characteristic

Hidenori KATSURADA (Received February 3, 1986, Revised February 19, 1987)

1. Introduction

The aim of this paper is to give an expression of representations of the Galois group for the maximal unramified extension of a field of positive characteristic. In fact, we express the set of representations in a group theoretic means.

To be more precise, let K be a field containing an algebraically closed field k of positive characteristic p. Let T be the set of all equivalence classes of discrete valuations of K trivial on k whose residue fields are isomorphic to k. For each v of T, let K_{v} be the completion of K at v and O_{v} the integer ring in K_{v} . Put

$$
A=\prod_{v\in T} K_v, G_n(A)=\prod_{v\in T} GL_n(K_v),
$$

and

$$
O=\prod_{v\in T} O_v, \quad C_n=\prod_{v\in T} GL_n(O_v),
$$

where GL_{n} denotes the general linear group of degree n. Let K_{T} be the maximal Galois extension of K which is unramified at every element of T . Then there is an imbedding i_{v} of K_{T} into K_{v} because the residue field of O_{v} is algebraically closed. Thus K_{T} and K can be imbedded into A diagonally; hence, $GL_{n}(K_{T})$ and $GL_{n}(K)$ can be regarded as subgroups of $G_{n}(A)$. We use the same symbol i_{v} to denote the imbedding of $GL_{n}(K_{T})$ into $GL_{n}(K_{v})$ induced by $i_{v} : K_{T} {\rightarrow} K_{v}$. Put

$$
G_n = C_n \backslash G_n(A) / GL_n(K).
$$

For each element u of $G_{n}(A)$, we denote by $[[u]]$ the double coset $C_{n}uGL_{n}(K)$. For each commutative ring R of characteristic p, and for each p-power q, we can define an endomorphism f_{q} of $M_{n}(R)$ by $(a_{ij}) \longmapsto(a_{ij}^{q})$. This endomorphism induces a map from G_{n} into itself, which will be again denoted by f_{q} . We often write $f=f_{q}$ if no confusion arises. We denote by

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}$

 G_{n}^{f} the set of all f-fixed points of G_{n} . For each group G, let $Rep(G, GL_{n})$ (F_{q})) be the set of all $GL_{n}(k)$ -equivalence classes of representations of G into $GL_{n}(k)$ whose images are isomorphic to some subgroups of $GL_{n}(F_{q})$. Then our main result in this paper is

THEOREM 1. Assume that the intersection $O\cap K$ in K coincides with k. Then there exists a bijection ϕ from Rep(Gal (K_{T}/K), $GL_{n}(F_{q})$) onto G_{n}^{f} .

We shall prove this theorem in $\S 2$. When K is a function field, we can express $Rep(Gal(K_{T}/K), GL_{n}(F_{q}))$ in terms of adeles using [Theorem](#page-1-0) 1. We shall explain this in more details. Let X be an algebraic variety over k . Assume that X is complete and normal. We take as K the function field of X over k. Then the set T can be regarded as the set of all equivalence classes of valuations of prime divisors on X. Let $GL_{n}(K)_{A}$ be the adelization of $GL_{n}(K)$, and put

 $G'_{n} = C_{n} \backslash GL_{n}(K)_{A}/GL_{n}(K)$.

Then the assumptions of [Theorem](#page-1-0) ¹ are verified, and we have

THEOREM 2. The bijection ϕ in Theorem 1 induces a bijection from Rep $(Gal(K_{T}/K), GL_{n}(F_{q}))$ onto the set G_{n}^{\prime} of all f-fixed points of G_{n}^{\prime} .

Now let V_{n} be the set of all isomorphism classes of locally free sheaves on X of rank n. Then the q-th power absolute Frobenius map on X induces a map f from V_{n} into itself. Let $\pi_{1}(X)$ be the algebraic fundamental group of X. Then, as an equivalent statement to [Theorem](#page-1-1) 2, we have

COROLLARY TO THEOREM 2.*) There exists a bijection from $Rep(\pi_{1}(X)$, $GL_{n}(F_{q})$ onto the set V_{n}^{f} of all f-fixed points of V_{n} .

We shall prove these results in \S 3. We remark that this corollary is a slight generalization of a result of H. Lange and U. Stuhler [\[5\],](#page-7-0) $\S 1$.

§ 2. Proof of Theorem 1

Let k be a field containing a finite field F_{q} and K a field containing k. For a moment, we do not assume k to be algebraically closed as we have done in $\S 1$. We use the same notations as in the introduction if otherwise mentioned. We denote by \overline{K} the algebraic closure of K, and let K_{s} be the separable algebraic closure of K . For a subfield L of \bar{K} , put

$$
GL_n(L)'=\{a\in GL_n(L)\ ;\ a^{-1}f(a)\in GL_n(K)\}.
$$

^{*)} This was also announced in Katsurada [\[3\]](#page-7-1) for the case where K is an algebraic function field of one variable over k.

For each element $a\!=\!(a_{ij})_{1\leq i,\,j\leq n}$ of $GL_{n}(\bar{K})$, let $K(a)$ be the field generated over K by all components of a . Then for each $a{\in}GL_{n}(\overline{K})'$, we have $K(a)^{q}$ $K=K(a)$, where $K(a)^{q}$ is the image of $K(a)$ under the q-th power homomorphism. Thus $K(a)$ is a separable extension of K (cf. Proposition 1 of Lang [\[4\]](#page-7-2)). Since $a^{-1}f(a)$ belongs to $GL_{n}(K)$, we have

$$
\sigma(a)^{-1}f(\sigma(a)) = a^{-1}f(a),
$$

where $\sigma(a)$ denotes the matrix $(\sigma(a_{ij}))_{1\leq i,j\leq n}$ for each element σ of the Galois group $Gal(K_{s}/K)$. Hence we have

$$
a\sigma(a)^{-1} = f(a\sigma(a)^{-1}).
$$

This shows that a $\sigma(a)^{-1}$ belongs to $GL_{n}(F_{q})$ for each $\sigma\in Gal(K_{s}/K)$. Hence we can define a map ρ_{a} from $Gal(K_{s}/K)$ into $GL_{n}(F_{q})$ by

$$
\sigma \longmapsto a\sigma(a)^{-1}.
$$

We remark that $K(a)$ is a Galois extension of K, and for each $\sigma\in$ $Gal(K_{s}/K)$,

$$
\rho_a(\sigma) = a\bar{\sigma}(a)^{-1},
$$

where $\overline{\sigma}$ denotes the image of σ under the natural surjection $t:Gal(K_{s}/K)$ \longrightarrow $Gal(K(a)/K)$. Now for all σ , τ of $Gal(K_{s}/K)$, we have

$$
\rho_a(\sigma\tau) = a(\sigma\tau(a))^{-1} = a(\sigma(\tau(a)))^{-1} = a(\sigma(\rho_a(\tau)^{-1}a))^{-1}
$$

= $a(\rho_a(\tau)^{-1}\sigma(a))^{-1} = a\sigma(a)^{-1}\rho_a(\tau) = \rho_a(\sigma)\rho_a(\tau)$.

This implies that ρ_a is a homomorphism from $Gal(K_s/K)$ into $GL_n(F_q)$.

Now for a subfield L of \overline{K} containing K, put

$$
\overline{GL_n(L)}=GL_n(k)\backslash GL_n(L)/GL_n(K),
$$

and

$$
\overline{GL_n(L)} = \{GL_n(k)aGL_n(K) \; ; \; a \in GL_n(L)'\}.
$$

For each element a of $GL_{n}(L)$, we denote by [a] the double coset $GL_{n}(k)$ $aGL_{n}(K)$. Moreover for each representation ρ of a group in $GL_{n}(k)$, we denote by $[\rho]$ the $GL_{n}(k)$ -equivalence class of ρ . We note that two elements a, b of $GL_{n}(\overline{K})'$ belong to the same double coset if and only if ρ_{a} and ρ_{b} are $GL_{n}(k)$ -equivalent. In fact, if a and b belong to the same double coset, we have

$$
b = uav
$$

with $u \in GL_{n}(k)$, $v \in GL_{n}(K)$. Then, for each element σ of $Gal(K_{s}/K)$.

we have

$$
\rho_b(\sigma) = b\sigma(b)^{-1} = uav\sigma(uav)^{-1} = u a\sigma(a)^{-1}u^{-1}
$$

= $u\rho_a(\sigma)u^{-1}$.

Thus ρ_{a} and ρ_{b} are $GL_{n}(k)$ -equivalent. Conversely, if ρ_{a} and ρ_{b} are $GL_{n}(k)$ -equivalent, there is an element u of $GL_{n}(k)$ such that

$$
\rho_b(\sigma) = u\rho_a(\sigma) u^{-1}
$$

for all $\sigma\in Gal(K_{s}/K)$. Put $v=a^{-1}u^{-1}b$. Then for each σ of $Gal(K_{s}/K)$. we have

$$
\sigma(v) = \sigma(a^{-1}u^{-1}b) = \sigma(a)^{-1}u^{-1}\sigma(b) = a^{-1}\rho_a(\sigma)u^{-1}\rho_b(\sigma)^{-1}b
$$

= $a^{-1}u^{-1}b = v$.

Hence, v belongs to $GL_n(K)$. This implies that a and b belong to the same double coset. Thus we can define an injective map ψ from $\overline{GL_{n}(\overline{K})'}$ into Rep $(Gal(K_{s}/K), GL_{n}(F_{q}))$ by

 $[a] \mapsto [\rho_{a}]$.

The following proposition is essentially obtained by Inaba [\[2\],](#page-7-3) but the formulation and the proof are slightly different.

PROPOSITION 3. ψ is bijective.

PROOF. It suffices to show that ψ is surjective. Let $[\rho]$ be an element of $Rep(Gal(K_{s}/K)$, $GL_{n}(F_{q})$ and L_{p} the field corresponding to the kernel of ρ . Then ρ is factored through $Gal(L_{\rho}/K)$ like

$$
Gal(K_s/K) \longrightarrow Gal(L_{\rho}/K) \longrightarrow GL_n(F_q).
$$

Since we have $F_{q}\subset K$, $\overline{\rho}$ gives an element of the set of 1-cocycles Z^{1} $(Gal(L_{\rho}/K)$, $GL_{n}(L_{\rho}))$. Since we have $H^{1}(Gal(L_{\rho}/K)$, $GL_{n}(L_{\rho}))=\{1\}$ (for example, see Serre [\[6\],](#page-7-4) Chp. X, § 1), there is an element a of $GL_{n}(L_{\rho})$ such that $\overline{\rho}(\sigma)=a\sigma(a)^{-1}$ for all $\sigma\in Gal(L_{\rho}/K)$. Put $\alpha=a^{-1}f(a)$. Then we have $\sigma(\alpha)=\alpha$ for all $\sigma\in Gal(L_{\alpha}/K)$, that is, α belongs to $GL_n(K)$. Moreover we have $\psi([a]) = [\rho]$. This proves the surjectivity.

Now let k, K be as in § 1. Let ϕ' be the inverse map of ψ . Let δ : Gal $(K_{s}/K) \longrightarrow Gal(K_{T}/K)$ be the natural surjection. Then for each element [ρ] of $Rep(Gal(K_{T}/K), GL_{n}(F_{q}))$, we can take an element a of $GL_{n}(K_{s})'$ such that $[a]=\phi'([\rho\circ\delta])$. (Recall $GL_{n}(\overline{K})'=GL_{n}(K_{s})'$). Let ρ_{a} be the homomorphism from $Gal(K_{s}/K)$ into $GL_{n}(F_{q})$ defined above. Then by our

construction, we have $\psi([a])=[\rho_{a}]$. Thus two representations $\rho\circ\delta$ and ρ_{a} are $GL_{n}(k)$ -equivalent each other. Consequently, a belongs to $GL_{n}(K_{T})$. Thus *a* belongs to $G_{n}(A)$, and we have $[[f(a)]] = [[a]]$ in G_{n} . Since *k* is contained in O_{v} for each $v \in T$, we can define a map ϕ from Rep $(Gal(K_{T}/K), GL_{n}(F_{q}))$ into G_{n}^{f} by

 $\lceil \rho \rceil \longrightarrow \lceil [a] \rceil$.

Then to prove [Theorem](#page-1-0) 1, it suffices to prove

THEOREM 1'. ϕ is bijective.

To prove this, we need the following fact.

LEMMA 4. The map ξ from C_{n} into itself defined by $u\mapsto f(u)u^{-1}$ is surjective.

PROOF. Since we have $C_{n}=\prod_{v\in T}GL_{n}(O_{v})$, it suffices to show that for each $v \in T$, the map

 $GL_{n}(O_{v})\ni u\longmapsto f(u)u^{-1}\in GL_{n}(O_{v})$

.

is surjective. Let M be the maximal ideal of O_{v} . Let b be an element of $GL_n(O_v)$. We claim that we can take a sequence $\{a_i\}$ (i=0,1, ...) of $M_{n}(O_v)$ such that

> $a_{0} \in GL_{n}(O_{v})$. $f(a_{i}) \equiv ba_{i} \mod M^{\,i+1},$

and

$$
a_{i+1} \equiv a_i \mod M^{i+1}
$$

In fact, since O_{v}/M is algebraically closed, there is an element a_{0} of $GL_{n}(O_{v})$ such that

$$
b \equiv f(a_0) a_0^{-1} \mod M
$$

(cf. Lang [\[4\]\)](#page-7-2). Assume that a_{0} , \ldots , a_{i} are elements of $M_{n}(O_{v})$ such that

 $f(a_{j}) \equiv ba_{j} \mod M^{j+1}$,

and

$$
a_j \equiv a_{j-1} \mod M^j
$$

for $1\leq j\leq i$. Put $a_{i+1}=b^{-1}f(a_{i})$. Then we have

$$
f(a_{i+1}) - ba_{i+1} = f(b^{-1})f(f(a_i)) - bb^{-1}f(a_i)
$$

\n
$$
\equiv f(b^{-1})f(ba_i) - f(a_i) \equiv 0 \mod M^{i+2},
$$

and

$$
a_{i+1} - a_i = b^{-1}(f(a_i) - ba_i) \equiv 0 \mod M^{i+1}.
$$

Thus by induction, we obtain a sequence $\{a_{i}\}\$ with the required properties.

Since O_{v} is a complete ring, this sequence $\{a_{i}\}\$ has a limit a in $M_{n}(O_{v})$. It follows from the construction that we have

 $a \equiv a_{0} \mod M$,

and

 $f(a)\equiv ba \mod M^{i}$

for $i=1, 2, \ldots$ Thus a belongs to $GL_n(O_v)$, and we have $b=f(a)a^{-1}$. This proves the lemma.

Proof of [Theorem](#page-1-0) 1'. First we prove the injectivity of ϕ . Let $[\rho_{i}]$ $(i=1,2)$ be an element of $Rep(Gal(K_T/K), GL_n(F_q))$, and let a_{i} be an element of $GL_{n}(K_{T})'$ such that $[[a_{i}]] = \phi([p_{i}])$. Assume that we have

 $\lceil [a_{1}]| = [a_{2}]$].

Then we have

(1) $a_{i}^{-1}f(a_{i})\in K,$

for $i=1, 2$, and we have

$$
(2) \quad a_2 = aa_1b
$$

with $a\in C_{n}$, and $b\in GL_{n}(K)$. Then by (1) and (2), there is an element β of $GL_{n}(K)$ such that

(3) $a^{-1}f(a)=a_{1}\beta a_{1}^{-1}$.

Now, as remarked at the beginning of this section, for each $\sigma \in Gal$ $(K(a)/K)$, there is an element τ_{σ} of $GL_{n}(F_{q})$ such that

 $(4) \quad \sigma(a_{1})=\tau_{\sigma}a_{1}.$

Thus by (3) and (4), for each element σ of $Gal(K(a_{1})/K)$, we have $(5) \quad \sigma(a_{1}\beta a_{1}^{-1})\in C_{n}$.

Put $a_{1}\beta a_{1}^{-1}=(u_{ij})_{1\leq i,j\leq n}$. Let $f_{ij}(X)$ be the irreducible polynomial of u_{ij} over K. Then by (5), $f_{ij}(X)$ belongs to $O_{v}[X]$ for all $v\in T$. Since we have $O\cap K=k$, $f_{ij}(X)$ belongs to $k[X]$. Since k is algebraically closed, u_{ij} belongs to k. This implies that $a^{-1}f(a)$ belongs to $GL_{n}(k)$. Thus a belongs to $GL_{n}(k)$ by Corollary to [Theorem](#page-1-0) 1 of [\[4\].](#page-7-2) Hence by Proposition 3, we have $[\rho_{1}]=[\rho_{2}].$ This shows that ϕ is injective.

Now to prove the surjectivity of ϕ , let $[[a]]$ be an f-fixed point of G_{n} . Then we have

 $f(a)=u$ ad

with $u\in C_{n}$, $d\in GL_{n}(K)$. By [Lemma](#page-4-0) 4, there is an element w of C_{n} such

that

 \bar{z}

 $f(w)w^{-1}=u.$

Then $b=w^{-1}a$ satisfies

$$
b^{-1}f(b) = d.
$$

Now let c be an element of $GL_{n}(\overline{K})$ such that

$$
c^{-1}f(c) = d.
$$

Let $T(L)$ be the set of all extensions of elements of T to the field $L=K(c)$. For each element v of $T(L)$, let j_{v} be the imbedding of $GL_{n}(L)$ into $GL_{n}(K_{v})$. Then $j_{v}(c)b^{-1}$ belongs to $GL_{n}(F_{q})$. Thus $j_{v}(c)$ belongs to $GL_{n}(K_{v})$, where v' is the restriction of v to K. This implies that $K(c)$ is contained in K_{T} , and we have

 $[[c]]=[[a]]$

in G_{n} . Put $[\rho]=\psi([c])$. Then there is a homomorphism $\overline{\rho}$ from Gal (K_{T}/K) into $GL_{n}(F_{q})$ such that $\rho=\overline{\rho}\circ\delta$. Since we have $[c]=\phi'([\overline{\rho}\circ\delta])$, we have $\lceil a \rceil = \lceil c \rceil = \phi(\lceil \overline{\rho} \rceil)$ by our construction. This proves the surjectivity of ϕ .

$\S 3.$ Proof of Theorem 2 and its corollary

Now let K be the function field of a complete normal irreducible algebraic variety X over k. To prove [Theorem](#page-1-1) 2, it suffices to show the following fact.

PROPOSITION 5. Let G_{n}^{f} and $G_{n}^{\prime}{}^{f}$ be as in $\S 1$. Then we have $G_{n}^{f}=G_{n}^{\prime}{}^{f}$.

Proof. Clearly we have $G_{n}^{f} \subset G_{n}^{f}$. We prove the converse inclusion. Let $[[a]]$ be an element of G_{n}^{f} . Then we have $f(a)=uad$ with $u\in C_{n}$, $d\in$ $GL_{n}(K)$. Let c an element of $GL_{n}(\overline{K})$ such that $c^{-1}f(c)=d$. Then c belongs to $GL_{n}(K_{T})$, and we have $[[c]]=[[a]]$ (see the proof of [Theorem](#page-1-0) 1'). Since $K(c)$ is a finite extension of the function field K of a normal variety, we have $i_{v}(c)\in GL_{n}(O_{v})$ for all except finitely many elements v of T. This shows that c belongs to $GL_{n}(K)_{A}$. Hence $[[a]]$ belongs to G_{n}^{f} . This proves the assertion.

Proof of Corollary to [Theorem](#page-1-1) 2. First we show that there exists a bijection from $G_{n}^{\prime\prime}$ onto V_{n}^{\prime} . We use the same symbol P to denote the equivalence class of the valuation of a prime divisor P on X . Fix a vector space V over k together with a basis e_{1}, \ldots, e_{n} . Let $M_{O}=\{M_{O,P}\}_{P}$ be the

family of O_{P} lattices in $V \otimes_{K} K_{P}$ such that

$$
M_{O.P} = O_P e_1 \oplus \ldots \oplus O_P e_n
$$

for all $P \in T$. We use the same symbol i_{P} to denote the homomorphism from V into $V \underset{K}{\otimes} K_{P}$ induced by the imbedding $i_{P} : K_{T} \longrightarrow K_{P}$. Then for each $a=$ (a_{P}) of $GL_{n}(K)_{A}$, we define a presheaf $E(a)$ on X by $\Gamma (U, E(a))=\{x\in V ;$ $i_{P}(x)\!\in\!\! a_{P}^{-1}M_{O,P}^+$ for all $P\!\subset\! U\rbrace$, where U is an open subset of X . It is easily checked that $E(a)$ is a locally free sheaf of rank n. Moreover we have E $(a)\cong E(b)$ if we have $[[a]] = [[b]]$ in G_{α} . Thus we can define a map θ from G'_{n} into V_{n} by

 $\lceil \lceil a \rceil \rceil \longrightarrow$ the isomorphism class of $E(a)$.

It is easily checked that θ is a bijection (cf. $\S 1$ of G. Harder and D. A. Kazhdan [\[1\]](#page-7-5)). Now by our construction, we have $\theta(G_{n}^{\prime})=V_{n}^{f}$. On the other hand, we have $Gal(K_{T}/K)\cong\pi_{1}(X)$. Thus the assertion follows immediately from [Theorem](#page-1-1) 2.

ACKNOWLEDGEMENTS. The author would like to thank the referee for his valuable advice.

References

- [1] G. HARDER and D. A. KAZHDAN, Automorphic forms GL_{2} over function fields (after V. G. Drinfeld), Proceedings of Symposia in Pure Math. 33, part 2, AMS (1979), 357-379.
- [2] E. INABA, On generalized Artin Shreier equations, Nat. Sci. Rep. Ochanomizu Univ. ¹³ (1962), 1-13.
- [3] H. KATSURADA, On unramified $SL_2(F_4)$ -extensions of an algebraic function field, Proc. Japan Acad. 56 (1980), 36-39.
- [4] S. LANG, Algebraic groups over finite fields, Amer. J. of Math. 78 (1965), 553-563.
- [5] H. LANGE and U. STUHLER, Vektorbündel auf Kurven und Darstellungen der algebraichen Fundamentalgruppe, Math. Z. 156 (1977), 73-83.
- [6] J. P. SERRE, Corps locaux, Herman, Paris (1962).

Muroran Institute of Technology